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related to sphingolipid
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immunotherapy and prognosis
of skin cutaneous melanoma
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Background: We explore sphingolipid-related genes (SRGs) in skin melanoma

(SKCM) to develop a prognostic indicator for patient outcomes. Dysregulated

lipid metabolism is linked to aggressive behavior in various cancers, including

SKCM. However, the exact role and mechanism of sphingolipid metabolism in

melanoma remain partially understood.

Methods:We integrated scRNA-seq data frommelanoma patients sourced from

the GEO database. Through the utilization of the Seurat R package, we

successfully identified distinct gene clusters associated with patient survival in

the scRNA-seq data. Key prognostic genes were identified through single-factor

Cox analysis and used to develop a prognostic model using LASSO and stepwise

regression algorithms. Additionally, we evaluated the predictive potential of

these genes within the immune microenvironment and their relevance to

immunotherapy. Finally, we validated the functional significance of the high-

risk gene IRX3 through in vitro experiments.

Results: Analysis of scRNA-seq data identified distinct expression patterns of 4

specific genes (SRGs) in diverse cell subpopulations. Re-clustering cells based on

increased SRG expression revealed 7 subgroups with significant prognostic

implications. Using marker genes, lasso, and Cox regression, we selected 11

genes to construct a risk signature. This signature demonstrated a strong

correlation with immune cell infiltration and stromal scores, highlighting its

relevance in the tumor microenvironment. Functional studies involving IRX3

knockdown in A375 and WM-115 cells showed significant reductions in cell

viability, proliferation, and invasiveness.
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Conclusion: SRG-based risk signature holds promise for precise melanoma

prognosis. An in-depth exploration of SRG characteristics offers insights into

immunotherapy response. Therapeutic targeting of the IRX3 gene may benefit

melanoma patients.
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1 Introduction

Melanoma is a highly aggressive skin tumor with substantial

implications for individuals affected by skin cancer, leading to

significant mortality rates (1). The median survival period for this

condition spans from 6 to 9 months, with a corresponding 5-year

survival rate of less than 5% (2). Here is a significant global surge in

the prevalence of melanoma. Despite its relatively lower occurrence

in Western countries, the Chinese Society of Clinical Oncology has

reported a consistent annual rise in melanoma incidence in China,

with rates ranging from 3% to 5% (3). In recent decades, notable

progress has been made in the treatment of melanoma. The

conventional approach of surgery, radiotherapy, and

chemotherapy has evolved into a comprehensive multi-modal

strategy (4). This modern approach combines surgical

interventions with immunotherapy and targeted therapy, resulting

in remarkable improvements in patient survival rates (5). However,

there remains a subset of melanoma patients who do not experience

benefits from immunotherapy or molecular-targeted therapy in the

management of their disease. Despite continuous advancements in

treatment modalities, the prognosis for melanoma patients remains

unfavorable (6). Cancer development is intricately linked to the

complex signaling transduction network within cells, where

multiple signaling pathways interconnect and collectively regulate

the biological phenotypes of tumor cells. Exploring the underlying

mechanisms that drive melanoma progression is crucial to enhance

therapeutic strategies and improve the prognosis of individuals

affected by this condition.

Both genetic instability and the tumor microenvironment play

significant roles in the initiation and advancement of tumors (7).

Recent studies have uncovered that manipulating the activation of

oncogenes or silencing tumor suppressor genes can regulate

metabolic homeostasis and impact the promotion or suppression

of cancer (8). Furthermore, certain metabolic enzymes possess the

capacity to act as oncogenes or tumor suppressor genes, thus

playing a role in tumor progression. Cellular energy requirements

predominantly rely on glucose and fatty acid metabolism. Although

previous investigations have predominantly focused on glucose

metabolism in tumor cells, recent research has unveiled the

involvement of abnormal lipid metabolism in influencing the

aggressive phenotypes observed in various tumor types (9).

Sphingolipids, a class of phospholipids that encompass phosphate

groups, are abundantly present in cellular membranes and play
02
essential biological functions in organisms (10). Dysregulated

sphingolipid metabolism has the potential to influence the

composition and functionality of cellular membranes, leading to

the facilitation of increased proliferation, invasiveness, and

metastasis in cancer cells (11, 12). In contrast, sphingolipid

molecules play crucial roles as essential regulators in various

medically significant biological processes, including cellular

signaling and the orchestrated self-destruction process known as

apoptosis (13). Activation of acid sphingomyelinase (A-SMase) can

be triggered by diverse pro-inflammatory and pro-apoptotic

stimuli, thereby playing a role in the induction of apoptosis in

tumor cells in response to various anti-tumor therapies.

Additionally, A-SMase has been implicated in immune and

inflammatory processes. The research conducted by E. Clementi

and C. Perrotta highlights the significance of A-SMase as a crucial

factor dictating the behavior of melanoma cells (14).

Dysregulated expression of critical enzymes involved in specific

sphingolipid synthesis pathways has been linked to the

development and progression of various malignancies. For

instance, genetic mutations affecting the PI3K catalytic subunit

alpha (PIK3CA) gene have been associated with breast cancer,

ovarian cancer, cervical cancer, and other tumor types. Another

significant factor impacting the susceptibility to breast cancer is the

presence of genetic variations in the sphingomyelin transferase 1

(SMT1) gene within the neural sphingolipid synthesis pathway (15,

16). Furthermore, sphingolipids possess the capacity to regulate

cellular signaling pathways, thereby impacting tumor cell

proliferation, advancement, and resistance to therapeutic agents.

Perturbations in phosphatidylinositol (PI) metabolism, such as

excessive activation, can result in heightened stimulation of the

PI3K/AKT/mTOR pathway, a critical regulator of crucial cellular

processes, including cellular growth and apoptosis (17). However,

the precise role and underlying mechanisms of sphingolipid

metabolism in melanoma remain poorly elucidated, urging the

need for additional investigation to advance our understanding of

these mechanisms.

Single-cell technology is a high-throughput approach

extensively employed for the analysis of individual cells in

medical research. Its widespread adoption and continuous

progress have been noteworthy in recent times. By examining the

gene expression profiles of individual cancer cells, this methodology

enables the discovery of distinctive epigenetic characteristics

inherent to each cancer cell. Single-cell studies have not only
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revealed the impact of several individual signaling pathways on

tumor cell proliferation, metastasis, and drug resistance, but they

also hold revolutionary significance in providing comprehensive

and profound insights into the complexity of signaling networks

within tumor cells and the functional and regulatory mechanisms of

key signaling networks involved in tumor cell proliferation,

metastasis, and drug resistance (18). These findings will

contribute to the development of novel chemotherapy drugs and

targeted treatment strategies.

In cancer research, risk profiles are widely used to predict

prognostic outcomes. Pei S, Zhang P et al. used genes associated

with sphingolipid metabolism to characterize genes strongly

associated with survival in patients with breast and lung cancer

(11, 12). In addition, for the risk profile constructed by SKCM, these

prognostic models were shown to be more accurate than traditional

methods in predicting clinical outcomes (19). In the field of SKCM

research, the molecular regulation of sphingolipid metabolism has

not been fully revealed. Therefore, we included sphingolipid

metabolization-related genes in the construction of risk profiles to

estimate novel strategies for predicting prognosis in patients

with SKCM.

In this study, we utilized scRNA-seq and transcriptome data

obtained from publicly available databases to identify distinct

subsets of melanoma based on SRGs. Subsequently, these SRGs

were used to establish risk factors capable of predicting melanoma

prognosis. Furthermore, we conducted an in-depth analysis to

explore the molecular characteristics derived from SRGs and their

clinical relevance. We also investigated the role of signaling

pathways in cancer cell proliferation, metastasis, and drug

resistance, as well as the effectiveness of immune therapy

including immune checkpoint pathways such as PD-1/PD-L1 and

CTLA-4, and the activation of immune cells such as NK cells and

tumor-associated macrophages in the immune microenvironment.

This innovative study provides a groundbreaking perspective on the

prognostic stratification of melanoma, facilitating personalized

treatment approaches and improving clinical outcomes for

patients with melanoma.
2 Methods

2.1 Acquisition of original patient data

The scRNA-seq data specific to SKCM were obtained from the

Gene Expression Omnibus (GEO) database, with the accession

number GSE123139. Subsequently, two cohorts, namely

GSE19234 and TCGA data, were selected for subsequent analysis.

To ensure data quality, genes expressed in less than three cells or a

single cell containing fewer than 250 genes were excluded from the

analysis. The Seurat R package’s PercentageFeatureSet function was

employed to assess the proportion of ribosomal RNA (rRNA) and

mitochondria present in the dataset. As a result of this

preprocessing, a total of 2725 cells were retained and utilized for

further investigation.
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The transcriptomic information about SKCM, as well as clinical

details, were obtained from the TCGA database. Subsequently, samples

lacking outcome status or survival information were excluded from the

analysis, resulting in a dataset comprising 300 SKCM samples earmarked

for external validation. Additionally, for the training cohort, 44 tumor

samples from GSE19234 were selected after eliminating untracked

samples sourced from the GEO database. To categorize individual cells

into distinct subgroups, the FindNeighbors and FindClusters functions

were employed. To reduce the dimensional complexity of the dataset, the

RunUMAP function was utilized for UMAP dimension reduction.

Within our dataset, we focused our investigation on four genes (PSAP,

APOE, ASAH1, DEGS1) associated with sphingolipid metabolism by

analyzing their respective gene expression profiles.
2.2 Identification of expression SRGs

The Seurat package was employed to re-analyze scRNA-seq data

derived frommelanoma samples to assess SRGs. Initially, cells expressing

fewer than 250 or more than 6000 genes were excluded. The remaining

expressed genes were then subjected to log-normalization. To account for

batch effects, the FindIntegrationAnchors function was applied.

Subsequently, UMAP was utilized for dimensionality reduction with a

resolution of 0.1, considering 30 principal components. FindNeighbors

and FindClusters functions were utilized to classify cells into distinct

subgroups, using a dimensional parameter of 30 and a resolution of 0.1.

RuntUMAP was employed for further reduction of UMAP dimensions.

Marker genes, namely PSAP, APOE, ASAH1, and DEGS1, were used to

annotate the SRGs. Additionally, the SRGs underwent re-clustering using

the FindClusters and FindNeighbors methods. The FindAllMarkers tool

was employed to compare different clusters and identifymarker genes for

each cluster within the SRGs data, taking into account input, logFC, and

adjusted p-value parameters.
2.3 Hub genes identification according
to SRGs

We utilized the scale method provided by the “Limma” R package

to normalize gene expression profiles in our study. Prognosis-

associated key genes were selected based on the criteria of |log2

(FoldChange)|>1 and a false discovery rate (FDR) of<0.05. Cox

regression analysis was applied to screen marker genes from seven

clusters that were associated with prognosis. To reduce the gene set,

we implemented the LASSO technique. To construct an SRG-derived

risk profile, we performed multivariate Cox regression analysis using

the stepwise regression approach to minimize redundancies. The risk

score, computed using a specific formula: Risk score =

on
k=1Coef(k)� Expr(k), incorporates the regression coefficients

(Coef(k)) and the expression levels (Expr(k)) of the prognostic

model genes. Zero-mean normalization was employed to categorize

patients as either low or high-risk. The predictive capacity of the risk

signature was evaluated using timeROC software to analyze the

receiver operating characteristic (ROC) curves.
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2.4 Developing a novel nomogram

We developed a novel nomogram to predict the prognosis of

melanoma by considering the risk signature and clinicopathological

characteristics. Both univariate and multivariate Cox regression

analyses were conducted to analyze the association between various

variables and prognosis. Variables with p-values<0.05 were selected

and included in the multivariate Cox regression model. To assess

the accuracy of the prognostic predictions made by the model, a

calibration curve was constructed.
2.5 Cluster analysis

Through an iterative process, a partitioning scheme consisting

of K clusters was determined by minimizing the loss function

associated with the clustering outcomes. The K-means clustering

method was applied to group melanoma patients based on 11

modeling genes.
2.6 Assessment of immune landscape

To assess the correlation between the risk signature and tumor

immune microenvironment (TIME), a combination of algorithms,

including CIBERSORT, EPIC, MCPCOUNTER, and TIMER, were

employed in the evaluation process. The R package “estimate” was

utilized to calculate stromal scores, immune scores, and estimate

scores, which represent the combined scores of stromal and

immune components. Additionally, the CIBERSORT algorithm

was utilized to analyze the distribution of 22 distinct subtypes of

immune cells, providing insights into the heterogeneity of the

immune response within the tumor microenvironment.

Furthermore, a comprehensive study was conducted to explore

the relationship between the genes comprising the risk signature

and the immunological score, shedding light on the important role

of these genes in immune-related functions.
2.7 The analysis of the impact
of immunotherapy

To evaluate the predictive potential of our risk profile in

predicting the response to immune checkpoint blockade therapy,

we conducted an assessment of its efficacy using transcriptomic data

and corresponding clinical information from patients enrolled in

the IMvigor210 dataset. These patients were treated with anti-PD-

L1 therapy. In addition, we incorporated transcriptomic data from a

separate cohort of melanoma patients in the GSE78220 dataset who

had previously been treated with anti-PD-1 checkpoint inhibitors.
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2.8 Cell culture

The WM-115 and A375 cell lines, obtained from the Cell

Resource Center of Shanghai Life Sciences Institute, were cultured

in a DMEMmedium (Gibco BRL, USA). The cells were maintained

at 37°C with 5% CO2 and supplemented with 10% fetal bovine

serum (FBS) sourced from Gibco BRL, USA.
2.9 Cell transfection

Two distinct small interfering RNAs (siRNAs) specifically

designed to target IRX3 were developed by Ribobio (Guangzhou,

China). Transfections were performed using Lipofectamine 3000

(Invitrogen, USA) according to the manufacturer’s instructions

(20). The siRNA sequences for IRX3 can be found in

Supplementary Table 1.
2.10 Patients and tissue samples

A cohort consisting of 20 melanoma tissues and paired normal

tissues was utilized for qPCR analysis. The tissues included in this

study were pathologically verified at the Department of Plastic

Surgery, First Affiliated Hospital, Anhui Medical University

(AHMU) in China, during the period from 2020 to 2023. Prior

approval for conducting this study was obtained from the Ethical

Committee of the First Affi l iated Hospital of Anhui

Medical University.
2.11 RT-qPCR analysis

RNA extraction from cell lines was carried out using TRIzol

(Thermo, 15596018) following standard protocols. Subsequently,

cDNAs were synthesized using the PrimeScriptTM RT kit (Vazyme,

R232-01). To quantify gene expression, SYBR qPCR Master Mix

(Vazyme, Q111-02) was employed on the Roche LightCycler 480

(Roche, GER), and data analysis was performed using the 2−DDCt

method. The specific primer sequences, provided by Tsingke

Biotech (Beijing, China), are available in Supplementary Table 1.

For normalization, GAPDH was utilized as the internal

reference gene.
2.12 The experiment of cell-counting-kit-8
assay

Cells were plated in 96-well plates at a density of 1 × 103 cells

per well. Following that, the plates were incubated in darkness at 37°
frontiersin.org
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C for 2 hours with CCK-8 labeling reagent (A311-01, Vazyme). The

assessment of cell viability was carried out by measuring the

absorbance at 450 nm using an enzyme-linked spectrophotometer

(A33978, Thermo) at time intervals of 0, 24, 48, 72, and 96 hours.
2.13 The experiment of colony formation

A cohort comprising 1000 cells was transfected and cultured in

6-well plates for approximately 14 days. After 2 weeks, the cellular

clones were visually examined without magnification. Following

that, the cells were washed and fixed using a 4% paraformaldehyde

(PFA) solution for 15 minutes. Subsequently, the cells were

subjected to crystal violet staining (Solarbio, China) for 20

minutes, and the samples were air-dried at room temperature.

Finally, quantification of cells per well was conducted.
2.14 Wound healing

The transfected cells were cultivated in 6-well plates and

incubated in a cell incubator until reaching a confluency level of

95%. A 200ml pipette tip was employed to create a straight scratch

across the cell monolayer. Following the removal of unattached cells

and debris using PBS, the cells were transferred to a serum-free

culture medium. Subsequently, photographs were captured at the

same location both at 0 hours and 48 hours, and the width of the

scratch was measured using Image J software.
2.15 Transwell

Transwell chambers were employed to perform cell migration

and invasion assays. A total of 2×104 cells per well were seeded in

the upper compartment using a 200 mL serum-free medium. To

assess the migratory and invasive abilities of the cells, the upper

region of the chamber was treated with Matrigel solution (BD

Biosciences, USA) in some cases, while it remained untreated in

others. The lower chamber was filled with 600 mL of complete

medium. After incubating for 48 hours, the chambers were

retrieved. The cells were fixed with 4% PFA and then stained

with 0.1% crystal violet (Solarbio, China). Subsequently, cell

counting was performed using a light microscope. The migrated

cells were captured in photographs and quantified.
2.16 Apoptosis assay

The apoptotic rate was assessed utilizing an Annexin V-APC/PI

Apoptosis Detection Kit provided by Multisciences, China, and

further analyzed using a flow cytometry system manufactured by

BD Biosciences, USA. The proportions of apoptotic cells at early

and late stages were evaluated to determine the apoptotic rate.
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2.17 Statistical analysis

R software version 4.1.3 was used for biological analysis, while

GraphPad Prism version 8.0 was employed for analyzing

experimental data in the field of medicine. The mean values and

standard deviations of the outcomes were obtained from three

separate studies. Pairwise comparisons between two groups were

conducted using Student’s t-tests, while comparisons involving

more than two groups were analyzed using one-way ANOVAs

followed by Tukey’s test (*P<0.05, **P<0.01, ***P<0.001).
3 Results

3.1 Screen the SRGs

Figure 1 illustrates the flow chart outlining the progression of

the study. A total of 2725 cells were obtained after the completion of

scRNA-seq data analysis. Following log-normalization and

dimensionality reduction, a total of 14 distinct subpopulations

were identified in the analysis. Subsequently, based on a literature

review, we selected four genes (PSAP, APOE, ASAH1, and DEGS1)

that were most closely associated with sphingolipid metabolism and

designated them as marker genes for sphingolipid metabolism

(Figure 2A). These four key genes were then utilized to identify

cells actively involved in sphingolipid gene sets using the AUCell

exploration Threshold function. Based on the median AUC scores,

the cells were categorized into high-sphingolipid-AUC and low-

sphingolipid-AUC groups, which were visualized using the “ggplot2

R” tool. From the 14 cell subsets, the cell groups exhibiting high

sphingolipid metabolic activity were selected and labeled as high

sphingolipid metabolic cells. Subsequently, cluster analysis was

performed once again on the selected cells, resulting in the

further division of the high sphingolipid metabolism cell

population into 7 subgroups (Figure 2B). Marker genes for each

of the seven cell populations were analyzed, and bubble diagrams

and volcano plots were used to visually represent the top five

marker genes for each cell population (Figures 2C, D).

Histograms were employed to demonstrate the distribution of

these seven clusters within each cohort (Figure 2E).
3.2 Associations between SRG clusters
and prognosis

To investigate the prognostic implications of SRG clusters, we

initially utilized the GSE123139 dataset to calculate the ssGSEA

scores of the marker genes. These marker genes were identified as

the DEGs within the seven high sphingolipid metabolic clusters.

Intriguingly, our analysis revealed that all seven clusters exhibited

significantly higher scores in tumor samples compared to normal

samples (Figure 3A). Subsequently, we employed the survminer R

package to classify the samples from the TCGA dataset of SKCM
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into two groups based on their high and low scores of SCRGs. The

classification was achieved by determining the optimal cut-off value

and minimizing repetition. Importantly, we observed significant

differences among all seven clusters between the high- and low-

SRGs score groups (Figure 3B). For more comprehensive

information regarding the relationship between SRG clusters and

clinical characteristics, please refer to Supplementary Figure 1.
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3.3 Identification of SRGs

To establish a prognostic signature for SKCM, we conducted a

comparative analysis between normal and tumor samples to

identify DEGs. From these DEGs, we identified marker genes that

were significantly associated with gene clusters related to prognosis.

To assess the prognostic value of each gene, we performed
FIGURE 1

The flowchart of our study.
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univariate Cox regression analysis and identified 10 genes

associated with protective factors and 1 gene associated with risk

values. To streamline the gene selection process and minimize gene

redundancy, we employed Lasso-Cox regression analysis

(Figure 4A). Using a stepwise regression method following

multivariate Cox regression analysis, we created a risk signature

that included eleven genes: IRX3, PLA2G2D, GBP1P1, FCGR2A,

GALM, FERMT3, IGKJ5, IL15, IDO1, CMAHP, and HIVEP3

(Figures 4B, C). The risk scores for each sample were calculated

based on the expression of these model genes and their

corresponding Cox regression coefficients. Z-mean normalization

was performed to compute the risk score for each sample, and
Frontiers in Immunology 07
patients were then classified into high-risk and low-risk clusters.

Survival analysis using the Kaplan-Meier method was conducted in

both the GSE19234 and TCGA cohorts, demonstrating that patients

in the high-risk clusters had a worse prognosis compared to those in

the low-risk clusters (Figure 4D). The model exhibited

commendable AUC values in both cohorts, indicating its excellent

predictive ability. To enhance the precision of our prognostic

model, we integrated clinicopathological characteristics and risk

scores into univariate and multivariate Cox regression analyses.

This was done to reduce redundancy and improve accuracy. Our in-

depth analysis revealed a strong independent correlation between

the risk signature and prognosis in SKCM, with statistical
B

C D

E

A

FIGURE 2

Identification of SRG clusters based on SKCM patient scRNA data. (A) UMAP plots of the expression of the sphingolipid metabolism marker genes
and the distribution of 14 clusters. (B) UMAP plots of distributions of 7 high sphingolipid metabolizing cells after clustering. (C) Top-5 marker gene
expression of subgroups on a volcano map. (D) Top-5 marker gene expression of subgroups represented in a bubble diagram. (E) Calculating cell
numbers as well as neighboring tissue and subgroups in cancer.
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significance indicated by a p-value of less than 0.001 (Figure 4E). In

conclusion, our findings highlight the importance of the risk

signature as a valuable prognostic tool for SKCM, providing

valuable insights into patient outcomes.
3.4 Nomogram development and pathway
enrichment analysis

In addition, we have developed an innovative nomogram

(Figure 5A) that combines the T-stage, N-stage, and risk score to

provide a comprehensive prediction of survival outcomes. This
Frontiers in Immunology 08
nomogram demonstrated a strong predictive capacity for actual

survival outcomes (Figure 5B). To further investigate the functional

relevance of the eleven genes included in the risk profile, a gene set

enrichment analysis was conducted. Interestingly, these genes

showed significant associations with nine pathways (Figure 5C).

Among these genes, IL15 exhibited a higher immune score in the

low-risk group, while the immune scores of the other 10 genes were

comparatively lower in the low-risk group compared to the high-

risk group (Figure 5D). The innovative nomogram, along with the

functional insights provided by the gene set enrichment analysis,

contributes to a better understanding of the prognostic implications

of the identified genes in SKCM.
B

A

FIGURE 3

Based on SRGs clusters, the GSVA analysis. (A) ssGSVA score comparison between tumor samples and normal samples based on each cluster. (B) K-
M curves of the high and low SRG score groups in the SRG clusters. ****P < 0.0001.
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3.5 Immune infiltrations landscape and risk
gene-immunity association

Through our analysis, we have identified several protective

genes (GBP1P1, FCGR2A, GALM, FERMT3, IGKJ5, IL15, IDO1,

CMAHP, and HIVEP3) that exhibit a positive relationship with

various immune infiltration cells. Conversely, the risk gene IRX3

is negatively associated with these immune cells (Figures 6A, B).

Furthermore, correlation analysis with immune cells has

revealed strong associations between the model genes and
Frontiers in Immunology 09
neutrophils and fibroblasts (Figure 6C). These findings are

further supported by the positive correlation observed between

the risk genes and the immune score, as well as the stromal score

(Figure 6D). Pathway analysis has highlighted the close

relationship between the model genes and key immune

signaling pathways, including the JAK-STAT signaling

pathway, intestinal immune network, B cell receptor signaling

pathway, and toll-like receptor signaling pathway. Interestingly,

a negative association has been observed between the risk gene

IRX3 and each of these pathways (Figure 6E).
B

C D

E

A

FIGURE 4

A brand-new risk signature built using several SRGs. (A) Each independent variable’s trajectory and distribution for the lambda. (B) Circle plot showing
each gene in the risk signature. (C) The multivariate Cox coefficients for each gene in the risk signature. (D) K-M and ROC curves of the risk signature in
GSE19234 and TCGA cohort. (E) Results of univariate and multivariate Cox regression analysis based on risk score and clinicopathologic features.
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3.6 Immunotherapy response prediction of
risk signature

To assess the predictive significance of our immune-checkpoint

treatment signature, we evaluated its performance in two separate

cohorts: GSE78220 and IMvigor210. Specifically, we focused on the

outcomes observed in the IMvigor210 cohort, which consisted of

348 patients treated with anti-PD-L1 receptor blockers. These

outcomes included partial response (PR), complete response
Frontiers in Immunology 10
(CR), progressing disease (PD), and stable disease (SD). In

Figure 7A, we observed that the high-risk group had a higher

proportion of patients with PD/SD compared to the low-risk group.

This suggests that the high-risk group had a significantly worse

outcome. On the other hand, patients who achieved a complete or

partial response (CR/PR) had lower risk scores compared to those

with stable disease or progressive disease (SD/PD). This finding

indicates that patients with lower risk scores were more likely to

exhibit a favorable treatment response. To validate our findings, we
B

C

D

A

FIGURE 5

Creation of a new nomogram that incorporates the risk signature. (A) Construction of the nomogram integrating the T, N-stage, and risk score.
(B) Decision curve for nomogram. (C) The gene set enrichment analysis was performed. (D) The immune scores of the 11 genes. ***P < 0.001,
****P < 0.0001.
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also analyzed the GSE78220 cohort. The results obtained were

consistent with those from the IMvigor210 cohort. Patients who

showed a partial or complete response had decreased risk scores and

were less likely to be categorized as high-risk (Figure 7B).

Interestingly, these distinct risk groupings were observed

primarily in patients with Stage I+II disease, rather than those

with Stage III+IV disease (Figure 7C). These findings underscore

the potential of our immune checkpoint treatment signature as a

predictive tool in T-cell immunotherapy. They suggest that the risk

scores derived from this signature can help identify patients who are

more likely to have a positive treatment response and may guide
Frontiers in Immunology 11
personalized treatment decisions in the context of immune-

checkpoint blockade therapy.
3.7 Analysis of immunological infiltrations
and consensus clustering

We employed unsupervised consensus clustering to investigate

molecular subtypes based on the expression of SRGs (Signature-

Related Genes) that comprise the risk signature. The TCGA cohort

was divided into two clusters, with a k-value of 2 determined as the
B

C

D

E

A

FIGURE 6

Analysis of immunological infiltrations. (A) The correlation analysis between risk genes and immunity. (B, C) Correlations between eleven hub genes
and 22 immune-related cells. (D) Correlations between the eleven genes and immune score, stromal score, and estimate score. (E) The correlation
analysis between eleven hub genes and signaling pathway. *P < 0.05, **P < 0.01, ***P < 0.001.
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optimal clustering stability. The distribution of these distinct

clusters is visualized in Figures 8A, B through a ridge plot.

Cluster 1 (C1) exclusively comprised individuals from the low-

risk group, whereas cluster 2 (C2) consisted of both high-risk and

low-risk patients, as illustrated in the Sankey diagram (Figure 8C).

Survival analysis revealed that patients belonging to the C1 group

exhibited significantly better outcomes compared to those in the C2

group (Figure 8D). Further analysis involved calculating TME

(Tumor Microenvironment) scores for the different clusters. The

C2 cluster demonstrated elevated immune, stromal, and estimate

scores, indicating a more prominent presence of immune and

stromal components within the tumor microenvironment. In
Frontiers in Immunology 12
contrast, the C1 cluster exhibited higher tumor purity

(Figures 8E, F). Additionally, an examination of immune

checkpoint inhibitors revealed a substantial correlation between

the C2 cluster and the expression of a majority of immune

checkpoints, as depicted in Supplementary Figure 2. This finding

highlights a significant association between the C2 cluster and the

immune checkpoint expression profile.

Taken together, these results provide insights into the molecular

subtypes identified through unsupervised consensus clustering.

They demonstrate that the C1 cluster, consisting of low-risk

patients, is characterized by superior outcomes and higher tumor

purity. On the other hand, the C2 cluster appears to be associated
B

C

A

FIGURE 7

Prediction of immunotherapy response (A) Prognoses differences between risk subgroups in the IMvigor210 cohort; Differences between
immunotherapy responses; Distribution of immunotherapy response. (B) Prognostic differences between risk subgroups in the GSE78220 cohort;
Differences between immunotherapy responses; Distribution of immunotherapy response. (C) Prognostic differences between risk subgroups based
on early-stage (stage I-II) and late-stage (stage III-IV) patients in the two cohorts. *P < 0.05, ****P < 0.0001.
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with increased immune and stromal activity, as well as a correlation

with immune checkpoint expression. Such findings contribute to

our understanding of the diverse tumor microenvironment and its

imp l i c a t i on s f o r p a t i e n t p r o gno s i s a nd po t en t i a l

therapeutic strategies.
3.8 Drugs sensitivity

Following an evaluation of the efficacy of various

chemotherapeutic drugs in distinct clusters, notable differences in

drug response were observed. In cluster 2 (C2), patients displayed

higher IC50 values when exposed to Bicalutamide, FH535, and
Frontiers in Immunology 13
Imatinib, indicating a reduced sensitivity to these drugs (Figure 9A).

Conversely, individuals categorized under cluster 1 (C1) exhibited

more favorable response rates to ATRA, Gefitinib, and other

specific drugs (Figure 9B). These findings highlight that patients

in C2 have a diminished response to certain chemotherapeutic

agents, suggesting a potential resistance or reduced effectiveness of

these drugs in this cluster. Conversely, patients in C1 demonstrate

better responses to specific drugs, indicating a potential therapeutic

benefit for these individuals. The evaluation of drug response in the

different clusters provides valuable insights into the variability of

treatment efficacy within distinct molecular subtypes.

Understanding these differences can aid in the development of

personalized treatment approaches and the selection of appropriate
B

C D

E F

A

FIGURE 8

Consensus based on the expression of SRGs. (A) A Stratification of melanoma patients into two clusters according to the consensus clustering matrix (k= 2).
(B) PCA depicted the distribution for clusters. (C) The Sankey diagram of the connection between clusters and high-low risk groups. (D) Survival analysis
based on the two clusters. (E, F) ESTIMATEScore, SromalScore, ImmuneScore, and TumorPurity difference between two clusters. ***P < 0.001.
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therapeutic interventions tailored to the specific characteristics of

each cluster.
3.9 Upregulated mRNA level of IRX3

To further validate the expression of IRX3 in melanoma, we

selected 20 pairs of melanoma and corresponding normal tissues for

qPCR verification. In tumor tissues, a significant upregulation of

IRX3 was observed (Supplementary Figure 3A). To explore the

function of IRX3 in melanoma, two melanoma cell lines, namely

A375 and WM-115, were chosen for further experimental

validation. Firstly, we silenced IRX3 in A375 and WM-115 cells
Frontiers in Immunology 14
using two siRNAs and further confirmed its knockdown efficiency

through qPCR (Supplementary Figure 3B).
3.10 Silencing IRX3 inhibits proliferation,
invasion, and metastasis while promoting
apoptosis in melanoma cells

To investigate the role of IRX3 in melanoma, we performed a

colony formation assay on A375 and WM-115 melanoma cells in

the NC and si-IRX3 groups (Figures 10A, B). The results showed

that silencing of IRX3 led to smaller colonies in both A375 and

WM-115 cells, suggesting that IRX3 silencing inhibits melanoma
B

A

FIGURE 9

Prediction of SKCM patients’ sensitivity to chemotherapeutic drugs. (A) Cluster 2 manifested heightened IC50. (B) Cluster 1 manifested heightened IC50.
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cell proliferation. This result was further confirmed by the CCK-8

assay (Figure 10C). To explore the effect of IRX3 on melanoma cell

migration and invasion, we conducted scratch assay and transwell

assay. The results showed that silencing of IRX3 significantly
Frontiers in Immunology 15
inhibited the invasion ability of A375 and WM-115 cells

(Figures 10D–G). Apoptosis plays a crucial role in the malignant

behavior of many tumors. We further investigated the effect of IRX3

on tumor cell apoptosis. Apoptosis assay revealed that silencing of
B
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FIGURE 10

Silencing IRX3 Inhibits Proliferation, Invasion, and Metastasis while Promoting Apoptosis in Melanoma Cells. (A) A colony formation assay was performed
on A375 and WM-115 melanoma cells in the NC and si-IRX3 groups. Smaller colonies were observed in the si-IRX3 group, indicating that IRX3 silencing
inhibits melanoma cell proliferation. (B) Quantification of colony formation assay results showed a decrease in colony size in the si-IRX3 group
compared to the NC group. (C) CCK-8 assay further confirmed the inhibitory effect of IRX3 silencing on melanoma cell proliferation. (D) Quantification
of scratch assay results showing a decrease in wound closure percentage in the si-IRX3 group compared to the NC group. (E) Scratch assay revealed a
decrease in 17 the migration ability of A375 and WM-115 cell in the si-IRX3 group compared to the NC group. (F) Transwell assay demonstrated a
decrease in the invasion ability of A375 and WM-115 cells in the si-IRX3 group compared to the NC group. (G) Quantification of transwell assay results
shows a decrease in the number of invading cells in the si-IRX3 group compared to the NC group. (H) Apoptosis assay revealed an increase in apoptosis
in both A375 and WM-115 cell lines upon IRX3 silencing. (I) Quantification of apoptosis assay results shows an increase in the percentage of apoptotic
cells in the si-IRX3 group compared to the NC group. *P < 0.05, **P < 0.01, ***P < 0.001.
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IRX3 promoted apoptosis in both A375 and WM-115 cell lines

(Figures 10H, I). Inhibition of melanoma cell proliferation,

invasion, and migration was observed upon silencing of IRX3,

while simultaneously promoting apoptosis.
4 Discussion

Melanoma, a malignancy known for its aggressive behavior, is

influenced by disruptions in lipid metabolism that can significantly

influence its onset and advancement (1). Extensive investigation in

the field of melanoma has focused on the exploration of multiple

genes and metabolites implicated in sphingolipid metabolism.

Notably, melanoma showcases aberrant expression or modified

activity of specific enzymes that play a pivotal role in the

regulation of sphingolipid metabolism (21, 22). An illustrative

example involves Ceramide synthase (CERS), a crucial

component within the sphingolipid metabolism pathway.

Perturbations in the functionality of CERS can lead to the

accumulation of specific sphingomyelin species in melanoma cells

(23). Moreover, the progression and advancement of melanoma

have been linked to other enzymes participating in sphingolipid

metabolism. Sphingosine kinase (SPHK) and glycosphingolipid

transferase (GSLT) are among these enzymes that have been

implicated in the pathogenesis of melanoma (24, 25).

Furthermore, extensive research studies have highlighted a robust

association between the advancement and prognosis of melanoma

in patients and the levels of sphingolipid metabolism products, such

as sphingomyelin and ceramide, found within their biological

systems (26). As an example, elevated concentrations of serum

sphingomyelin have been linked to decreased overall survival in

individuals afflicted with melanoma (19).

Our study focused on exploring potential associations between

sphingolipid metabolism and melanoma to explore the molecular

characteristics derived from SRGs and their clinical relevance. We

also investigated the role of signaling pathways in cancer cell

proliferation, metastasis, and drug resistance, as well as the

effectiveness of immune therapy including immune checkpoint

pathways such as PD-1/PD-L1 and CTLA-4, and the activation of

immune cells such as NK cells and tumor-associated macrophages

in the immune microenvironment. We leveraged resources such as

the Human Protein Atlas to identify four melanoma-specific genes

involved in sphingolipid metabolism. Through single-cell RNA-

sequencing analysis, we identified additional genes associated with

sphingolipid metabolism. Differential analysis was conducted,

followed by univariate Cox regression, lasso regression, and

multivariate Cox regression. This comprehensive approach

enabled the identification of a novel risk signature comprising

eleven genes (IRX3, PLA2G2D, GBP1P1, FCGR2A, GALM,

FERMT3, IGKJ5, IL15, IDO1, CMAHP, and HIVEP3). Notably,

the risk score derived from the signature demonstrated independent

predictive value for overall survival, as observed in both univariate

and multivariate Cox regression models. The accuracy of the

prediction was further confirmed by excellent agreement between
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predicted and actual outcomes using a nomogram for melanoma

patients. Moreover, our in vitro experiments revealed that the

silencing of IRX3 in melanoma cells resulted in the suppression

of ce l l prol i ferat ion , invas ion, and migrat ion whi le

promoting apoptosis.

Immunotherapy has emerged as a promising therapeutic

strategy in the field of medicine. It aims to counteract the

immune evasion mechanism exhibited by tumors, thereby

activating the patient’s immune cells to target and eradicate

cancer cells (27). The products generated through lipid

metabolism play a vital role in shaping the immunological

microenvironment by impacting diverse aspects of immune cell

biology. These products possess the capacity to directly modulate

the proliferation, differentiation, function, and activity of immune

ce l l s . By exer t ing cont ro l ove r the immuno log i ca l

microenvironment, they substantially contribute to the behavior

of immune cells (28, 29). Several lipid metabolism products, such as

fatty acids, triglycerides, and cholesterol, have a significant impact

on the differentiation and function of various immune cells,

including T cells, B cells, and macrophages. As a result, they

influence the immune response of the body towards infections

and tumors. Moreover, leukotrienes, categorized as lipid

metabolism products, actively participate in the chemotaxis and

adhesion mechanisms of immune cells, thereby regulating their

migration and aggregation (30). In the context of the immune

microenvironment, various cells present, such as tumor cells,

macrophages, and lymphocytes, are known to produce specific

lipid metabolites that play a key role in regulating immune

responses (31). In recent times, there has been a remarkable

increase in enthus iasm regarding the ut i l i za t ion of

immunotherapy as a viable therapeutic approach for patients

diagnosed with melanoma. The predominant immunotherapy

treatments employed for melanoma include anti-CTLA-4 and

anti-PD-1 antibodies, which function by targeting and inhibiting

specific receptors found on T cells. Anti-CTLA-4 antibody therapy

amplifies T cell functionality by obstructing the CTLA-4 receptor,

resulting in escalated T cell assault on malignant cells (32). The

application of anti-PD-1 antibody therapy impedes the PD-1

receptor found on T cells, facilitating persistent cancer cell

targeting (33). Immunotherapy has exhibited promising efficacy

in the management of melanoma; nevertheless, its appropriateness

varies among individuals. Hence, it is crucial to employ rigorous

screening and evaluat ion protocols before ini t iat ing

immunotherapy, aiming to determine its suitability for each

patient. The advent of PD-1/PD-L1 inhibitors has introduced

novel avenues and challenges in melanoma treatment. We aspire

for the utilization of PD-1/PD-L1 inhibitors to assume a pivotal role

in the adjuvant therapy of high-risk melanoma (newly diagnosed),

thereby furnishing surgeons with precise treatment strategies

through pertinent clinical investigations. Ultimately, our objective

is to enhance patients’ quality of life and improve the disease

prognosis (34, 35).

The identified signature establishes a link between the IRX3

gene and an adverse prognosis in melanoma. The protein derived
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from the IRX3 gene assumes a critical role in embryonic

development and normal physiological processes in adults (36).

Numerous studies have substantiated a notable correlation between

the presence, advancement, and outcome of malignant tumors and

the expression of the IRX3 gene. Notably, investigations have

revealed that heightened expression of IRX3 is strongly associated

with diminished survival rates and heightened vulnerability to

metastatic disease in individuals diagnosed with melanoma (37).

IIRX3 has emerged as a promising diagnostic indicator for several

types of cancer, including prostate, colorectal, and gastric cancer. Its

expression level can serve as a valuable tool for evaluating tumor

prognosis and treatment responsiveness. By detecting the degree of

IRX3 expression, clinicians can assess the potential outcomes and

responses to therapeutic interventions in patients with these

malignancies (38). The role of IRX3 in tumor management,

particularly in melanoma, is of utmost significance. Extensive

research has elucidated that downregulating IRX3 expression

significantly reduces the invasiveness and proliferation of

melanoma cells. Moreover, it enhances the sensitivity of these

cells towards chemotherapy agents. These findings highlight the

therapeutic potential of targeting IRX3 as a means to attenuate

tumor progression and improve treatment outcomes in melanoma

patients (39, 40). The overexpression of IRX3 in melanoma

indicates its plausible involvement in tumorigenesis and disease

advancement. These findings align with previous investigations on

IRX3 in colorectal cancer and breast cancer. Nevertheless, our study

pioneers the examination of IRX3’s distinctive function in

melanoma. The suppressive impact of IRX3 gene silencing on

melanoma cell behavior implies the potential utility of targeting

IRX3 as a therapeutic strategy with promising prospects. To sum

up, our research successfully developed a robust diagnostic and

prognostic model for melanoma while unveiling the upregulation of

IRX3 in this particular disease. The potential therapeutic value of

targeting IRX3 in melanoma treatment holds great promise.

However, additional investigations are warranted to gain a

comprehensive comprehension of the underlying mechanisms

through which IRX3 influences melanoma development.

Furthermore, exploring the clinical applicability of IRX3 targeting

necessitates further exploration.
5 Conclusions

In conclusion, using the sphingolipid-related model can

adequately classify patients for prognosis and immunological

assessment of patients in melanoma. Our research findings could

provide valuable insights into detecting and treating

melanoma patients.
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(A-G) The correlation between SRGs clusters and clinical characteristics.
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SUPPLEMENTARY FIGURE 2

The analysis of immune checkpoint inhibitors. (A) A significant association
between the C2 cluster and the expression of most immune checkpoints. (B)
The analysis of immune cell infiltration.

SUPPLEMENTARY FIGURE 3

IRX3 expression level between melanoma and corresponding normal
tissues and IRX3 silencing efficiency. (A) A significant upregulation
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mRNA level of IRX3 was observed in the melanoma group among 20
pairs of melanoma and corresponding normal tissues. (B) Confirmation of

knockdown efficiency through qPCR in A375 and WM-115 cell lines. (C)
Photographs of tumors obtained from the different groups of nude mice
transfected with sh-NC and sh-IRX3. (D) Knockdown of IRX3 expression

significantly inhibited melanoma cancer cell growth in nude mice and
tumor weight was significantly reduced in the sh-IRX3 group compared

to that in the NC group.
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