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The issue of biological invasions in aquatic ecosystems is becoming increasingly

severe in the contemporary world. Due to the lack of monitoring and

management systems for aquatic invasive species, the difficulty in identifying

aquatic invasive species, and the limited effectiveness of conventional control

methods in aquatic environments, biological control in water bodies is

comparatively more challenging than other types of interventions. In recent

years, environmental DNA (eDNA) survey methods have rapidly developed in

various fields, such as biological monitoring, community ecology,

paleoenvironmental research, conservation biology, and invasion ecology, due

to their unique advantages of being rapid, sensitive, efficient, and non-invasive.

Because of these characteristics, this innovative molecular approach has gained

wider acceptance and is being increasingly utilized for the detection of biological

diversity in aquatic environments. Furthermore, it has emerged as a novel

technology to address the pressing and significant issue of aquatic invasive

species in the vast freshwater and marine resources of the East Asian region. This

paper summarizes a variety of literature sources to summarize the major aquatic

invasive species in East Asian countries and the current application status of

eDNA technology in their survey processes. Using China as a case study, it

expounds on the prospective incorporation of the 4E strategy with eDNA

technology for the surveillance of biological invasions. Furthermore, it explores

the potential prospects of eDNA technology in species diversity management

and policy formulation, offering theoretical guidance for establishing aquatic

invasive species monitoring systems. From a technological standpoint, the

integration of eDNA technology with the 4E strategy holds significant potential

for application, thereby offering a promising reference for the formulation of

policies related to the management of aquatic biological invasions

and biodiversity.
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1 Introduction

With the influence of factors such as global warming and

economic globalization, biological invasion has become one of the

hot topics in the field of global ecology. Biological invasion refers to

the process by which organisms invade a new environment from

their native habitats through natural or human-mediated pathways,

causing economic losses or ecological disasters to biodiversity,

agricultural and forestry production, and human health (Wan

et al., 2002). Human activities have led to the efficient global

transportation of thousands of species, and as trade has

accelerated, the frequency of introductions has risen over time

(Havel et al., 2015). For example, contaminant, stowaway, corridor

and unaided pathways and other diverse routes arises the risk of

alien species introduction (Hulme, 2009). Due to these intricate

introduction pathways, aquatic ecosystems appear to be particularly

susceptible to the threat of invasive species (Havel et al., 2015). The

East Asian region encompasses vast aquatic expanses, where

invasive species disrupt the dynamic equilibrium of native species

and existing ecosystems (Sing and Tan, 2018). These invasions lead

to shifts in the trophic levels of aquatic ecosystems, diminishing the

self-purification capacity of the ecological environment and

impacting the ecological system quality of aquatic habitats for

aquatic organisms. Similar to other ecosystems, biological

invasions in aquatic environments also consist of three

consecutive stages: introduction, establishment of self-sustaining

populations, and spread within recipient ecosystems. (Hulme, 2006;

Davis, 2009). Early detection, diagnosis, and monitoring of invasive

species are particularly important because of the benefits for rapid

and effective response and the formulation of corresponding

prevention and control decisions to curb the spread and

expansion of invasive species (Hulme, 2006; Woodell et al., 2021).

Accurate identification of invasive species is pivotal to

conservation strategies, enabling early detection and swift

implementation of control measures through monitoring and

surveillance activities (Mehta et al., 2007). To address these

difficulties in detection at very low population densities,

environmental DNA technology has emerged (MacKenzie et al.,

2005; Ficetola et al., 2008). Environmental DNA (eDNA) refers to

the DNA directly obtained from environmental samples,

encompassing the DNA released by organisms such as animals,

plants, and microorganisms into the air, soil, water, and other

surroundings (Taberlet et al., 2012; Thomsen and Willerslev, 2015).

Compared to traditional detection methods, aquatic eDNA technology

can enhance the detectability of invasive species (Ficetola et al., 2008).

The technological advantages of aquatic eDNA lie in its potential as a

rapid and cost-effective tool for applied conservation biology. This

encompasses the early detection of invasive species and the monitoring

of species that are challenging to detect using conventional methods

(Bohmann et al., 2014). In general, eDNA technology can facilitate

early detection of invasive species and monitoring of inconspicuous

organisms in aquatic ecosystem management, offering a more effective

approach to biodiversity surveys.
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2 Investigation of invasive aquatic
species in East Asia

East Asia is endowed with abundant aquatic resources,

including rivers, lakes, reservoirs, and oceans. However, due to

globalization, international trade, tourism, and increased human

activities, numerous non-native aquatic species have been

introduced into the region’s water bodies. Some invasive species

are intentionally imported and escape from captivity or are

carelessly released into the environment. Unintentionally

importing is another main path of introduction, arriving through

livestock and produce, or by transport equipment such as packing

material or a ship’s ballast water and hull (Lovell et al., 2006). These

introduced species often possess strong reproductive capabilities

and adaptability, enabling them to quickly establish and dominate

new ecosystems (Knight, 2010). On the other hand, trade provides a

major pathway for the introduction of invasive species (Ruiz and

Carlton, 2003). As part of global business, the pet trade has become

a significant channel with a great proportion of invasive mammals,

birds, reptiles, amphibians, and fish. These non-native pets are

sometimes released or escape from their owners and may be

introduced beyond their native ranges, posing threats to

biodiversity, agriculture, and public health. The pet trade

particularly facilitates the spread of invasive species because

commercially successful exotic pets often have larger spatial

distributions and broader habitat requirements (Gippet and

Bertelsmeier, 2021). By exploring diverse literature sources, this

study has identified that aquatic environments in East Asia are

encountering substantial risks posed by a wide array of invasive

aquatic species, encompassing categories such as fish, reptiles,

arthropods, mollusks, and more.

This article will focus on highlighting some of the highly

invasive aquatic species in East Asia (Figure 1).
2.1 Pomacea canaliculata

Pomacea canaliculata, also known as the giant snail, apple snail,

or mystery snail, is a freshwater gastropod mollusk belonging to the

family Ampullariidae and genus Pomacea, native to the Amazon

River basin in South America. It is one of the top 100 most

threatening invasive species in the world (Lowe et al., 2000). In

the 1980s, the P. canaliculata was introduced as a high-protein food

source and for aquaculture purposes in regions of the United States

and Southeast Asia (Halwart, 1994). Since its introduction to

Guangdong, China in 1981, the P. canaliculata has had a

significant impact on rice production in the southern region due

to its strong environmental adaptability and rapid reproduction

(Cai and Chen, 1990; Teo, 2001). Currently, in East Asia, P.

canaliculata is distributed in China, Japan, and South Korea. It

has also been found in Cambodia, Malaysia, Laos, Myanmar, the

Philippines, Thailand, Vietnam, and Indonesia (Hayes et al., 2008;

Matsukura et al., 2008; Xu et al., 2012).
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2.2 Clarias leather

Clarias leather, also known as the Clarias catfish or African

catfish, belongs to the order Siluriformes and the familyClariidae. It is

native to the Nile River basin in Africa. Due to its high reproductive

capacity, tolerance to low oxygen levels, and resistance to low

temperatures, the C. leather was introduced to China as an

aquaculture species from Egypt in 1981 (Li et al., 1984). Escapes

and releases from aquaculture operations have led to its entry into

natural water bodies. With its strong survival and reproductive

abilities, it has spread to multiple rivers in the southern region of

China, exerting significant pressure on native species (Radhakrishnan

et al., 2011). In the East Asian region, the C. leathers is primarily

distributed in freshwater environments such as lakes, rivers,

reservoirs, and agricultural irrigation channels in China.
2.3 Rana catesbiana

The bullfrog belongs to the phylum Chordata, subphylum

Vertebrata, class Amphibia, order Anura, family Ranidae, and

genus Rana. It is considered one of the world’s top 100 most

aggressive invasive species. Native to the eastern United States, it

has been widely introduced to various regions worldwide over the

past two centuries (Lever, 2003). The bullfrog was initially

introduced as a food source from Cuba and Japan to mainland

China in 1959, and subsequent introductions occurred multiple

times during the 20th century (Wu et al., 2004). However, due to the

lack of scientific management, escape and release incidents have

been common, leading to the widespread proliferation of bullfrogs

in wetland areas of Zhejiang, Hunan, Hubei, Guizhou, Sichuan, and
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Yunnan provinces in China. This proliferation poses a significant

threat to the survival of native species (Wang et al., 2007; Zhan et al.,

2017). In East Asia, bullfrogs are found mainly in rivers, lakes,

reservoirs, and agricultural irrigation channels in China and Japan.
2.4 Procambarus clarkii

The red swamp crayfish, also known as Procambarus clarkii,

belongs to the subphylum Crustacea, order Decapoda, and family

Cambaridae. It is native to the northeastern part of Mexico and the

central and southern regions of the United States, and has become

one of the world’s notorious invasive species (Huner, 1988). It

exerts harmful impacts on invaded freshwater ecosystems through

predation, competition with native species, alteration of habitat

characteristics, water quality, and other ecosystem services (Lodge

et al., 2012). In Asia, this crayfish is widely distributed in China and

Japan (Loureiro et al., 2015). It was initially introduced to Japan

from New Orleans, USA, in 1927 for bullfrog aquaculture and pet

trade purposes, and it can now be found throughout the country,

including the Ryukyu Islands (Mito and Uesugi, 2004; Kawai and

Kobayashi, 2005). In East Asia, it has a relatively wide distribution

and is mainly found in rivers, lakes, reservoirs, and agricultural

irrigation channels in China, Japan, and South Korea.
2.5 Tilapia zillii

The tilapia, belonging to the order Perciformes, family Cichlidae,

is native to Africa and has now become widely distributed in the

Americas, Europe, Australia, and China in Asia (http://
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FIGURE 1

Morphology and distribution of typical aquatic invasive species The points on the map indicate the distribution location of the invasive species, the
blue points indicate the distribution location of the invasive species in East Asia, and the yellow points indicate the distribution of the invasive species
in other areas. The picture at the bottom right is a picture of the morphology of each species. (A). Atractosteus spatula (B). Clarias gariepinus (C).
Eichhornia crassipes (D). Pomacea canaliculata (E). Procambarus clarkii (F). Pterygoplichthys pardalis (G). Rana catesbiana (H). Tilapia zillii (I).
Trachemys scripta elegans. These images are quoted from the GBIF.org (Blackburn and Brown, 2023; de Vries and Lemmens, 2023; iNaturalist
Contributor, 2023).
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www.fishbase.org) (Khaefi et al., 2014). It was introduced as a

cultivated species in China in 1978 (Lou, 2000; Li et al., 2007;

Deng et al., 2013). In China, although the tilapia aquaculture

industry has rapidly developed nationwide, there is still a lack of

comprehensive comparison regarding the ecological risks associated

with tilapia introduction and aquaculture, which remains a priority

in assessing the significant role of tilapia introduction (Xiong et al.,

2023). In East Asia, the tilapia is relatively widely distributed,

mainly in China, Japan, South Korea, and other regions,

inhabiting freshwater environments such as rivers, lakes,

reservoirs, and agricultural irrigation channels.
2.6 Trachemys scripta elegans

The Trachemys scripta elegans, belonging to the family

Emydidae and genus Trachemys, is a subspecies of the Trachemys

scripta. It is native to the area surrounding the Mississippi River to

the Gulf of Mexico in the United States (Ernst, 1990). In the 1980s,

the T. s. elegans was introduced to East Asia as an ornamental turtle

(Shi et al., 2009). Initially brought in as pets, the T. s. elegans gained

popularity due to its attractive appearance and ease of care,

becoming a common choice for many people. However, with the

growth of the pet trade and irresponsible ownership practices, many

T. s. elegans were released into natural water bodies or escaped.

These released or escaped individuals rapidly reproduced and

established their populations in suitable environments (Burger,

2009). They are capable of adapting to various aquatic habitats

and have become widely distributed in lakes, rivers, reservoirs,

agricultural irrigation channels, and urban parks in East Asian

countries. This invasive species poses a threat to native species’

survival in the region (Ma and Shi, 2017).
2.7 Atractosteus spatula

Atractosteus spatula, belonging to the class Actinopterygii,

family Lepisosteidae, and genus Atractosteus, is the largest species

in the gar family. It is native to North America but has recently been

introduced to China, where it is considered an invasive fish species.

Due to its predatory nature and consumption of many aquatic

organisms in non-native habitats, it can cause a loss of native

species diversity and abundance, as well as a reduction in fishery

yields (Liu et al., 2023). The A. spatula is primarily distributed in

freshwater habitats in countries such as China, Japan, and South

Korea, including rivers, lakes, reservoirs, and agricultural irrigation

channels (Xie et al., 2023).
2.8 Pterygoplichthys pardalis

Pterygoplichthys pardalis, commonly known as the leopard

sailfin catfish or bulldog pleco, belongs to the order Siluriformes,

family Loricariidae, and genus Pterygoplichthys. It is native to the

Amazon River basin in South America and has become an invasive

species in countries and regions including the United States,
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Mexico, South Africa, Southeast Asia, Japan (Jones et al., 2013;

Ishikawa and Tachihara, 2014). In 1990, the P. pardalis was

introduced to Guangdong Province, China, for its ornamental

value and subsequently spread to the eastern and southern parts

of the country through aquaculture trade (Li et al., 2007). Studies

have found that the leopard pleco feeds on algae, zooplankton,

secretion on tank walls, food remnants left by fish, and even fish

eggs, posing a significant threat to the population and diversity of

other fish species and disrupting the ecological balance (Tuten et al.,

2009; Pound et al., 2011). In East Asia, the P. pardalis is primarily

distributed in rivers, lakes, reservoirs, and agricultural irrigation

channels in China, Japan, and South Korea.
2.9 Eichhornia crassipes

Eichhornia crassipes, a floating aquatic plant belonging to the

Pontederiaceae family in the Eichhornia genus, is also known as “

Water Hyacinth” or “ Water Gourd.” It is native to South America

and has often been introduced as an ornamental plant in countries

across Asia, Africa, Europe, and North America, causing significant

ecological harm (Villamagna and Murphy, 2010). Introduced to

Southeast Asia during the 19th century, it was later introduced to

China as an ornamental flower in 1901. In the 1930s, it was

introduced to various provinces in mainland China as animal

feed and promoted for its use in water purification and as an

ornamental plant. Subsequently, it escaped cultivation and became

a wild species. Currently, water hyacinth is widely distributed in the

Yangtze River and Yellow River basins, as well as in various regions

of South China (Yan et al., 2017). In East Asia, E. crassipes, with its

strong environmental adaptability, is widely distributed in ponds,

ditches, and waterlogged fields in China, Japan, and South Korea.
2.10 Prymnesium parvum

Prymnesium parvum is a microscopic, single-celled algae with

four morphologically distinct forms. Three of the forms are scaled,

bi-flagellated, and have a flexible, non-coiling, needle-like filament

called a haptonema. The fourth form is a scaled, non-motile,

siliceous cyst (Manton, 1966; Genitsaris et al., 2009). P. parvum is

an algal species that forms harmful blooms in inland and coastal

aquatic environments and is responsible for devastating fish kills

causing ecological and economic damage. While blooms of P.

parvum were documented in the eastern hemisphere since the

early 1900s, the species has now spread widely, with blooms

occurring in all southern regions of the USA and some northern

regions. P. parvum is not on an alert list or listed as a regulated pest

(https://www.cabidigitallibrary.org/).
3 Applications of eDNA in the
detection of aquatic invasive species

In the early stages of aquatic species detection, field surveys

were primarily conducted using methods such as fishing nets, boats,
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and complementary techniques like electrofishing for sample

collection. However, these approaches were often time-consuming

and labor-intensive, particularly when surveying rare species, low-

density invasive species, or species that were challenging to sample.

Moreover, these methods could potentially harm the target species

or disrupt the ecological systems of survey sites (Snyder, 2003). Due

to these factors, the scientific community sought a more efficient

detection method, leading to the emergence of eDNA analysis. The

eDNA technology initially emerged in the field of environmental

microbiology, where it was used for the isolation and purification of

microbial DNA from sediments (Ogram et al., 1987). It was not

until the year 2000 that eDNA analysis gained recognition and

wider application (Rondon et al., 2000). However, the first

application of eDNA analysis in the field of aquatic biology

occurred in 2008 when Ficetola and his colleagues used eDNA

fragments extracted from water samples to monitor an invasive

species, the R. catesbeiana (Ficetola et al., 2008). Since then, with the

advancement of technology, eDNA techniques have been

extensively applied in various aquatic ecosystems for studying fish

(Doi et al., 2017), benthic organisms (Pawlowski et al., 2022),

planktonic organisms (Suter et al., 2020), planktonic bacteria

(Tessler et al., 2017), viruses (Mohiuddin and Schellhorn, 2015),

and more. These applications include, but are not limited to, studies

on aquatic community diversity (Bohmann et al., 2014), species

identification (Ficetola et al., 2008), and biomonitoring (Takahara

et al., 2012).

The number of studies using eDNA in different environments

and species worldwide was highest for freshwater, followed by

seawater, and soil and sediment (Thomaz et al., 2015). Among

different species, fish were the most studied, followed by

invertebrates, amphibians, mammals, plants, reptiles, and birds.

The use of eDNA in research has shown a positive correlation with

time, with an increasing number of studies conducted each year

since 2008 (Sahu et al., 2023). This demonstrates the rising

significance of eDNA technology in the field of aquatic

organism detection.

As of May 2023, a search was conducted on the Web of Science

database (https://www.webofscience.com/) covering the entire time

period from 1998 to 2023 using the search terms “(environmental

DNA OR eDNA) AND (Aquatic invasion OR Aquatic invasive

species)”. Based on the publication status of articles, the research

on eDNA in aquatic invasive species within the East Asian region

was categorized into two main classes: those with established

research methods and those currently lacking research (Table 1).

The main objective was to survey and summary the use of eDNA for

aquatic invasive species detection in East Asia, demonstrate the

current research status of eDNA in aquatic invasions in the region,

and provide reference for future studies using eDNA for monitoring

aquatic invasions.
3.1 Research on species that have
developed study methods in East Asia

During the research process, it was found that the use of eDNA

detection technology to monitor aquatic invasive species is
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increasingly recognized in East Asia. It can not only detect low-

abundance invasive species but also provide information about

species presence and distribution. Since the pioneering use of

eDNA technology for detecting R. catesbeiana in 2008 (Ficetola

et al., 2008), subsequent studies in the East Asian region have

successfully utilized eDNA technology to detect common aquatic

invasive species and have even developed innovative methodologies.

In Japan, several studies have focused on the potential of eDNA

technology in ecological monitoring and conservation, particularly

for invasive species detection. Successful eDNA surveys have been

conducted to assess the distribution of Pacifastacus leniusculus in

streams of Hokkaido (Ikeda et al., 2019). Further applications of

eDNA methods have facilitated the detection of Lithobates

catesbeiana and P. clarkii (Ogata et al., 2022), followed by an in-

depth analysis of the influence of water quality and the abundance

of T. s. elegans on the eDNA concentration of T. s. elegans in ponds

(Kakuda et al., 2019). In China, DNA metabarcoding techniques

have been employed to monitor the invasion of P. canaliculata in

the Suzhou area. This approach demonstrated that environmental

DNA metabarcoding had a much higher detection rate for P.

canaliculata compared to traditional observation methods (Chen

et al, 2021). Moreover, eDNA technology has been applied to

distinguish between two invasive apple snail species, P.

canaliculata and P. maculata, revealing their distribution patterns

and enhancing tracking methods for these highly invasive and

economically damaging species (Banerjee et al., 2022). The

optimization of eDNA monitoring techniques is also continually

advancing. Research has targeted the eDNA detection method for

Trachemys scripta elegans, testing species specificity and refining

reaction conditions (Lam et al., 2020). Similarly, species-specific

primers and probes for frog DNA were designed, and a comparison

of the extraction efficiency and cost indicated that the CTAB

method was superior to the PCI method or DNeasy kits (Lin

et al., 2019). In South Korea, studies have demonstrated that

environmental DNA analysis is more accurate than traditional

surveys in detecting the presence of Bugulina californica (Kim

et al., 2021). These examples collectively highlight the effective

performance of eDNA technology in aquatic invasive species

detection. This innovative detection method continues to play an

increasingly prominent role in the field of species monitoring.

For some species that are only distributed in East Asia,

innovative methods have been innovated. For example, some

studies have used Grandidierella japonica as a model species to

experimentally investigate key factors such as methodology, decay

characteristics, abundance estimation, and environmental

monitoring using surface sediment eDNA. A novel eDNA-based

method was devised to monitor benthic species through sediment

samples (Wei, 2018). In another study, environmental DNA

methods were employed to design a set of primers and probes

specific to the Sciaenops ocellatus, investigating its distribution and

biomass in the East China Sea. This study detected the distribution

region of the S. ocellatus in the East China Sea (Wang et al., 2022).

Furthermore, a specific eDNA detection method was established for

Bufo species to detect the invasive and toxic land toad species, Bufo

japonicus formosus, in Hokkaido, Japan (Mizumoto et al., 2022).

These examples serve as templates from independent research
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TABLE 1 Application of eDNA techniques in aquatic invasion research.

Species The Current State of East Asian
Studies

Reference for the Initial Research
Study

Reference for East Asian
Studies

Rana catesbeiana Established Ficetola et al., 2008 Lin et al., 2019

Pomacea canaliculata Established Fornillos et al., 2019 Chen et al., 2021

Potamopyrgus
antipodarum

None Goldberg et al., 2013 -

Lepomis macrochirus Established Takahara et al., 2013 Wu et al., 2023

Procambarus clarkii Established Tréguier et al., 2014 Ogata et al., 2022

Trachemys scripta
elegans

Established Kakuda et al., 2019 Lam et al., 2020

Atractosteus spatula None Nur et al., 2020 -

Clarias gariepinus None Keskin, 2014 -

Oreochromis niloticus Established Keskin, 2014 Chen et al., 2021

Tilapia zillii None - -

Pterygoplichthys
pardalis

None - -

Parachromis
managuensis

None Skelton et al., 2022 -

Macroclemys
temminckii

None - -

Oryzias latipes Established Tsuji et al., 2018 Tsuji and Shibata, 2021

Acanthurus sohal None - -

Scardinius
erythrophthalmus

Established Nathan et al., 2015 Li et al., 2019

Dreissena bugensis None Egan et al., 2013 -

Dreissena polymorpha Established Egan et al., 2013 Xu et al., 2023

Carassius cuvieri Established Takahara et al., 2012 Uchii et al., 2016

Xenopus laevis None Secondi et al., 2016 -

Grandidierella japonica Established Wei, 2018 Wei, 2018

Salmo trutta None Gustavson et al., 2015 -

Carcinus maenas None Davies et al., 2019 -

Sciaenops ocellatus Established Wang et al., 2022 Wang et al., 2022

Bufo japonicus Established Igawa et al., 2019 Mizumoto et al., 2022

Cyprinus carpio Established Takahara et al., 2012 Minamoto et al., 2017

Morone americana None Boivin–Delisle et al., 2021 -

Morone saxatilis None Skinner et al., 2020 -

Oncorhynchus mykiss Established Wilcox et al., 2015 Minamoto et al., 2019

Micropterus salmoides Established Deiner et al., 2017 Nakao et al., 2023

Eichhornia crassipes None Scriver et al., 2015 -

Alternathera
philoxeroides

None - -

Pistia stratiotes None Scriver et al., 2015 -
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conducted by East Asian scientists, serving as references for future

scientific endeavors. Advancements and developments in research

can be achieved through strategies such as formulating research

plans, expanding collaborative networks, enhancing technical

capabilities, strengthening data analysis and model construction,

advocating for policy and funding support, and elevating the

capacity of research teams.

During the process of conducting searches on the Web of Science

database, it was observed that while East Asian scientists have been

researching the application of eDNA technology for monitoring

aquatic invasive species, many have made improvements to the

research methods. However, they still encounter challenges and

limitations. These challenges include the design and optimization of

primers specific to particular species, interactions with environmental

factors, and the standardization of sampling and analysis methods.

Therefore, further research and collaborative efforts are still needed to

promote the application of eDNA technology for monitoring aquatic

invasive species in the East Asian region. The eDNA technology is

continuously advancing in the East Asian region, leading to a plethora

of research outcomes. For example, some studies analyzed the technical

challenges and potential solutions of utilizing high-throughput

sequencing technology to monitor early invasive species in marine

ecosystems (Xiong et al., 2016). Other studies have investigated the

effects of different filters and filtration methods on DNA capture

efficiency. They found that a 0.8mm filter is the optimal pore size for

membrane filtration of turbid, eutrophic, and high-density fish ponds

(Li et al., 2018). Furthermore, research has demonstrated that eDNA

metabarcoding can provide complementary insights into the

biodiversity monitoring of zooplankton in polluted freshwater

ecosystems. This involves cross-referencing traditional morphology-

based methods with DNA-based approaches to ensure accurate and

rapid identification of zooplankton species (Xiong et al., 2020). In

summary, the East Asian region should enhance research and

application efforts in the field of eDNA, driving innovation and

development of relevant technologies and methodologies. This

proactive approach addresses the demands of biodiversity

conservation, environmental monitoring, disease diagnosis, and

contributes to sustainable development and the establishment of an

ecological civilization.
3.2 Species investigation to be explored in
East Asia

So far, there is a lack of research in the East Asian region

regarding the use of eDNA technology for monitoring certain high-

risk invasive species. The Potamopyrgus antipodarum, known for its

strong adaptability and reproductive capacity, has become a serious

invasive species widely distributed around the world (Nentwig et al.,

2018; Geist et al., 2022). The species has also shown invasive traces

in Japan (Shimada and Urabe, 2003). Since there is no prior eDNA

research for this species in the East Asian region, it is advisable to

reference best practices and establish a comprehensive monitoring

system. For example, Goldberg et al. used dose-response

experiments to study the relationship between the density of P.

antipodarum and the detection of eDNA over time, demonstrating
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the high potential of eDNA technology in aiding the early detection

of widely distributed invasive aquatic invertebrates (Goldberg et al.,

2013). The A. spatula has also invaded the East Asian region (Han,

2022). In order to accurately assess the extent of its invasion in East

Asia, further research and monitoring are needed. For example,

Ulayya et al. utilized eDNA methods to detect A. spatula as a

supplementary approach to traditional monitoring methods, where

eDNA and traditional detection methods were used in combination

(Ulayya et al., 2020). Furthermore, during the investigative process,

this study identified several invasive species with significant levels of

invasion in the East Asian region, such as T. zillii (Mito and Uesugi,

2004) and P. pardalis (Li et al., 2007), however, there is a lack of

eDNA-based research on these species in East Asia.

Although eDNA research in East Asia has made significant

progress in recent years and achieved some important results, there

is still a gap compared to the cutting-edge research level

internationally. To enhance the research capacity of eDNA in

East Asia, it is necessary to strengthen collaboration among

research institutions, improve technical equipment and talent

training, and enhance policy and funding support for eDNA

research. It is important to pay attention to these invasive aquatic

species, conduct early warning checks, learn from experiences, and

establish a detection system for high-risk invasive species.

4 Advantages and disadvantages of
eDNA technology in the study of
aquatic invasions

Environment DNA technology enhances the sensitivity and

efficiency of species-level identification. It can achieve early warning

and monitoring of aquatic invasions, providing timely insights into

species population distribution patterns and sizes. This aspect is crucial

for species conservation and biodiversity preservation, forming an

essential component and research foundation. Compared to

traditional detection methods, eDNA technology presents significant

developmental advantages in aquatic invasive species research. Firstly,

there is a growing body of research aimed at optimizing operational

processes and result analysis, providing comprehensive analytical

procedures and operational guidelines for eDNA analysis (Deiner

et al., 2015; Takahara et al., 2015). Secondly, eDNA analysis requires

relatively small water samples, causing minimal disturbance to the

habitats. Thirdly, eDNA analysis technology exhibits higher sensitivity

in aquatic biological detection compared to traditional methods,

particularly in the survey of endangered species (Dejean et al., 2012).

Fourthly, the cost of eDNA surveys is relatively economical and time-

efficient in comparison to conventional methods (e.g., electrofishing).

Since its initial application in 2008, eDNA analysis technology has

undergone over a decade of development and has matured into a

pivotal tool in aquatic biological resource investigation. It is extensively

applied in monitoring invasive species in specific regions, tracking the

distribution of endangered species, and investigating the relationship

between species distribution and climate change under the backdrop of

global climate change.

The eDNA technology can achieve early warning and monitoring,

and provide technical and decision-making references for eradication
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and management strategies. However, solely relying on comparative

literature studies makes it challenging to assess the efficiency of each

approach or establish a definitive eDNA protocol (Xing et al., 2022). As

a result, even though eDNA methods have matured, decision-makers

have been hesitant to treat eDNA-positive results as independent

evidence of new invasions (i.e., lacking evidence from non-molecular

methods). They perceive eDNA detection to be highly uncertain and

lacking guidance on integrating this uncertainty into decisions on how

and when to take action (Jerde, 2021). This is mainly due to several

shortcomings of eDNA technology. Firstly, monitoring outcomes can

only confirm the presence of target species in water bodies, without

providing insights into the physiological status, growth, and

developmental stages of those species. Secondly, further research is

needed to establish the consistency and relationships between eDNA

survey results and the spatiotemporal distribution of target species. The

eDNA detection outcomes are significantly influenced by eDNA

generation, transport, and degradation processes, with degradation

playing a decisive role. Quantifying and presenting the reliability of

eDNA results is a pivotal challenge that the development of eDNA

technology must address. A notable area of focus for researchers is the

quantification of these factors. For instance, this involves investigating

eDNA drift in water, as well as examining the impact of various

environmental factors on eDNA degradation (Barnes et al., 2014; Jane

et al., 2014). Thirdly, the results of eDNA technology are highly

dependent on existing databases, but existing databases may suffer

from incomplete comparative data, and thus it may appear that some

species in the results are difficult to identify. Moreover, the accuracy of

different target genes varies widely across taxa, and some selected target

genes may not have matching databases for comparison nowadays.

Furthermore, challenges stem from potential cross-contamination

during sample collection, transportation, and preservation processes.

Contamination issues persist during laboratory analysis due to sample-

reagent interactions, along with potential PCR inhibitors present in the

samples, all of which could introduce biases and distort the

experimental outcomes. In summary, the limitations of eDNA

technology encompass its inability to provide comprehensive

physiological insights, the need for further research on the

consistency of survey results, the challenge of quantifying reliability,

and the potential for contamination throughout the process.

Overcoming these limitations is integral to enhancing the accuracy

and applicability of eDNA technology.
5 Prospects of eDNA technology in
the study of aquatic invasions

Biological invasions have resulted in significant declines in

biodiversity and incurred substantial socio-economic losses and

monetary expenses (Havel et al., 2015). These costs are severely

underestimated and show no signs of abating, increasing threefold

every decade, with damage costs estimated to be one order of

magnitude higher than management expenditures (Diagne et al.,

2021). Reasonable management actions and governance policies

can alleviate the burdens imposed by invasive alien species. This

article takes China’s 4E strategy for biological invasions as an

example, analyzing the prospective application of eDNA
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2022). This analysis aims to provide decision-making references

and theoretical foundations for monitoring aquatic invasions.

E1 Action refers to Prevention and EarlyWarning, including four

stages: Data-Driven Predictions, Quantitative Risk Alerts,

Colonization Area Assessment, and Early Expansion Anticipation.

For high-risk invasive species not yet present in East Asia, which

possess strong invasiveness and potential harm, it is crucial to

conduct a scientific analysis to evaluate their invasion risk and

potential risk areas. eDNA technology is valuable for early

prevention and warning of such high-risk species. By referencing

published eDNA analysis models for high-risk invasive species,

insights can be gained into their invasion patterns, trajectories, and

more, allowing for the adjustment of targeted strategies for dealing

with these high-risk species in East Asia. For instance, a new eDNA

detection method has been developed for Pacifastacus leniusculus,

Faxonius limosus, and Faxonius immunis, enabling year-round

monitoring with high sensitivity. This method can also be used to

specifically search for populations that have not been previously

recorded or have newly emerged. Additionally, with established

spatiotemporal elements considered, the use of quantitative ddPCR

can further estimate population size roughly. Therefore, experimental

results indicate that eDNA detection serves as a supplementary

survey tool, especially for extensive screening or year-round

monitoring in watersheds with limited data (Chucholl et al., 2021).

E2 Action entails Detection and Monitoring, which includes

four stages: Molecular Identification Detection, Image Recognition

Diagnosis, Remote Smart Monitoring, and Regional Tracking

Detection. eDNA technology is primarily used for Molecular

Identification Detection, enabling the early detection of the

presence of a species in a new environment. This aids in early-

stage management and control of the species, preventing more

significant harm. For example, research has utilized eDNA

technology to detect the invasive European species Rangia

cuneata. It demonstrated that even in cases of sparse populations,

R. cuneata could be detected in environmental DNA, allowing for

rapid management responses and the tracking of invasive dynamics

(Ardura et al., 2015).

E3 Action involves Eradication and Interception, including four

stages: Early Eradication and Extinction, Corridor Node

Interception, Ecological Barrier Segmentation, and Source Control

in Quarantined Areas. eDNA technology can rapidly and

extensively detect the distribution range of invasive species. It can

serve as a reference for analyzing the invasion stage and path of

invasive species, allowing for early eradication and interception,

effectively suppressing rapid spread and reducing damage. For

instance, optimization and validation of a qPCR detection

method based on the H2B histone gene was conducted to

quantify the co-infection levels of zebra and quagga mussels in

environmental DNA samples. It was demonstrated that a highly

specific qPCR detection method for environmental DNA can be an

important tool for monitoring the locations of numerous invasive

mussel species, with a focus on preventing the establishment of

mussels in new locations (Peñarrubia et al., 2016).

E4 Action refers to Joint Control and Disaster Reduction,

encompassing four stages: Traditional Biological Control,
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Ecological Substitute Restoration, Regional Joint Prevention and

Control, and Cross-Border Collaborative Governance. eDNA

technology can be used to detect the effectiveness of invasive

species management efforts by comparing the concentration of

residual DNA before and after control measures. This can help

determine whether control methods are effective and which

methods are more efficient. For instance, ddPCR technology was

used to quantify the abundance of L. catesbeianus. The study

showed that tadpole abundance and biomass explained 99% of

the variation in eDNA concentration. Therefore, eDNA

concentration can serve as an approximate value for the local

bullfrog abundance in natural populations. This demonstrates

that eDNA technology can be a robust and reliable tool for

detecting the early stages of bullfrog invasion and quantifying

changes in abundance over time, aiding in coordinating large-

scale bullfrog eradication plans and evaluating their efficiency

(Everts et al., 2021).

The integration of the 4E China Program with eDNA

technology demonstrates the potential of eDNA technology to

provide efficient and reliable reference data for early monitoring

and warning of aquatic invasive species and the management of

invasive species. This combination can offer strong support for the

effective prevention and control of aquatic invasive species and the

monitoring and protection of ecosystems. Therefore, we should

acknowledge that with scientific evidence support, the eDNA

method aligns with the legal standards accepted as evidence in

most courts. This indicates that eDNA technology has matured into

a sufficiently reliable technique. However, the question of whether

eDNA methods have reached a level of maturity for transitioning

from research to widespread application and integration into the

management of aquatic invasive species is a critical issue to address.

This is because decision-makers rarely incorporate uncertain

outcomes into their decisions; false positive results may lead to

unnecessary costs and inconveniences, and in more severe cases, it

might trigger politically motivated reactions. Recognizing the

doubts of managers regarding eDNA results, researchers have

proposed solutions such as decision-support trees based on

molecular best practices. These trees integrate the temporal and

spatial trends of positive eDNA results relevant to human risk

tolerance, thus narrowing the interface between results and

management (Sepulveda et al., 2020). Furthermore, traditional

morphology-based methods cannot be discarded. Despite their

existing technical challenges, traditional morphological methods

and eDNA technology must complement each other to ensure

accurate and swift identification of aquatic invasive species. This

collaboration also facilitates the analysis of the causes and

consequences of biodiversity loss in ecosystems (Xiong et al.,
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2020). In general, routine monitoring of high-risk and high-

frequency aquatic invasive species has become a management

trend. For eDNA technology to better contribute to the 4E

strategy, we must establish a robust biosafety risk prevention and

control framework. This involves implementing a decentralized

departmental management system under a coordinated

mechanism, clarifying the biological security responsibilities of all

stakeholders, and efficiently addressing the challenges posed by

alien species invasions. Furthermore, it is essential to raise the

awareness of research personnel and establish regular training

programs. Continuous innovation is needed to address the

existing limitations of eDNA technology. This includes the

formulation of more standardized management protocols and the

utilization of decision support frameworks to enhance the

alignment between eDNA findings and management actions.
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