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Deep reinforcement learning (RL) is used as a strategy to teach robot agents how
to autonomously learn complex tasks. While sparsity is a natural way to define a
reward in realistic robot scenarios, it provides poor learning signals for the agent,
thus making the design of good reward functions challenging. To overcome this
challenge learning from human feedback through an implicit brain-computer
interface (BCI) is used. We combined a BCI with deep RL for robot training in a
3-D physical realistic simulation environment. In a first study, we compared the
feasibility of di�erent electroencephalography (EEG) systems (wet- vs. dry-based
electrodes) and its application for automatic classification of perceived errors
during a robot task with di�erent machine learning models. In a second study,
we compared the performance of the BCI-based deep RL training to feedback
explicitly given by participants. Our findings from the first study indicate the use
of a high-quality dry-based EEG-system can provide a robust and fast method for
automatically assessing robot behavior using a sophisticated convolutional neural
network machine learning model. The results of our second study prove that the
implicit BCI-based deep RL version in combination with the dry EEG-system can
significantly accelerate the learning process in a realistic 3-D robot simulation
environment. Performance of the BCI-based trained deep RL model was even
comparable to that achieved by the approach with explicit human feedback. Our
findings emphasize the usage of BCI-based deep RL methods as a valid alternative
in those human-robot applications where no access to cognitive demanding
explicit human feedback is available.

KEYWORDS

brain-computer interface, electroencephalography, event-related potentials (ERP),
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1 Introduction

In recent years, the technical capabilities and widespread use of autonomous and

adaptive robots have increased enormously, expanding the application domain from

traditional industrial contexts in areas such as medicine, domestic environments, health

care, and entertainment (Yang et al., 2018; Hentout et al., 2019; Henschel et al., 2020). This

has led to rising interest in research on how we can improve human-robot collaboration in
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Vukelić et al. 10.3389/fnrgo.2023.1274730

general and how human feedback (HF) can be given during the

learning of complex tasks. Sophisticated algorithms such as deep

reinforcement learning (RL) can be used to teach robotic agents

how to autonomously learn new complex skills (Mnih et al., 2015).

Learning is based on interaction with the environment in a process

of trial and error. An important element of RL is the policy that

defines the learning of the agent’s behavior at a given time and

corresponds to the mapping of observed states to actions (Sutton

and Barto, 2018). For the agent to learn an optimal policy, it is

essential that feedback can be defined in the form of a good reward

function (criticism and reward). Providing feedback during the

initial stages of learning is crucial to facilitate the exploration of

promising behaviors early on. The reward function delineates the

goal within a RL problem, elucidating what constitutes favorable or

unfavorable behavior for the agent (Sutton and Barto, 2018).

Yet, the derivation or design of a suitable reward function

remains a major challenge (Xavier Fidêncio et al., 2022), especially

in real-world scenarios. In such scenarios, the agent usually

faces the problem of sparse extrinsic rewards, so-called sparse

reward environments. These environments are characterized by

a small number of states that provide a positive feedback

signal for the agent. Furthermore, sparsity is a natural way to

define a reward in a real-world scenario (Kober et al., 2013;

Riedmiller et al., 2018; Singh et al., 2019). The agent exclusively

receives a positive reward upon completing the task or achieving

the final goal, without receiving any rewards for intermediary

stages. Consequently, sparsity provides few learning signals for

the agent. In addition, the probability of the agent accidentally

achieving the goal or completing the task is extremely low.

This makes state-of-the art deep RL from sparse rewards—

without additional mechanisms to learn the optimal balance of

exploitation and exploration—very time-consuming or sometimes

even impossible. Furthermore, possible feedback given by the

human during learning is often not considered in the reward

settings or function.

The simplest solution to design a reward function is reward

shaping (Wiewiora, 2003; Grzes and Kudenko, 2009). Reward

shaping, however, firstly requires a huge amount of domain

knowledge, e.g., by a human expert, about the task to be solved.

In a second step, the domain knowledge must be converted

into explicit machine-understandable instructions. Learning such

a reward function is, therefore, a very tedious and iterative

process, which requires explicit expert knowledge. Alternatively,

demonstrations can be used to initiate, guide, and reinforce certain

behavior during learning—so-called learning from demonstrations

(Blau et al., 2021; Pertsch et al., 2021). While this can be a

very simple and effective method, it requires that the task is first

explicitly displayed by the human, which is not always possible, e.g.,

in human-robot collaboration.

A very intuitive and attractive alternative to overcome

weaknesses of reward shaping and learning from demonstrations

is the use of interactive RL (Kim et al., 2017) or more generally

speaking learning from human feedback (Suay and Chernova, 2011;

Grizou et al., 2013; Christiano et al., 2017; Warnell et al., 2017).

In a supervised manner, the human evaluates the actions of the

agent as it learns behavior in certain states. During the agent’s

learning the human can classify single states as good or bad, thus

fostering the agent to reinforce those actions that are classified

as good.

In recent years many techniques have been proposed to

estimate given HF using either speech or gesture recognition from

eye, body or head tracking (Yip et al., 2016; Takahashi et al.,

2017; Mittal et al., 2020). However, these methods alone are not

specific enough and they depend on explicitly expressed human

cognitive behavior. More specifically, speech or gestures can be

ambiguous, or they may increase the mental load of the users. Both

require explicit instructions and verbal communication which may

further lead to distractions in the execution of the user’s task of

interest. Steady progress in the development of sensor technologies

including miniaturization and mobile use, coupled with advanced

signal processing and machine learning, allows us to derive many

facets of subtle mental user states, like attention, cognitive load, or

error perception from brain signals (Blankertz et al., 2016; Cinel

et al., 2019; Vukelić, 2021; Niso et al., 2022; Roy et al., 2022).

While research in brain-computer interfaces (BCIs) has focused

mainly on medical and clinical applications (Carlson and Millan,

2013; Ramos-Murguialday et al., 2013; Brauchle et al., 2015; Leeb

et al., 2015; Kern et al., 2023), more and more attention is now

directed toward monitoring diverse activities in real-world related

scenarios, thus laying the basis for non-medical applications of

BCIs (Blankertz et al., 2016; Cinel et al., 2019; Vukelić, 2021).

Passive or implicit BCIs (Zander and Kothe, 2011) are

particularly important for teaching robots complex skills. They

enable the use of immediate and implicit human reactions or

impressions as feedback (Perrin et al., 2010; Zander et al., 2016;

Edelman et al., 2019; Iwane et al., 2019). Making a mistake or

observing a mistake being made—even by a robotic agent—elicits

an error-related potential (ErrP) which can be measured using

electroencephalography (EEG). ErrPs are predominantly observed

over frontocentral regions in the EEG and characterized by three

main components in the averaged time courses when comparing

errors to correct actions. The components are a negative deflection

occurring around 200ms called N200, a positive deflection at

around 300ms called P300, and another negative deflection at

around 400ms referred to as N400 (Chavarriaga et al., 2014;

Iturrate et al., 2015; Spüler and Niethammer, 2015; Ehrlich and

Cheng, 2019).

Since human error perception is closely coupled with learning

mechanisms, the use of this error recognition is particularly suited

for reinforcement learning (Iturrate et al., 2015; Kim et al., 2017).

Even if the reaction to errors differ between certain tasks (motor

or more abstracts), it is still universally recognizable using machine

learning (Chavarriaga et al., 2014; Spüler and Niethammer, 2015;

Wirth et al., 2020). The human can observe and implicitly evaluate

the value of an action performed in the respective state. The

feedback given is thus very direct and fast, without extra effort on

the part of the human. Previous approaches using decoded ErrPs

as a feedback signal for reinforcement learning were either real-

time—i.e., the human had to provide feedback during the whole

learning processes—or had rather simple, mainly discrete RL state

spaces as test environments—e.g., small 1-D cursor movements or

2-D discretized state spaces of robot reaching tasks— (Iturrate et al.,

2013, 2015; Zander et al., 2016; Kim et al., 2017; Luo et al., 2018;

Schiatti et al., 2018; Ehrlich and Cheng, 2019).
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Recently, Akinola et al. (2020), employed the use of ErrP-

decoded signals indirectly in an RL environment and combined

it with a more sophisticated on-policy deep RL algorithm called

proximal policy optimization (Schulman et al., 2017). The proposed

algorithm (BCI+ deep RL) consists of three stages: (1) Calibration

of an EEG-based BCI for the automatic recognition of perceived

errors, (2) estimation of a HF policy (approximation of a fully

connected neural network in real-time) based on implicit feedback

through the BCI, and (3) learning a final RL policy strategy

from sparse rewards in which the HF policy guides the RL

policy exploration at the beginning. Interestingly, the approach

accelerated the early learning during a simple navigation task

in a discretized action space problem and achieved a stable

performance once the HF was no longer available. Minimizing

human involvement during learning is an attractive approach

for real-world human-robot collaboration tasks, which warrants

further research.

In the context of our long-term perspective, our primary aim

is to enhance the practical utility of BCIs by employing dry-based

EEG systems. Building upon Akinola et al. (2020), this research

seeks to systematically expand upon their work in two distinct

ways: (1) Demonstrating the feasibility of decoding ErrP-based

implicit user reactions in a physically realistic 3-D continuous robot

simulation environment comparing a mobile dry-based and gel-

based EEG system with different channel number configurations.

The evaluation of dry-based EEG for ErrP classification, compared

to gel-based systems, provides a practical solution to streamline

setup procedures. Consequently, we address a notable gap in the

literature as comprehensive studies benchmarking the performance

of dry-based EEG systems specifically for ErrP classification are

limited. (2) Comparing implicitly (rating of robot behavior using

a BCI) and explicitly (rating of robot behavior was recorded

directly via keyboard input) trained HF policies in this realistic

simulation environment.

2 Materials and methods

2.1 Participants

Twenty-two volunteers (Mage = 29.35, SD = 4.59 years, 9

female and 13 male participants) were recruited and divided

into two studies. Participants gave their written informed consent

before participation and received monetary compensation. The

study protocol was approved by the Local Ethics Committee of

the Medical Faculty of the University of Tuebingen, Germany

(ID: 827/2020BO1).

2.2 General study design

2.2.1 Study one
In the first experiment (N = 16 participants), we pursued

two objectives: (1) To investigate the classification performance

of two machine learning models, a Riemannian geometry-based

classifier and a convolutional neural network (CNN) classifier.

Both models have demonstrated sufficient performance in motor

imagery (Schirrmeister et al., 2017; Lawhern et al., 2018; Al-Saegh

et al., 2021) or attentional processes via P300 (Yger et al., 2017;

Delgado et al., 2020; Li et al., 2020). The models were mostly

studied for active or reactive BCI decoding performance (Lawhern

et al., 2018; Appriou et al., 2020) but were not systematically

compared for decoding ErrP in a realistic robot simulation

environment and with a dry-based EEG system. We, therefore,

were also interested in (2) the influence of channel number

and EEG research system on the classification performance (gel-

based vs. dry-based). As a benchmark assessing classification

performance a conventional approach was employed in the form

of statistical feature extraction in the time domain and two

multivariate conventional linear classifiers: Linear discriminant

analysis (LDA) and support vector classification (SVC). To

investigate the influence of the EEG research system on the BCI

classification performance, a high standard mobile gel-based (64-

channel actiCAP slim system and LiveAmp 64 wearable 24-bit

amplifier from BrainProducts GmbH) was compared with a high

standard mobile dry-based EEG system (CGX Quick-20r from

Cognionics Inc.). We collected data from nine participants with

the gel-based EEG system and from seven participants using the

dry-based EEG system.

2.2.2 Study two
In the second feasibility study (N = 6 participants), the

difference between an implicitly trained version of an HF

policy function was compared to an explicitly trained one.

Thereby, we extended the approach of Akinola et al. (2020)

who contrasted a sparse reward function (RL sparse) and a

richer reward function (RL rich). The sparse reward function

only provided positive feedback for reaching the target, while

the rich reward function extended the sparse formulation by

including additional informative reward with the Euclidean

distance from the goal and current position. We implemented

two versions of an HF policy for the BCI + deep RL algorithm:

(1) A policy allowing implicit BCI-based given feedback and

(2) a policy allowing explicitly given feedback (keyboard button

press, “y” for correct and “n” for incorrect behavior). Three

of the six participants trained the HF policy function with

the implicit BCI version and the remaining three with the

explicit one.

2.2.3 Robot simulation environment, trial, and
task procedure

In our work, we utilized a 3-D physically realistic open-source

simulation environment implemented with Bullet Physics SDK.1

Bullet Physics SDK provides a fast and easy-to-use library in

Python—PyBullet—for robotics, virtual reality, and reinforcement

learning as well as suitable simulation environments, e.g., KUKA

or Franka robotic agents. Thus, realistic simulations of forward

and inverse dynamics and kinematics as well as collision detection

can be realized. Furthermore, the API offers the possibility to

implement common machine learning environments like OpenAI

1 https://github.com/bulletphysics/bullet3
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Gym,2 TensorFlow3 and Pytorch4 and to explore sophisticated deep

RL algorithms for learning complex robot skills. The task to be

learned by participants was presented in a virtual environment

(see Figure 1). We used a Franka Emika Panda 7-DOF robot agent

as a continuous action/state space environment. To facilitate the

participant’s assessment with an EEG-based BCI, we have modeled

the RL problem with a discrete action space and defined six actions:

Moving left, right, forward, backwards, down, and up. The state-

space consists of a 3D vector in cartesian coordinates, where

the continuous values are clipped into a discrete grid area with

dimensions 21 × 21 ×11, and five laser sensor observations. The

state space output values are normalized in a range from 0.0 to 1.0.

Detailed definitions of the environment and its use in OpenAI Gym

are provided in Supplementary Figures S1–S3.

In all experiments, participants were instructed to observe

and mentally evaluate the performance of the navigation steps

performed by the robot. The robot attempted to move a yellow

block toward a target (red block) using the optimal path while

avoiding self-collision or collision with obstacles (see Figure 1).

The optimal path was determined by calculating the shortest path

from each given state to the goal position using the A∗ search

algorithm. This path, represented by a green arrow, indicated

the correct and intended robot behavior. Thus, a correct action

required the direction congruent to the one signaled by the green

arrow (see Figure 2B). An incorrect performance was defined as

an action with a direction incongruent to the green arrow (see

Figure 2C). The goal position remained fixed during each run and

the start position of the yellow block was randomly set once the

agent the run was finished. Each episode started with the robot

grasping the yellow block which was randomly placed within a 6

× 11 grid area. The event-related trial procedure is displayed in

Figure 2A. The developed environment included a Python-based

connection to the Lab Streaming Layer (LSL) for the acquisition

and synchronization of the simultaneously recorded EEG data

and marker labels for the trial events. To ensure signal quality

during data collection, participants were further asked to limit

eye movements, blinking, and possible teeth grinding as much as

possible to the indicated breaks.

3 Study one

3.1 Data collection

In study one, we recorded EEG of 500 single robot movements

per participant with a probability of 20% for erroneous actions

resulting in a total of 100 erroneous robot actions (Iturrate et al.,

2015). For the gel-based system, we recorded scalp EEG potentials

from 64 positions (placed according to the extended international

10-05 system) using Ag/AgCl electrodes. The left mastoid was

used as a common reference and EEG was grounded to Cz. All

impedances were kept below 20 k� at the onset of each session.

EEG data were digitized at 250Hz, high-pass filtered with a time

2 https://github.com/openai/gym

3 https://github.com/tensorflow/tensorflow/tree/v2.9.0/tensorflow/

python

4 https://github.com/pytorch/pytorch

constant of 10 s and stored for offline data analysis using LSL. For

the dry-based EEG system, we recorded scalp EEG potentials from

20 positions (placed according to the international 10-20 system)

using DryPad and FlexSensors of the CGX Quick-20r system.

EEG data were digitized at 500Hz, high-pass filtered with a time

constant of 10 s and stored for offline data analysis using LSL.

In the first analysis step before the classification analysis, we

combined the EEG data across all participants and epochs to

visually explore the correlates during the perception of optimal

(true) and suboptimal (error) robot behavior for each EEG system.

We calculated the grand average per condition over midline frontal

(Fz) and central electrodes (C3, Cz, and C4) (see Iturrate et al., 2015;

Spüler andNiethammer, 2015). Furthermore, to allow comparisons

with previous research results, we included the grand average per

condition over the fronto-central electrodes (FC1 and FC2) only for

the gel-based EEG. It is important to note that these electrodes are

not present in the montage of the dry-based EEG. However, they

are commonly reported for ErrPs (Spüler and Niethammer, 2015;

Kim et al., 2017; Wirth et al., 2020).

We further compared the signal-to-noise ratio (SNR) over the

frontal and central electrodes of the two EEG systems. The SNR

was calculated separately for the N200 (with a time interval ranging

from 100 to 300ms after action onset) and a delayed P300 (with

a time interval ranging from 300 to 600ms after action onset).

We computed the SNR on a subject level using the contrast “error

vs. correct actions” (averaged signals across epochs). For the SNR

calculation, the amplitude within the ErrP time interval was divided

by the standard deviation of the ErrP time interval, which served as

a representation of the noise amplitude (Hu et al., 2010).

To compare the SNR of the two EEG systems, we used

bootstrapping with 5,000 iterations to calculate a mean and its 95%

confidence interval (CI) for each approach, ErrP, electrode position

and EEG system. Bootstrapped means and their CIs offer the

possibility to make statistical statements about possible differences

(Cumming and Finch, 2005). No overlap of the bootstrapped

means’ CIs indicate a strong statistical significance (p < 0.01) and a

partial overlap without inclusion of the mean indicates a moderate

statistical significance of p < 0.05 (Cumming and Finch, 2005).

3.2 Machine learning for decoding error
perception

Altogether, we compared three EEG conditions—gel-based

EEG with (1) 64 channels, (2) 16 channels (channels were

selected based on Iturrate et al., 2015), and (3) dry-based EEG

with 20 channels—and four machine learning approaches. The

four machine learning approaches were: Feature extraction in

combination with two conventional multivariate linear classifiers

(LDA and SVC), classification based on Riemannian geometry

(Riemannian-based classifier) (Appriou et al., 2020) and the CNN-

based classifier EEGNet (Lawhern et al., 2018). In all approaches,

supervised learning was performed per participant to classify

optimal (true) and suboptimal (error) robot behavior. For the

python implementation of the classifiers, we used the following

libraries: scipy, numpy, mne including mne-features, scikit-learn,

pyRiemann, and TensorFlow Keras.
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FIGURE 1

The simulation environment in Bullet and Pybullet which can be used in OpenAI Gym. In this gripping and navigation task the robot agent (Franka
Emika 7-DOF robot) moves its end e�ector to place the yellow object (moveable object) at the target (red object). The yellow object starts at a
random position after each run, while the robot arm starts at the current position of the yellow object. The task is to navigate the yellow object to the
red target object while avoiding self-collision and collision with the wall (obstacle). The position of the red target object changes randomly after each
run. The challenge is to avoid the obstacle wall and collisions with the robot arm to reach the goal on the shortest path possible. As quickly and
e�ciently as possible.

FIGURE 2

(A) The event-related trial procedure to decode observed errors in robot behavior with EEG. The shortest path from start (yellow moveable object) to
goal (red target object) has been defined as the optimal path for robot behavior. The participant observed the robot behavior and mentally evaluated
whether the robot performed the intended behavior (indicated by the direction of movement of the green arrow). (B) Depiction of situation where
the end e�ector navigates to the right (shortest path) as supposed to (correct or optimal robot behavior, green arrow). (C) Depiction of situation
where the end e�ector navigates downwards (incorrect or suboptimal robot behavior, red arrow) as opposed to upwards (green arrow). Please note
that only the green arrow was shown prior to the end e�ector movement during the calculation of the shortest path to give information on the
intended robot behavior, the red arrow is only shown for illustration purpose.

3.2.1 EEG pre-processing
Before classification, we pre-processed the EEG data according

to the proposed pipeline of Iturrate et al. (2015). Pre-processing

was the same for both the gel- and dry-based EEG systems.

In the first step, all trials of the optimal (true) and suboptimal

(error) robot behavior were grouped. Next, the EEG signals were
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detrended, zero-padded, and digitally filtered using a power-

line notch filter at 50Hz (IIR filter with filter order of 4)

followed by a band-pass filter at [1, 10] Hz (IIR Butterworth

filter with filter order of 4). Afterwards, we spatially filtered

the EEG signals using a common average reference and finally

downsampled the data to 250Hz (only for the dry-based EEG)

to have the same sampling rate for both systems. Next, we split

the continuous EEG signals into stimulus-locked (i.e., the onset

of the end-effector movement) segments of 1.2 s, consisting of

a 200ms baseline (before onset, −0.2 to 0 s) and a 1 s after

the end-effector movement of the robot. For each participant,

all stimulus-locked segments were aligned by subtracting the

average value of the baseline from the remaining time window.

For all machine learning models, we focused on the following

time window of interest: 200–800ms after the robot end-

effector movement.

3.2.2 Feature extraction and conventional
machine learning models

In the next step, we extracted time domain features from all

possible EEG channels of the gel- and dry-based EEG data. For

each class sample (true and error) and participant, we extracted

the following features from the time window of interest: Mean

amplitude, skewness, kurtosis, standard deviation, and peak-to-

peak amplitude using the mne-features API FeatureExtractor.

Next, we explored the LDA and SVC machine learning model as

implemented in the scikit-learn machine learning package (version

0.22.2). First, we re-scaled the features using the StandardScaler

implemented in scikit-learn, to ensure that for each feature the

mean is zero and to scale to unit variance, thereby bringing all

features to the same magnitude. Next, we only kept the most

meaningful features in the data by applying a principal component

analysis (PCA) and selecting those components explaining 95%

of the variance in their sum when ranked decreasingly based on

their contribution.

We optimized the hyperparameters for each classifier

individually. For the LDA, the solver function (singular

value decomposition, least squares solution, or eigenvalue

decomposition) was adjusted and for the SVC, the strength of the

regularization and kernel coefficient of the radial basis function

was applied. We performed the hyperparameter optimization with

a 5-fold cross-validated grid search (GridSearchCV, inner loop, 5

splits). The quality of each model was assessed using a repeated

stratified k-fold cross-validation (RepeatedStratifiedKFold, outer

loop, 5 splits, and 10 repeats) and the area under the receiver

operating characteristic curve (ROC-AUC) as metric.

3.2.3 Riemannian geometry-based model
The Riemannian-based method does not require feature

extraction but works directly with the time series of the pre-

processed and epoched EEG signals. As above, we focused on

the time window of interest, for training the classifier and

evaluation of its performance. As described in detail by Appriou

et al. (2020), Riemannian approaches represent epoched EEG

signals as symmetric positive definite (SPD) covariance matrices

and manipulate them with a suitable Riemannian geometry

(Congedo et al., 2017). Generally, Riemannian geometry deals

with uniformly curved spaces that behave locally like Euclidean

spaces. To apply the Riemannian approach to our data we used the

pyRiemann python library. In the presented Riemannian manifold,

covariance matrices of event-related potentials were estimated

and spatially filtered based on the xDAWN algorithm (Rivet

et al., 2009). Subsequently, the covariance matrices were projected

into the tangent space for a detailed description see (Barachant

et al., 2012). The tangent space projection is useful to convert

covariance matrices into Euclidean vectors while preserving

the inner structure of the manifold. After this projection, the

classification was applied (Appriou et al., 2020). For classification,

we coupled the Riemannian-based approach with an LDA classifier

(using the default settings with singular value decomposition

as solver) without hyperparameter optimization. To validate the

model quality, a repeated stratified k-fold was again employed

(RepeatedStratifiedKFold, outer loop, 5 splits, and 10 repeats) with

the ROC-AUC as metric.

3.2.4 Deep learning model—convolutional neural
network

Similar to the Riemannian-based classifier, no explicit feature

extraction is needed in the deep learning approach. The model can

directly be applied to the pre-processed and epoched EEG time

series. For classification, we focused again on the time window

interest. We utilized a modified version of EEGNet (Lawhern

et al., 2018) as implemented in Keras (v.2.2.4). EEGNet employs

depth-wise convolution and separable convolution layers (Chollet,

2016). The convolution operates along the temporal and spatial

dimensions of the EEG signal. The EEGNet architecture consists

of three blocks. In the first block, two convolutional steps are

performed for optimizing bandpass filters (temporal convolution),

followed by a depth-wise convolution to optimize frequency-

specific spatial filters (Schirrmeister et al., 2017; Lawhern et al.,

2018). The second block involves the use of separable convolution

which reduces the number of parameters to fit in the network

(Lawhern et al., 2018). The output of the second block is fed directly

to a third classification block with a softmax activation function.

The configuration parameters were implemented according to

Lawhern et al. (2018): The number of channels was 64 or 16 for

the gel-based and 20 for the dry-based EEG system, the number

of classes was 2, the number of temporal filters was 8, the number

of pointwise filters was 16, the number of spatial filters was 2,

the kernel length was equal to the sampling rate divided by 2.

To deal with model instability and potential overfitting we used

dropout (rate of 0.5) as a regularization strategy in combination

with exponential linear units (ELU) and batch normalization

(Schirrmeister et al., 2017; Lawhern et al., 2018). Categorical cross-

entropy was used as a loss function with the Adam optimizer (initial

learning rate was 0.01 and mini-batch size was 16). To further

improve model generalization and stability we used a plateau-

based decay strategy. Once the learning stagnated, the learning rate

was reduced by a factor of 10 when the validation loss stopped

improving for five consecutive epochs. To validate the model

quality, a repeated stratified k-fold from scikit-learn was used

(RepeatedStratifiedKFold, outer loop, 5 splits, and 10 repeats) and
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the ROC-AUC asmetric. For each k-fold, we trained themodel with

300 training epochs.

3.2.5 Statistical comparison of machine learning
models

To assess the stability of the model’s performance

(generalization capabilities) and the uncertainty or variability

associated with its prediction we estimated a distribution

of the average performance (ROC-AUC) from the training

and test data sets per classifier via bootstrapping (5,000

iterations). This was done over single folds and repetitions

of the repeated stratified k-fold cross-validation. Calculating

the mean and its 2.5th and 97.5th CI from this distribution

also offers the possibility to make statistical statements

about possible differences in performance (Cumming

and Finch, 2005). The CIs were Bonferroni-corrected for

multiple comparisons.

3.3 Results first study

The grand averages of event-related potentials associated with

optimal and suboptimal actions of the robot exhibit a characteristic

temporal pattern, displaying distinguishable differences in frontal

(see Figures 3A, B, left), central (see Figures 3A, B, middle) and

frontocentral (see Figure 3A, right) channels (Chavarriaga et al.,

2014; Iturrate et al., 2015; Spüler and Niethammer, 2015; Kim

et al., 2017; Ehrlich and Cheng, 2019). We observe an ErrP-

related difference between the conditions ∼200ms after action

onset followed by a late positive deflection at∼500ms (see also Kim

et al., 2017).

The SNR analysis revealed similar results for the dry-based

and gel-based EEG systems in both ErrP time intervals (N200

and delayed P300) and electrode positions (frontal and central; see

Table 1; Figure 4) with no statistically significant difference between

the two EEG systems (Table 1).

Next, we assessed the feasibility of leveraging the distinct

temporal waveform differences between the robot actions in various

FIGURE 3

Grand averaged waveform (“error” = red line and “true” = black line) and di�erences (“error” minus “true” = gray line) of the event-related potentials
elicited by the observation of the robots’ end-e�ector movements (t = 0: Onset of end-e�ector movement) for the gel-based (A; N = 9) and
dry-based EEG system (B; N = 7). Mean value over frontal (Fz; left), central (C3, Cz, and C4; middle), frontocentral (FC1 and FC2; right). EEG positions
(note that frontocentral positions were only available for the gel-based EEG system).
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TABLE 1 Statistical comparison of the signal-to-noise ratio between the dry- and gel-based EEG system at the di�erent event-related potential time

intervals and electrode positions.

Dry-based EEG Gel-based EEG

Electrode
position and
time interval

Lower CI Bootstrapped
means

Upper CI Lower CI Bootstrapped
means

Upper CI

Fz—N200 0.77 1.73 2.76 1.01 1.60 2.25

Fz—P300 1.95 2.24 2.65 1.34 2.06 2.63

C3, Cz, C4—N200 0.42 0.96 1.69 0.18 0.67 1.25

C3, Cz, C4—N200 1.87 2.33 2.72 1.85 2.32 2.82

FIGURE 4

Distribution of the bootstrapped subject-wise signal-to-noise ratio (SNR) of the contrast error (suboptimal) vs. true (optimal) over the frontal (upper
row) and central (lower row) electrodes of the gel-based (blue) and dry-based (red) EEG systems. The SNR was calculated separately for the N200
(with a time interval ranging from 100 to 300ms after action onset; left) and a delayed P300 (with a time interval ranging from 300 to 600ms after
action onset, right) as suggested by Hu et al. (2010). Filled points per boxplot: SNR per subject. Whiskers of the boxplot indicate the 5th and 95th
quartile of the distribution. The box comprises 50% of the distribution from the 25th to the 75th quartile. Notches in the boxes visualize the
Bonferroni-corrected upper and lower boundary of the mean’s 95% confidence interval (CI) used as statistical index. The solid orange line within the
boxplot indicates the bootstrapped mean.

machine learning methods. We compared the classifications when

using different channel number configurations in the gel-based

EEG system (64 channels vs. 16 channels) as well as when using data

obtained from the gel-based and dry-based EEG systems. Overall,

above chance-level performance (the theoretical chance level at

0.5 for binary classification) was observed for all channel number

configurations, EEG systems and four classifier models as estimated

by the bootstrapped mean ROC-AUC accuracy as well as its 95%

CI over single folds and repetitions of the repeated stratified k-fold

cross-validation (see Figure 5).

Results of bootstrapped mean ROC-AUC on the test set

demonstrate that the EEGNet model performed best with a

performance of 0.911 [95% CI (0.904, 0.918)] for 64-channel,

0.910 [95% CI (0.902, 0.917)] for the 16-channel gel-based EEG,

and 0.836 [95% CI (0.822, 0.850)] for the dry-based EEG system

(see Table 2). The EEGNet model not only outperformed the two

conventional multivariate linear classifiers (LDA and SVM) but also

the Riemannian-based classifier for both EEG systems [dry-based:

0.754, 95% CI (0.734, 0.773)] and channel number configurations

[64-channel: 0.875, 95% CI (0.866, 0.884) and 16-channel: 0.853,

95% CI (0.842, 0.864)]. The performance of the EEGNet did not

significantly differ between the channel number configurations.

For the Riemannian-based classifier, we observed a decrease

in classification performance in the channel number configuration

with 16 electrodes compared to 64 electrodes (at p < 0.05). We

observed significantly reduced EEGNet classification performance

for the dry-based compared to the gel-based EEG system.

When analyzing the two conventional multivariate linear

classifiers that serve as a benchmark, we also found that higher

classification performances could be achieved with gel-based EEG

independent of channel number configuration [LDA-64-ch: 0.749;

95% CI (0.734, 0.764); SVM-64-ch: 0.773; 95% CI (0.759, 0.787);

LDA-16-ch: 0.753; 95% CI (0.739, 0.768); SVM-16-ch: 0.757; 95%

CI (0.743, 0.771)] compared with the dry-based EEG system [LDA:

0.665; 95% CI (0.643, 0.689); SVM: 0.676; 95% CI (0.654, 0.697)].

In addition, we observed a larger variance represented by larger CIs

in the classification performances of all models for the dry-based

compared with the gel-based EEG system.

3.4 Discussion study one

With the results of our first study, we showed the feasibility

of decoding error related processes in response to the human
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FIGURE 5

Distribution of the ROC-AUC decoding performance on the training (upper row) and test data sets (lower row) per subject (filled points per boxplot)
and classification model. Whiskers of the box indicate the 5th and 95th quartile of the distribution. The box comprises 50% of the distribution from
the 25th to the 75th quartile. Notches in the boxes visualize the Bonferroni-corrected upper and lower boundary of the mean’s 95% confidence
interval (CI) used as statistical index. The solid orange line within the boxplot indicates the bootstrapped mean. The dashed line shows the theoretical
chance level (0.5 for a two-class classification problem). Left: Gel-based EEG with 64 channels; Middle: Gel-based EEG with 16 channels; Right:
Dry-based EEG. Colors show the di�erent machine learning models: Purple (EEGNet), red (linear discriminant analysis classifier), black (support
vector classifier) and blue (Riemannian-based geometry coupled with LDA classifier). LDA, linear discriminant analysis; DL, deep learning.

observation of suboptimal robot action using data from different

channel number configurations and EEG systems. To classify the

ERPs related to error perception, we compared the performance

of various machine learning models. These models included two

linear benchmark models with conventional feature extraction

(LDA and SVC), a Riemannian-based classifier, and a convolutional

neural network (EEGNet).

In the context of previous work our models reached similar

(Kim et al., 2017) or even higher classification performance

(Iturrate et al., 2010, 2015; Ehrlich and Cheng, 2019)—especially

for the EEGNet. Our results revealed that the classification

performance of the convolutional neural network named EEGNet

was superior to other models in all conditions (channel

configurations and EEG systems). Despite observing a decline in

decoding performance with the dry-based EEG system, the EEGNet

was still able to achieve remarkably high classification performance

surpassing chance levels and the linear benchmark models.

Notably, EEGNet with dry-based EEG data outperformed averaged

decoding performance reported in previous work (Iturrate et al.,

2010, 2015; Ehrlich and Cheng, 2019). This is particularly

promising because a high classification performance serves as a

crucial prerequisite for a reinforcement learning system to acquire

an optimal control policy (Sutton and Barto, 2018).

Hence, our results regarding the dry-based EEG system offer

great potential for BCI applications and have practical implications,

as the use of such systems significantly reduces setup effort

compared to conventional gel-based systems, which typically

require careful preparation of a larger number of electrodes.

In addition to relatively high classification performances, we

observed similar error-related potentials and SNRs for the dry-

based compared with the gel-based EEG system (see Figures 3,

4). The observed N200 and delayed P300 over frontal and central

electrodes were consistent with previous studies investigating

erroneous and correct robot actions (Iturrate et al., 2015; Spüler

and Niethammer, 2015; Kim et al., 2017; Ehrlich and Cheng, 2019).

It demonstrates that both EEG systems are capable of capturing the

characteristic ErrP waveform necessary for automatic classification

within a BCI framework.

The high classification performance of EEGNet compared

to other models might be attributed to its direct processing of

pre-processed EEG time series, eliminating the need for explicit

feature extraction (Lawhern et al., 2018). By utilizing depth-wise
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TABLE 2 Statistical comparison of machine learning models for the classification of optimal and suboptimal robot behavior from EEG data.

Training set Test set

Lower CI Bootstrapped
means

Upper CI Lower CI Bootstrapped
means

Upper CI

Gel-based EEG−64 channels

Linear discriminant
analysis classifier

0.899 0.906 0.913 0.734 0.749 0.764

Support vector classifier 0.926 0.934 0.942 0.759 0.773 0.787

Riemannian based
classifier

0.961 0.963 0.965 0.866 0.875 0.884

EEGNet classifier 0.904 0.911 0.918 0.904 0.911 0.918

Gel-based EEG−16 channels

Linear discriminant
analysis classifier

0.843 0.850 0.857 0.739 0.753 0.768

Support vector classifier 0.894 0.905 0.914 0.743 0.757 0.771

Riemannian based
classifier

0.922 0.927 0.932 0.842 0.853 0.864

EEGNet classifier 0.903 0.909 0.916 0.902 0.910 0.917

Dry-based EEG−20 channels

Linear discriminant
analysis classifier

0.799 0.812 0.824 0.643 0.665 0.689

Support vector classifier 0.894 0.912 0.928 0.654 0.676 0.697

Riemannian based
classifier

0.868 0.879 0.889 0.734 0.754 0.773

EEGNet classifier 0.824 0.838 0.852 0.822 0.836 0.850

The values show themean ROC-AUC score from 50-folds and 5,000 bootstrap iterations on the training and test data sets with the estimated lower and upper CI. The table shows the comparison

for each EEG devices and machine learning models.

and separable convolutions, the model effectively captures both

temporal and spatial information from the EEG signals. In a study

conducted by Lawhern et al. (2018), the EEGNet outperformed

conventional machine learning algorithms, such as a xDawn spatial

filter combined with an elastic net regression, in within-subject

classifications across various BCI paradigms. The authors advocate

deep learning approaches like EEGNet due to their ability to strike

a balance between input dimensionality and feature discovery.

This characteristic is particularly advantageous as BCI technologies

expand into new applications where suitable features remain

uncovered (Schirrmeister et al., 2017; Lawhern et al., 2018). Deep

learning models possess the capacity to effectively learn and extract

valuable and robust features from high-dimensional EEG data. This

ability, coupled with learning rate decay and the implementation

of regularization techniques like dropout, proves advantageous in

preventing the model from succumbing to overfitting induced by

noisy patterns.

In conclusion, the findings from the first study demonstrate

the effectiveness of both gel-based and dry-based EEG systems

in capturing error related perception (ErrPs) and decoding

suboptimal robotic behavior from the EEG signals. Particularly, the

EEGNet model demonstrated superior performance, highlighting

its potential as a reliable method for error perception analysis and

decoding in both types of EEG systems. The comparative analysis

is essential for establishing the validity of dry-EEG systems as a

viable and efficient alternative, thereby advancing applicability and

accessibility in future brain-computer interface applications.

4 Study two—feasibility study

4.1 Human feedback with deep
reinforcement learning

In a second feasibility study, we investigated differences

between an implicitly and explicitly trained version of the HF policy

function and the effect on the performance of the deep RL+ human

feedback algorithm proposed by Akinola et al. (2020).

Thus, we implemented two versions of the proposed algorithm

(for details see introduction):

1. Implicit version: Participants gave implicit feedback based on

the automatic detection of perceived errors by the BCI.

2. Explicit version: Participants gave explicit feedback using

a keyboard.

The procedure for the explicit version follows the idea described

in Christiano et al. (2017). Six participants were tested in the

second study, with three training the HF policy function using

implicit BCI-based feedback and three using explicit keyboard-

based feedback. The deep RL + human feedback algorithm and
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FIGURE 6

Deep reinforcement learning approach with learning from Brain-Computer Interface (BCI)-based human feedback. The approach consists of three
stages: (1) Calibration of a BCI for automatic detection of erroneous (suboptimal) robot behavior by humans using electroencephalographic (EEG)
signals; (2) Estimation of a reward function (human feedback policy) using the trained EEG-based BCI classifier; (3) learning a final RL strategy from
sparse rewards, in which the human feedback (HF) policy guides the RL strategy. Adapted from Akinola et al. (2020).

procedure for the two versions of the implicit and explicit human

feedback version can be summarized in three stages (see Figure 6).

Based on the findings from the first study, we employed the

dry-EEG system for recording error related perception during

the implicit BCI feedback. The procedure for data collection to

calibrate the BCI (stage 1 from Figure 6) was equivalent to study

one (see Section 3.1). The BCI predicted the perceived error

perception of the participants in real-time. Overall, we recorded

data pertaining to 400 single robot movements, with a fixed

probability (50%) for erroneous actions from each participant. To

train the BCI classifier we used EEGNet focusing on the time

window of interest (200–800ms) after the onset of end-effector

movement. The real-time pre-processing of the EEG signals was

the same as described in Section 3.2.1. The model was calibrated

by splitting the dataset of each participant (400 trials) into training

(70%), validation (15%), and test (15%) set. The validation set was

intended for parameter optimization while the test set was used

for final model performance evaluation using the ROC-AUC as

metric. For training we used the same parameters as explained in

Section 3.2.4.

In stage 2, the participant observed the robot agent performing

random actions while trying to reach the goal. A full description of

the procedure can be found in Supplementary Figures S4, S5. In the

implicit BCI-based version the trained ErrP classifier was applied to

the simultaneously recorded EEG signals to detect human feedback.

Based on the implicit feedback, a supervised learning model was

trained in real-time to predict the probability that an action will

receive positive feedback (Akinola et al., 2020). Thus, the robot’s

strategy was continuously updated by maximizing the probability

of success across all possible actions of the robot, i.e., HF policy.

In addition to the implicit BCI, a HF policy was also trained with

explicit input. For this, the HF policy was trained using the same

procedure, but with feedback provided directly via keyboard input

(button press, “y” for correct and “n” for incorrect behavior). In

both cases, the training was done in real-time utilizing a fully

connected neural network employing supervised learning, similar

to Akinola et al. (2020). The network consisted of one hidden

layer (32 units) with 8 input states and one output layer for 6

actions that is followed by a softmax-based classification block (see

Supplementary Figure S6). The output of the hidden layer was fed

into a rectified linear activation unit (ReLU). An epsilon-greedy

strategy was chosen for training and selecting the robot’s actions.

The implementation was done in pytorch using the binary cross-

entropy loss function in combination with the Adam algorithm

as optimizer. Furthermore, the replay buffer adopted by Akinola

et al. (2020) stored all past transitions, i.e., all agent experiences in a

priority queue which were reused for training. Since each transition

yielded information whether the transition results in a collision

or not, we optimized the sampling of these transitions from the

replay buffer such that each batch consisted of 10% collision

and 90% non-collision samples (see Supplementary Figure S5). The

idea behind this strategy was to reinforce the training behavior to

avoid collisions. For comparison of the implicit and explicit version,

a total of 1,000 feedback labels per participant were collected.

To account for the possible problem of noisy BCI classification

(Akinola et al., 2020), we also simulated noise in the explicit

feedback with keyboard queries. Hence, participants trained two

HF policy functions; a good explicit feedback version in which

keyboard queries were received by the program as intended by

the participant (100% accuracy) and a poorer explicit feedback

version in which keyboard queries were received falsely with a 30%

probability by the program (70% accuracy).

Finally, in stage 3, a robot agent is trained with the same task

as in stage 2 but using a deep reinforcement learning algorithm

where the agent is not rewarded directly by human feedback

but by a reward learning condition (RL policy). To tackle the

sparse reward problem, the previously trained HF policy models

were used. Normally, the agent receives an observation from the

environment and chooses an action based on the trained policy

that maximizes the overall reward of an episode. Like in Deep Q-

Learning (Sutton and Barto, 2018), an epsilon-greedy algorithm

was deployed, but instead of a random action, the action suggested

by the HF policy model was used. This feedback was used as

the initial policy during the learning process toward the goal and
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thus increasing the chances of receiving positive rewards (Akinola

et al., 2020). As learning progresses, the use of the HF policy

was reduced while the use of the RL policy was increased as the

behavioral strategy. The epsilon-greedy approach in which the HF

policy was used starts with a probability of ε = 1 and decays

linearly in the learning progress until it reaches ε = 0 at step

count 125.000. After that, only the RL policy is used. A total

of 8,000 episodes were trained per comparison with a maximum

step count of 160 per episode. For evaluation, the success rate

weighted by the normalized path length (SPL) was used (Anderson

et al., 2018). We used the same architecture and hyperparameters

of the deep reinforcement learning for both the implicit and

explicit feedback version. In contrast to Akinola et al. (2020), we

have chosen a deep deterministic policy gradient (DDPG) method

as deep reinforcement learning. The implementation based on

Lillicrap et al. (2015) is an adapted version from the open source

repository,5 where the discount factor γ equals 0.9 and factor τ

equals 0.005 for target network update. For the actor and critic

network, the Adam optimizer was implemented with a learning

rate of 0.003 and 0.001, respectively. To adapt DDPG for discrete

action spaces, the output layer of the actor network was replaced

with a softmax layer that produces a probability distribution over

the possible discrete actions. Furthermore, an adapted replay buffer

was used to store and reuse past transitions for training. In the

replay buffer 10% of the batch contained transitions with the

highest reward while the rest were randomly sampled. For each

step, the model was updated 20 times. During an update each

epoch contained a different randomly sampled training batch. The

detailed architecture implemented in pytorch can be found in

Supplementary Figure S7.

4.2 Results second proof-of-concept study

In all the experiments, 10 reinforcement learning models of

8,000 episodes were trained. Mean values were estimated with

bootstrapping (1,000 iterations) and corresponding 95% CIs were

determined (see Figure 7). Three models were successfully trained

based on implicit BCI-feedback from different participants [BCI,

AUC 0.77: 0.587; 95% CI (0.570, 0.606); BCI, AUC 0.65: 0.332;

95% CI (0.137, 0.539); BCI, AUC 0.53: 0.603; 95% CI (0.459,

0.693)]. Six models were trained using explicit feedback from three

participants. A model was trained with either a good (100%) or

a poor (70%) variant of the feedback of one participant, thus

resulting in six distinct models [Keyb. 01, ACC 1.00: 0.653; 95%

CI (0.620, 0.679); Keyb. 1, ACC 0.70: 0.691; 95% CI (0.666, 0.715);

Keyb. 02, ACC 1.00: 0.618; 95% CI (0.577, 0.655); Keyb. 02, ACC

0.70: 0.475; 95% CI (0.264, 0.658); Keyb. 03, ACC 1.00: 0.628;

95% CI (0.589, 0.658); Keyb. 03, ACC 0.70: 0.674; 95% CI (0.594,

0.724)]. In addition, one trained model was based only on sparse

rewards from the environment [RL Sparse: 0.228; 95% CI (0.053,

0.405)]. In two versions of BCI-based HF policies the RL learning

progress is remarkably accelerated (red and orange curves in

Figure 7A). Compared to the model learning only through sparse

5 https://github.com/MrSyee/pg-is-all-you-need/blob/master/03.DDPG.

ipynb

rewards, better asymptotic learning performance was achieved by

the explicit as well as the implicitly trained models. Both explicitly

and implicitly trained models had exhibited accelerated learning

relative to the sparse model. Moreover, two versions of BCI-based

HF policies (red and orange curves in Figure 7A) showed similar

asymptotic behavior to that achieved by explicitly trained model

in which simulated noise was added through keyboard queries

(70% accuracy; see Figure 5B). Comparing achieved accuracies of

the implicit BCI-based models with the explicit models, it can be

assumed that an implicit model with better accuracy would result in

RL similar to the explicit model without noise which worked best in

enhancing learning of the robot strategy. Overall, results illustrate

that the variance of the RL process is reduced with increasing BCI

accuracy. However, one of the BCI-based HF models was not good

enough to train a useful HF policy and therefore accelerate the

learning of the robot compared with the sparse model.

As expected, all three good versions (100%) of explicitly trained

models showed the lowest variance and reached the target early in

the learning process (although at the cost of many steps taken).

It is important to note, that we observed no significantly better

asymptotic learning behavior toward the end of the learning

process (8,000th episode) when compared with the implicit version

(see Figure 7A) and the version containing noise (see Figure 7B).

4.3 Discussion study two

The challenge of the robots learning the task is to avoid the

obstacle wall and collisions with the robot arm to reach the goal

as quickly and efficiently as possible. With our feasibility study in

a realistic robot simulation environment we were able to extend

the findings given in Akinola et al. (2020) with a systematic

empirical comparison of an implicit vs. explicit human feedback

policy version. Our results show that human feedback can be

used to guide the robot agent toward optimal behavior more

quickly than relying solely on trial-and-error exploration using

sparse rewards. This is true for both versions of the proposed

algorithm: Explicit (Figure 7B) and implicit (Figure 7A) given

human feedback. Interestingly, the explicit version using 100%

accurate feedback displays a learning effect earlier than the implicit

version, thereby reaching the goal quickly at the cost of a longer

path as shown by rather small SPL values. Moreover, comparing

the implicit version with the noisy explicit version, we found no

significant difference in themaximum learning rate as shown by the

plateau of all model instances. Thus, the implicit HF policy works

equally well in improving the learning rate of the reinforcement

learning model as would a noisy explicit HF policy. The present

results validate BCIs as implicit HF policies for reinforcement

learning, showing a consistent improvement of the learning rate

through human feedback, as well as the similarity of implicit

feedback to explicit policies. Given that ideal explicit HF is not

necessarily available, the implicit HF policy was proven to be a

viable alternative to improve learning, a proposal that warrants

further investigation in a larger cohort of participants. Due to the

nature of a feasibility study having rather small sample sizes, we

encourage other researchers to replicate our study to ensure the

robustness of the observed findings. As a next step, we further
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FIGURE 7

(A) Three successfully trained deep reinforcement learning models (using deep deterministic policy gradient method) with implicit Brain-Computer
Interface (BCI)-based feedback from di�erent participants with di�erent BCI decoding performance as shown by the ROC-AUC metric and (B) six
models with explicit feedback from three participants each with a good (Keyb. #, acc 100%) and poor (Keyb. #, acc 70%) version. The blue line shows
the trained deep reinforcement learning model using only sparse rewards. In all the experiments, 10 models of 8,000 episodes were trained, where
solid lines show the mean value estimated with bootstrapping and the shaded area the estimated 95% confidence interval (CI). The metric chosen
was the success rate weighted by the normalized path length (SPL). RL, reinforcement learning; HF, human feedback.

plan to transfer this approach to more complex scenarios, e.g., in

a dual-task scenario to answer further research questions: Can we

implicitly detect and classify error-related brain potentials in a dual-

task task and how is it dependent as a function of different mental

load levels?

It is important to note, that our results replicate some of

the results shown by Akinola et al. (2020) although we used

another version of the deep RL algorithm. Deep deterministic

policy gradient (DDPG; Lillicrap et al., 2015) is one of the earliest

designed and most widely used algorithms that can operate on

potentially large continuous state- and action spaces. It is an off-

policy algorithm that is a variation of the Deep Q-Network (DQN;

Mnih et al., 2015) algorithm which borrows the use of a replay

buffer and target network learning both an actor function (also

called policy) and a critic function. Some of the potential advantage

of the DDPG over the PPO, as used in Akinola et al. (2020), is

its performance for continuous action spaces. DDPG is specifically

designed to handle continuous action spaces, while performing well

in tasks that require precise and continuous control, such as robotic

control tasks. PPO, on the other hand, is a more general algorithm

that can handle both continuous and discrete action spaces but

may not perform as well in environments with high-dimensional

continuous action spaces (Lapan, 2018). It can also be assumed that

DDPG might be more stable in future studies when training with

larger and more realistic action spaces is needed. This is related to

the fact that PPO uses a clipped surrogate objective function, which

can lead to instability and slow convergence in high-dimensional

action spaces, while in contrast DDPG uses a deterministic policy

function and an off-policy actor-critic algorithm, which shows

more robust performances in larger spaces (Lapan, 2018).

Another difference is the way on- and off-policy treat the usage

of an replay buffer, which we further modified in our study as

compared with Akinola et al. (2020). DDPG relies on experience

replay to improve sample efficiency and reduce correlations in the

training data (Lapan, 2018). This allows the algorithm to learn

from past experiences and avoid overfitting to recent data. PPO,

while it can also use experience replay, relies primarily on on-

policy data collection, which can be less efficient and less effective

in environments with sparse rewards. Overall, the advantages

of off-policy methods include improved data efficiency, stable

learning, and the ability to decouple exploration and exploitation.

These characteristics of the off-policy DDPG would facilitate the

transfer and usage of our findings in more realistic and continuous

reinforcement learning action state space problems. We encourage

further research in that direction to pave the way for more

realistic applications.

Possible implications are the design of human-in-the-loop

applications while interacting with robots (Salazar-Gomez et al.,

2017; Xavier Fidêncio et al., 2022) or personalized AI systems to

support and optimize machine decisions in (shared) autonomous

vehicles or assistant interfaces for emergency situations (Shin et al.,

2022; Wang et al., 2022). Another interesting application would be

the usage in medical applications as training for a new generation

of cognitive-assisted surgical robots (Wagner et al., 2021). The next

generation of cognitive robots might learn during the interaction

from implicitly generated human feedback via the BCI to give

context-sensitive and individualized support, just as a human

assistant would. Thus, through our approach, reward functions can

be trained in a human-centeredmanner first in simulation and then

transferred to real robots—sim-to-real transfer (Lapan, 2018).

Even though our results generally confirm that implicit HF

policies work comparatively well to explicit feedback, for one

participant, the implicitly trained model did not match the

explicitly trained models. A possible reason for this could be

that the participant was not as engaged in the task as the other

participants, or possibly misunderstood the task and was actively
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employing a different cognitive strategy for providing feedback.

This could have resulted in less pronounced ErrPs, thereby making

a clear distinction between suboptimal (erroneous) and optimal

(true) observed movements more difficult based on the EEG

signals alone. Another possibility could be that the participant was

generally not able to use the BCI modality of the study. There are

several factors that influence the ability of a person to successfully

use a BCI, for instance individual expertise or variability in brain

structure (Becker et al., 2022).We encourage future work to include

possible measures of variations in task performance of participants

to systematically investigate potential reasons for performance

differences of (implicitly) trained HF policies.

5 Conclusion

The first study showed that both gel-based and dry-based EEG

systems were effective in detecting error-related perception and

decoding robotic behavior from EEG signals. The EEGNet model

was found to have high classification performance, suggesting that

it could be dependably applied to error perception decoding in

both gel- and dry-based EEG systems. We empirically showed

that the EEGNet classifier in combination with the dry-based

EEG-system provide a robust and fast method for automatically

assessing sub- and optimal robot behavior. Through our second

feasibility study we successfully demonstrated that the implicit

BCI-based version significantly accelerates the learning process

in a physically realistic and sparse simulation environment with

even comparable performance to that achieved by explicit given

feedback. Furthermore, the methodology is robust and rapidly

applicable, as even suboptimal RF policies, like a BCI with low

accuracy and a dry-based EEG system, can still manage to improve

the learning.
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