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Introduction: The emergence of multidrug-resistant (MDR) strains of Salmonella, 
which is a genus of important zoonotic pathogens, has aroused great public 
health concern worldwide.

Methods: In this study, 167 strains of Salmonella were isolated from 947 samples 
from broiler farms, slaughterhouses, and markets in Shandong Province. Antibiotic 
sensitivity testing was performed, and 70 strains of Salmonella were screened out by 
whole-genome sequencing (WGS) to evaluate serotypes, antimicrobial resistance 
genes (ARGs), the prevalence of class 1 integrons, the plasmid carriage rate, and 
phylogenetic characteristics and for multilocus sequence typing (MLST).

Results: The results showed that the 167 isolates showed the highest resistance to 
ampicillin (AMP, 87.4%), sulfamethoxazole (SF, 87.4%), compound sulfamethoxazole 
(SXT, 81.4%), nalidixic acid (NAL, 80.2%), and amoxicillin/clavulanic acid (A/C, 77.8%). 
All the strains were sensitive to meropenem (MEM), and 91.0% of the isolates were 
MDR strains. We screened a total of 45 ARGs, with the highest detection rate observed 
for the tetracycline (TET) resistance gene tet (A) (81.4%). A total of 21 types of plasmid 
replicons were detected in Salmonella, of which IncX1 was the most common (74.3%), 
and 62.9% of the isolates carried a class 1 integron. In addition, a total of 11 different 
serotypes were detected, with S. enteritidis as the predominant serovar., followed by S. 
infantis and S. Newport. Twelve different sequence types (STs) were detected, among 
which ST11 was the main type. There was a strong correspondence between serotypes 
and STs. We also found that S. Indiana and S. Kentucky had extremely high rates of 
resistance to ciprofloxacin (CIP) and third-generation cephalosporins. System-wide 
genome analysis showed the occurrence of long-distance transmission across fields.

Conclusion: In conclusion, the detection of multidrug resistance and isolates 
carrying multidrug resistance genes is the main problem, and emergency 
strategies should be implemented to address this issue.
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Introduction

Salmonella is a common foodborne pathogen worldwide that is widely distributed in the 
environment and global food chain, posing a serious threat to food safety and public health. In 
2019, the European Union reported that salmonellosis is the second most common human 
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gastrointestinal infection after Campylobacter infection and is a 
significant cause of foodborne outbreaks in the EU, with 87,923 
confirmed cases of human salmonellosis reported (1). To date, over 
2,600 serovars of Salmonella enterica have been identified (2). In 
Europe, the vast majority (72.4%) of foodborne Salmonella outbreaks 
are caused by S. enteritidis (1). In China, 70% ~ 80% of foodborne 
bacterial outbreaks can be attributed to Salmonella infection, while 
S. enteritidis and S. typhimurium are the most common serotypes 
associated with human intestinal infections (3). In recent years, some 
new serotypes, such as S. Telkebier, S. Uzaramo, and S. Changwanni, 
have been gradually discovered in China (4–6).

Salmonellosis is usually associated with the ingestion of 
Salmonella-contaminated animal-derived foods, particularly chicken 
and poultry products, which are the most common source of 
transmission of Salmonella to humans (7). Many antibiotics are 
currently used in food animal production to promote growth and to 
prevent (prophylactic), treat (therapeutic), and control (metaphylactic) 
salmonellosis, but a serious problem associated with antibiotic use is 
the development of antibiotic resistance by pathogens. The level and 
degree of resistance are constantly changing worldwide and are 
affected by human and animal antimicrobial drug use practices and 
geographical differences (8). The indiscriminate use of antibiotics in 
animal husbandry has been identified as the driving factor for the 
development of multidrug-resistant (MDR) strains, and the resistance 
can be  transmitted to humans through the food chain (9). For 
example, drug-resistant bacteria have been identified from various 
environmental samples, farms, and retail meat products (10–14). Over 
time, this will reduce the effectiveness of antibiotics and eventually 
lead to treatment failure. Therefore, the use of “crucial antibacterial 
drugs” such as fluoroquinolones and third-generation cephalosporins 
to treat Salmonella is classified as the highest priority, and these are the 
most important antibacterial drugs in human medicine, with colistin 
also being seen as the “last line of defense” for treating severe 
infections caused by MDR gram-negative pathogens (15).

Resistance can occur via point mutations in the bacterial genome 
or horizontal transfer through genetic elements carrying antibiotic 
resistance genes (ARGs) (16). The most effective way by which ARGs 
are transferred between microorganisms is horizontally transfer via 
movable genetic elements, which can be realized by the inclusion of 
one or more integrons, transposons, and plasmids that harbor an ARG 
(17, 18). This horizontal transfer ability increases the risk of treatment 
failure for clinical infections caused by Salmonella. Therefore, it is 
particularly important to monitor the resistance of Salmonella to these 
antibiotics. Whole-genome sequencing (WGS), a molecular method 
for characterizing organisms, has been proven to be a fast, specific, 
cost-effective monitoring method compared to previous methods 
(19), and more importantly, WGS can be used to detect and predict 
emerging threats that may lead to severe human and animal infections 
in the early stages (20).

Shandong Province is the largest poultry production province in 
China, accounting for 30.0% of China’s total production (21). In 
China, especially in Shandong province, several recurrent outbreaks 
of avian salmonellosis have been reported during the last decade 
where the precise causal agent remains unknown. Previous studies on 
the prevalence and drug resistance of Salmonella in broiler chickens 
in Shandong Province are limited to a certain region or link, without 
large-scale horizontal research (22–24). This study characterized the 
relevant isolates of broiler chickens, and investigated the phenotypic 

and genotypic diversity of Salmonella from different sources and their 
genetic relationships by conducting drug sensitivity tests and WGS 
analysis on broiler chickens and their products in Shandong Province. 
Our findings contribute to assessing public health risks and provide 
insights into preventing Salmonella contamination and drug resistance.

Materials and methods

Sample collection

A total of 947 samples were randomly collected from 15 broiler 
farms (n = 618), 2 broiler slaughterhouses (n = 293), and 3 markets 
(n = 36) in Shandong Province, including cloacal swabs, environmental 
swabs (segmentation tools, water, containers), and carcass swabs. The 
sample set included 8 major chicken-producing cities in Shandong 
province. The number of cloacal samples collected at each farm ranged 
from 30 to 86, carcass samples collected at each slaughterhouse ranged 
from 73 to 125, environment samples collected at each slaughterhouse 
ranged from 35 to 60, and 12 chicken product samples were collected 
from each market. All samples were collected using eSwabs with 1 mL 
of Liquid Amies Medium (Copan Brescia, Italy). They were stored at 
4°C in a refrigerator and transferred to the laboratory for processing 
within 24 h. The distribution information of the strains is shown in 
Supplementary Table S1.

Isolation and identification of bacteria

The isolation of Salmonella was performed according to methods 
described previously (25). Briefly, fecal or cloacal swab samples were 
preenriched in 10 mL of buffered peptone water (BPW; Landbridge, 
Beijing, China). Following the initial preenrichment in BPW, 0.1 mL 
of the preenriched sample was added to 10 mL of selenite cystine broth 
(Landbridge, Beijing, China) and incubated at 37°C for 12 to 18 h. 
Final colony isolation was performed on xylose-lysine-tergitol-4 agar 
(BD Biosciences, United States). The positive Salmonella isolates were 
further identified by matrix-assisted laser desorption ionization–time 
of flight mass spectrometry (MALDI-TOF MS) (Bruker MALDI 
Biotyper System, Germany).

Antimicrobial susceptibility testing

The minimum inhibitory concentrations (MICs) of Salmonella 
isolates were determined using the broth microdilution method, 
which employed the following 20 antimicrobial agents: ampicillin 
(AMP), amoxicillin/clavulanic acid (A/C), gentamicin (GEM), 
tetracycline (TET), ceftazidime (CAZ), colistin (CL) meropenem 
(MEM), sulfisoxazole (SF), spectinomycin (SPE), enrofloxacin 
(ENR), ofloxacin (OFX), amikacin (AMK), doxycycline (DOX), 
nalidixic acid (NAL), compound sulfamethoxazole (SXT), ceftiofur 
(CEF), ciprofloxacin (CIP), kanamycin (KAN), chloramphenicol 
(CHL), and florfenicol (FLO). E. coli ATCC 25922 was used as the 
control strain following the CLSI guidelines (26). The resistant 
breakpoints used were as follows: ≥32 mg/L for AMP, ≥32/16 mg/L 
for A/C, ≥8 mg/L for GEN, ≥16 mg/L for TET, ≥16 mg/L for CAZ, 
≥4 mg/L for CL, ≥4 mg/L for MEM, ≥512 mg/L for SF, ≥2 mg/L for 
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ENR, ≥8 mg/L for OFX, ≥16 mg/L for AMK, ≥16 mg/L for DOX, 
≥32 mg/L for NAL, ≥4/76 mg/L for SXT, ≥4 mg/L for CIP, ≥64 mg/L 
for KAN, and ≥ 32 mg/L for CHL (CLSI M100-ED33). While the 
resistance breakpoint used for SPE (≥128 mg/L) was followed by the 
clinical breakpoint for Pasteurella multocida-bovine, CEF (≥8 mg/L) 
and FLO (≥16 mg/L) were followed by the clinical breakpoint for 
Enterobacterales-swine (CLSI VET01S ED6). Resistance to three or 
more classes of drugs was considered multiple drug resistance.

Whole-genome sequencing analysis

The TIANamp Bacteria DNA Kit (Tiangen Biotech, Beijing, 
China) was used according to the manufacturer’s recommendations 
to extract the genomic DNA of 70 selected Salmonella strains (the 
selection of the 70 Salmonella strains was based on drug sensitivity, 
different regional sources, and different production processes). 
Subsequently, bacterial DNA quality testing and construction of the 
Salmonella DNA library were carried out, and WGS was performed 
using the Illumina NovaSeq 6,000 platform (Sinobiocore, Beijing, 
China). Online tools were used to submit complete nucleotide 

sequences to the web server of the Genome Epidemiology Center1 for 
plasmid typing, ARG identification, and multilocus sequence typing 
(MLST). In addition, a type of integron was obtained through gene 
annotation on the Rast website.2 The core gene was defined as a gene 
that was present in ≥99% of the genomes. All core genes were used to 
construct phylogenetic trees using Fasttree v.2.1.11. Heatmaps of the 
clustering of ARGs and serotypes were created by using TBtools 
v.1.116.

Data analysis

The analysis of the obtained results and the generation of figures 
were performed using the GraphPad Prism (GraphPad, San Diego, 
CA, United  States) version 7.03, and Student’s t-test with Welch’s 
correction were used in this study.

Results

Antibiotic resistance and MDR profiles

Among the 947 samples, a total of 167 Salmonella strains were 
identified, and the total contamination rate of broilers and products 
was 17.6%, with a positivity rate of 32.8% in slaughterhouses, which 
is significantly higher than poultry farms (11.2%) and market samples 
(5.6%), respectively (p < 0.05). The antimicrobial susceptibility testing 
results showed that the obtained Salmonella isolates had the highest 
resistance (˃80%) to AMP (87.4%), SF (87.4%), SXT (81.4%), NAL 
(80.2%), high resistance (50–80%) to A/C (77.8%), TET (66.5%), DOX 
(65.3%), CL (62.9%), FLO (53.2%), and CHL (51.5%), and moderate 
resistance (30–50%) to KAN (47.9%), SPE (47.9%), CEF (44.9%), OFX 
(33.5%) (Table 1). A total of 26.3 and 21.0% of the strains showed 
resistance to third-generation cephalosporins and CIP, respectively 
(Table 1). 94.4% of CIP resistant strains are also resistant to NAL and 
OFX, and 61.1% of CIP resistant strains are also resistant to ENR. Most 
of the drugs had high MIC50 and MIC90 levels, especially AMP, SF and 
NAL, the MIC50 and MIC90 of which were higher than the highest 
tested concentration (>128  mg/L, >512  mg/L, and >128  mg/L, 
respectively). The isolates showed lower resistance to AMK (5.4%), 
and all the strains showed sensitivity to MEM. Out of the 167 isolates, 
164 (98.2%) were resistant to at least one antimicrobial agent, while 3 
(1.8%) were sensitive to all the tested antimicrobial agents. A total of 
152 isolated strains (91.0%) showed multidrug resistance, with 5 and 
6 strains accounting for the largest proportion, accounting for 21.0 
and 34.7% of the total bacterial count, respectively (Figure 1). The 
isolates from poultry farms showed the highest resistance to AMP, 
NAL, SF, SXT, and FLO, with multiple resistant strains accounting for 
91.3% of the total number of isolates from farms; the strains isolated 
from slaughterhouses showed the highest resistance to SF, AMP, SXT, 
A/C, NAL, and CL, with multiple resistant strains accounting for 
90.6% of the total number of strains isolated from slaughterhouses; the 
strains sourced from markets are all multidrug-resistant strains 
(Supplementary Table S2).

1 https://cge.cbs.dtu.dk/services/

2 https://rast.nmpdr.org/

TABLE 1 Distributions of the MICs of 167 Salmonella isolates against 20 
antimicrobial agents.

Antibiotic 
category

Antibiotics MIC value 
(mg/L)

No. of 
resistant 
isolates 

(%)MIC50 MIC90

β-Lactams AMP >128 >128 146 (87.4)

A/C 64/32 >128/64 130 (77.8)

CAZ 1 64 44 (26.3)

CEF 1 >128 75 (44.9)

MEM ≤0.0625 0.125 0

Aminoglycosides GEM 1 64 60 (35.9)

SPE 64 >256 80 (47.9)

AMK 4 8 9 (5.4)

KAN 32 >512 80 (47.9)

Tetracyclines TET 64 >128 111 (66.5)

DOX 32 64 109 (65.3)

Sulfonamides SF >512 >512 146 (87.4)

SXT 32/608 >32/608 136 (81.4)

Polypeptides CL 4 8 105 (62.9)

Quinolones NAL >128 >128 134 (80.2)

OFX 0.5 64 56 (33.5)

ENR 0.5 8 25 (15.0)

CIP ≤0.25 2 35 (21.0)

Amide alcohols CHL 128 256 86 (51.5)

FLO 128 >128 89 (53.2)

AMP, ampicillin; A/C, amoxicillin + clavulanic acid; CAZ, ceftazidime; CEF, cefotiofur; 
MEM, meropenem; GEM, gentamicin; SPE, spectinomycin; AMK, amikacin; KAN, 
kanamycin; TET, tetracycline; DOX, doxycycline; SF, sulfisoxazole; SXT, 
sulfamethoxazole + trimethoprim; CL, colistin; NAL, nalidixic acid; OFX, ofloxacin; ENR, 
enrofloxacin; CIP, ciprofloxacin; CHL, chloramphenicol; FLO, florfenicol. MIC50 = MIC value 
at which growth was inhibited in 50% of isolates; MIC90 = MIC value at which growth was 
inhibited in 90% of isolates.
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Antimicrobial resistance genes and 
serotypes

A total of 45 ARGs were screened from the 70 sequenced strains, 
and 81.4% of the isolates were found to carry the tet (A) gene, 
conferring TET resistance. The carriage rates of the floR and cmlE 
genes were both 71.4%, which endowed the strains with resistance to 
phenolic drugs. The detection rate of β-lactam resistance genes was 
the highest for blaTEM (50.0%). The detection rate of aminoglycoside 
resistance genes was the highest in the aph (4) - Ia group (51.4%); the 
detection rate of quinolone resistance genes was highest for qnrS1 
(31.4%). We also found that 7.1% of the strains carried mcr-1 colistin 
resistance genes, which is a particularly noteworthy finding 
(Supplementary Table S2). A total of 11 different serotypes were 
identified by sequencing, with S. enteritidis being the main serotype 
(31.4%), followed by S. infantis (20.0%), S. Newport (17.1%), 
S. Kentucky (11.4%), S. Indiana (10.0%), and S. Thompson (2.9%). In 
addition, S. Kedougou, S. Mbandaka, S. Ohio, and S. Lexington were 
also detected. The carriage of ARGs varied among the different 
serotype isolates, and compared to other serotypes, S. Indiana carried 
the most ARGs (Figure 2).

Plasmid typing and class 1 integrons

A total of 21 replicon types were detected from all the sequenced 
strains. Among the plasmid replicon types, IncX1, IncFII (S), IncFIB 
(S), IncHI2A, IncHI2, and IncQ1 were the most common, and the rest 
included IncX4, IncX8, IncC, IncN, IncI1-I (Alpha), IncFIB (K), 
Col8282, IncI2, IncFIB (AP001918), Col3M, IncR, IncI1, ColpVC, 
Col156, and Col440I. The total detection rate for class I integrons was 
62.9%. All Salmonella strains carrying integrons were MDR strains 
(Supplementary Table S2). Most of the strains carried class I integrons 
and plasmid replicons (Figure 3).

MLST and phylogenetic relationships

A total of 12 sequence types (STs) were identified from the 70 
sequenced strains, with ST11 being the main type, followed by ST32 

and ST45. Other sequence types included ST198, ST17, ST26, ST2133, 
ST247, ST314, ST1543, ST5094, and ST8652. In this study, 95.5% of 
the S. enteritidis strains were ST11, 91.7% of the S. Newport strains 
were ST45, 92.3% of the S. infantis strains were ST32, 100% of the 
S. Indiana strains were ST17, and the S. Kentucky strains were mainly 
ST198, which indicated that serotype and ST have a very high 
coincidence rate. There were 10 STs in the broiler farms, with ST198 
being the main type. There were 7 STs in the slaughterhouses, with 
ST11 being the main type. The ST of the market samples was ST11. 
The Salmonella phylogenetic tree shows that a total of 10 main 
branches were formed. Strains from the same region were closer in 
evolutionary branches and shared close genetic relationships; there 
were also close genetic relationships between the same serotype and 
ST. Among the samples, market samples were located in two separate 
evolutionary branches, indicating that there were other sources of 
contamination besides farms and slaughterhouses (Figure 4).

Discussion

In this study, the positivity rate in poultry farms in Shandong 
Province was 11.2%, slightly higher than the positivity rate in broiler 
farms in Southeast Asia and the Zhejiang and Fujian regions (27, 28). 
Salmonella in slaughterhouses has been detected at various stages of 
slaughter, indicating that it can spread along the slaughter line. The 
Salmonella detection rate in the market samples was consistent with 
previous research results (29).

Due to the excessive use of antibiotics and horizontal transmission 
of ARGs in animal husbandry in the past decades, Salmonella 
antibiotic resistance has become a global threat (30). The antibiotics 
selected in this study are the most commonly used classes in the 
poultry production chain in Shandong province, long-term use of 
these antibiotics may lead to antibiotic resistance issues (31). Among 
the 167 strains of Salmonella in this study, 152 (91.0%) were resistant 
to more than three drugs and widely resistant to conventional 
antibiotics. The MIC50 and MIC90 can reflect the drug resistance of 
Salmonella as a whole. The results showed that the resistance rate to 
sulfonamides, AMP, and NAL was the highest, and the resistance to 
A/C and TET was also generally high. The MIC50 and MIC90 of these 
antibiotics also far exceeded the breakpoint for drug resistance, which 
may be because these are the antibiotics most commonly used to treat 
several infectious diseases in poultry. The resistance to third-
generation cephalosporins was moderate. The resistance rate for the 
quinolone drug NAL reached 80.2% (MIC50  > 128 mg/L, 
MIC90 > 128 mg/L), and this high resistance rate has also been found 
elsewhere in China and other regions (21, 32–34), especially for the 
combinations of trimethoprim and sulfonamides. This situation may 
be due to the widespread use of quinolone drugs in livestock and 
poultry breeding feed in China, leading to selective pressure on 
bacteria (30). In the 70 strains sequenced, 45 ARGs were detected, and 
the isolated strains carried different resistance genes, which is probably 
related to the complexity of the strain resistance phenotypes. The 
resistance genes of most of the strains were consistent with their 
phenotypes, while some strains had certain resistance phenotypes but 
did not carry the corresponding ARGs, which may be  related to 
unknown resistance mechanisms or the nonspecific functioning of 
multiple redundant efflux pump-like genes. Similarly, the presence of 
resistance genes does not necessarily lead to phenotypic resistance, 

FIGURE 1

Multidrug resistance profile pattern of 167 Salmonella strains.
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and sometimes isolates show antibiotic resistance without harboring 
known resistance genes (35). In our study, blaTEM was the most 

common resistance gene. The detection rate of the aminoglycoside 
resistance gene aph (4) - Ia was the highest, and a small number of 

FIGURE 2

Heatmap showing the ARG profiles in this work. Different groups of ARGs are color-coded. Distribution of ARGs among different serotypes of 
Salmonella.
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strains harbored the aac (6’) - Ib-cr gene. The aac (6’) - Ib-cr gene is a 
key mediator of bacterial resistance to CIP (36). In addition, multiple 
quinolone resistance genes were detected, including qnrS1, OqxA, 
OqxB, qnrS12, qnrD1, qnrS9, qnrB6, and qnrD2. The high prevalence 
of plasmid-mediated quinolone resistance (PMQR) genes highlights 
the importance of cautious use of fluoroquinolone drugs to minimize 
fluoroquinolone resistance.

Serotype analysis showed significant diversity, with 
S. enteritidis present in most samples, indicating that it has an 
absolute advantage, which is consistent with the results of other 
studies in China (37, 38). S. Indiana may have higher resistance 
potential, as it carried more ARGs. More importantly, S. Indiana 
was 100% resistant to CIP and third-generation cephalosporins, 
and one of the S. Indiana strains also carried the blaNDM-5 
resistance gene. In addition, S. Kentucky was also 100% resistant 
to CIP and had high resistance to third-generation 
cephalosporins, which was similar to previous research results 

(39). The extended-spectrum beta-lactamase (ESBL) gene is the 
most important determinant of third-generation cephalosporin 
resistance in Salmonella, and blaCTX-M-55 is the dominant ESBL 
gene. In our study, this ARG was mainly detected in the Indiana 
and Kentucky serotypes, and the blaCTX-M-55 gene was also mainly 
detected in S. Kentucky (29). CIP and cephalosporins are the 
drugs most commonly used for treating salmonellosis in humans. 
The dual resistance to CIP and third-generation cephalosporins 
poses an enormous threat to human health, as treatment failure 
may have serious consequences (40). Therefore, S. Indiana and 
S. Kentucky may have a higher risk of drug resistance. We also 
discovered a certain number of S. Newport serotypes, which have 
caused several outbreaks in the United States, infecting millions 
of people annually (41), and are often detected in poultry chains 
in Brazil (42). There have been reports of this serotype in other 
provinces of China, but it has not caused large-scale outbreaks in 
China. Resistance to CL is believed to be mainly caused by the 

FIGURE 3

Dendrogram of a hierarchical clustering heatmap of the 70 isolates, 21 plasmid replicons, and class 1 integrons. Blue cells represent the presence of 
plasmid; gray cells represent the absence of plasmid. Class 1 integrons are represented by purple circles.
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mcr-1 gene located on transferable plasmids, which was first 
discovered in China from animals, food, and humans (43). In our 
study, the S. Newport isolates were 100% resistant to CL, with 
three strains carrying the mcr-1 gene (44). S. Newport with mcr-1 
positivity was also found among the chicken isolates. One of the 
three mcr-1-positive strains carried the IncX4 plasmid, while the 
other two mcr-1-positive strains carried the IncI2 plasmid, and 
all three strains carried class 1 integrons. Some studies have 
shown that the main types of replicons carrying the mcr-1 
plasmid are IncI2, IncX4, IncHI2 and IncP, which is consistent 
with our research. In other studies, the mcr-1 gene was also found 
on the IncX4 and IncI2 plasmids (45). In addition, studies have 
shown that mcr-positive IncX4 plasmids may spread between 
different bacterial species, from animals to humans or from 
humans to animals (46). Plasmids are considered the main 
mobile elements that determine the horizontal transfer of genes 
(47). In our study, a total of 21 different plasmids were detected, 
among which IncX1 and IncFII (S) were dominant plasmids. 

These plasmids were distributed in different regions, breeding 
stages, and serotypes, indicating that these plasmids can be widely 
spread among different serotypes and regions. Integrons are 
mobile genetic elements encoding bacterial genes related to 
antibiotic resistance that can be  transmitted between 
microorganisms. The most common integron in MDR Salmonella 
is the class 1 integron (48). All the S. Indiana, S. infantis, 
S. Newport, and S. Thompson strains that we  isolated carried 
class 1 integrons, while only three strains of S. enteritidis carried 
class 1 integrons. We  also found that some ARGs, plasmid 
replicons and class 1 integrons existed in the same strain 
simultaneously, which may be highly conducive to the horizontal 
transmission of drug resistance among strains.

We found a strong correspondence between serotypes and STs, 
and this phenomenon has also been observed in other studies (31). 
Due to these correlations, it is possible to predict Salmonella 
serotypes to some extent. The phylogenetic tree results showed that 
strains with the same sequence type readily clustered together, 

FIGURE 4

Phylogenetic relationships of 70 strains of bacteria. The tree was created using the annotated iTOL interactive user interface (https://itol.embl.de). The 
circles, from inside to outside, indicate the regional sources of strains (circle 1), the ST of the strain (circle 2), and the serotype type of the strain (circle 
3); triangles represents the farms, stars represents the slaughterhouses, and circles represents the markets (circle 4).
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confirming the genetic homology of isolates from the same 
serotype/ST. The strains isolated from the same farm clustered 
together, indicating that the strains from the same farm shared a 
common ancestor, originating from the same clone, and that clonal 
transmission occurred in the farm, which was likely caused by a 
lack of disinfection measures in the farm, which allowed pathogens 
to spread in the field and persist in the farm, resulting in vertical 
transmission (49). In addition, there were very close genetic 
relationships among the isolates from four farms in the same 
region, and these farms may have harbored the same cloned 
strains. Strains ZY91, QT140, QT132, ZY92, and QT127 clustered 
together, but they were derived from different regions, isolation 
stages, and sample sources. This indicates that clones of the same 
strain may spread over long distances through broiler trading or 
food production chains, such as those of chicken. As the last link 
in the entire broiler production chain, broiler products are closely 
related to human life. Two chicken samples from markets were 
located in two separate branches, indicating that there were other 
sources of transmission besides farms and slaughterhouses, during 
product transportation. The strains isolated from markets were of 
the serotype S. enteritidis. Which is a major cause of foodborne 
disease outbreaks (50). Salmonella surveillance data show that 
since the 1970s, the incidence rate of S. enteritidis in food has been 
on the rise worldwide (51), and this global growth is related to 
chicken products, such as poultry meat and eggs (52). There is an 
urgent need to draw attention to this issue and adopt appropriate 
measures in animal husbandry and the cooking of food to reduce 
the occurrence of Salmonella in poultry and poultry products. 
Monitoring plans should be implemented at all stages of poultry 
production, including during breeding of chicken flocks, in 
hatcheries, in broiler flocks, in slaughterhouses and at sale sites, 
which could significantly reduce Salmonella contamination of 
broilers and broiler products. More importantly, the two isolates 
from the market were both MDR strains, and they carried a variety 
of ARGs and plasmids, posing a high risk of antibiotic resistance 
transfer. The emergence and spread of drug-resistant Salmonella 
from food animals or retail meat have become severe health 
hazards worldwide, posing a serious threat to public health.

Conclusion

This study found that there was a considerable amount of 
Salmonella contamination in broiler farms, slaughterhouses, and 
processing and retail sites in Shandong, with a variety of serotypes 
detected. In addition, some Salmonella strains isolated in this study 
were MDR strains that endanger public health and have the potential 
to spread horizontally, posing a serious risk to food safety. Therefore, 
it is necessary to implement stricter medication management systems 
to minimize the risk of further promoting the spread of drug-
resistant strains of these dangerous bacteria.
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