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The limitations of current cancer therapies, including the increasing prevalence

of multidrug resistance, underscore the urgency for more effective treatments.

One promising avenue lies in the repurposing of existing drugs. This review

explores the impact of phenothiazines, primarily used as antipsychotic agents, on

key mechanisms driving tumor growth and metastasis. The cationic and

amphiphilic nature of phenothiazines allows interaction with the lipid bilayer of

cellular membranes, resulting in alterations in lipid composition, modulation of

calcium channels, fluidity, thinning, and integrity of the plasmamembrane. This is

especially significant in the setting of increased metabolic activity, a higher

proliferative rate, and the invasiveness of cancer cells, which often rely on

plasma membrane repair. Therefore, properties of phenothiazines such as

compromising plasma membrane integrity and repair, disturbing calcium

regulation, inducing cytosolic K-RAS accumulation, and sphingomyelin

accumulation in the plasma membrane might counteract multidrug resistance

by sensitizing cancer cells to membrane damage and chemotherapy. This review

outlines a comprehensive overview of the mechanisms driving the anticancer

activities of phenothiazines derivates such as trifluoperazine, prochlorperazine,

chlorpromazine, promethazine, thioridazine, and fluphenazine. The repurposing

potential of phenothiazines paves the way for novel approaches to improve

future cancer treatment.

KEYWORDS

phenothiazines, repurposing, annexins, membrane biophysical properties, membrane
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1 Introduction

Cancer remains a complex and heterogeneous disease that poses a significant global

health challenge. Drug resistance and side effects restrict the effectiveness of existing

therapies, emphasizing the need for new and effective treatments (1). In recent years, drug

repurposing has emerged as a promising strategy for identifying new anticancer agents,
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given its potential to rapidly develop drugs with established safety

profiles and known pharmacokinetic properties (2).

Phenothiazines belong to important antipsychotic drugs used

for schizophrenia and bipolar disorder treatment (3, 4). They

demonstrate a broad spectrum of biological activities in

mammalian cancer cells, as well as pathogenic bacteria and fungi

with antipsychotic, antiemetic, antihistaminic, and anti-

inflammatory properties (5, 6). Beyond psychiatric use,

phenothiazines may act as potential anticancer agents, targeting

processes involved in tumor growth and metastasis (7, 8).

Cancer cells are exposed to membrane stress due to their

enhanced metabolic activity (9), making them more reliant on an

effective plasma membrane repair mechanism to restore membrane

integrity and avoid cell death (10). Annexins, a group of essential

plasma membrane repair proteins, are often overexpressed in

cancer cells (11, 12). They are characterized by their calcium-

dependent binding to anionic phospholipids and the ability to

aggregate vesicles and fuse membranes (13, 14). Despite excessive

research on annexin-mediated membrane repair and annexins’

ability to accumulate and fuse with membranes (15–17),

pharmacological approaches to impair membrane repair in cancer

cells need to be elucidated. Compromising plasma membrane repair

makes cancer cells more susceptible to membrane damage and cell

death (18, 19).

Phenothiazine derivatives interfere with plasma membrane

junctions, induce lipid phase separation (20, 21), and, as

amphiphilic drugs, modify cell membrane properties. They

achieve this by altering lipid composition, disrupting lipid rafts

(22), thinning the plasma membrane (23), and modulating calcium
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channels (24). These properties are important aspects in cancer

therapy, as phenothiazines have been shown to counteract

multidrug resistance in various types of cancer cells and sensitize

them to chemotherapy (25).

This review aims to provide a comprehensive overview of the

molecular mechanisms underlying the anticancer activity of

phenothiazines by influencing the biophysical properties of the

plasma membrane. We will summarize current advances in

understanding the therapeutic potential of established phenothiazines

and their effects on plasma membrane integrity, while discussing the

prospects of repurposing these drugs for cancer therapy.
2 Phenothiazines: from antipsychotics
to anticancer agents

2.1 Structure and mechanism of actions

Phenothiazines represent a class of cationic and amphiphilic

compounds characterized by the presence of two phenyl rings and

thiazine ring containing sulfur and nitrogen atoms (Figure 1). An

alkyl bridge is linked to the nitrogen atom within the thiazine ring

(26). Phenothiazines are a group of heterocyclic neuroleptic agents

known as dopamine receptor blockers that also affect GABA-

mediated inhibitory synaptic transmission in cultured hippocampal

neurons (27). Additionally, they demonstrated the capacity to inhibit

voltage-gated Kv1.3 channels in T lymphocytes (28).

Phenothiazines demonstrate a broad spectrum of biological

activities in mammalian cancer cells, as well as pathogenic
FIGURE 1

Direct effects of phenothiazine derivates on the plasma membrane and their potential as anti-cancer drugs. The most direct effect caused by
phenothiazines is disruption of the plasma membrane. This causes a rapid influx of Ca2+ which causes depolarization of the actin filaments and
activates the membrane repair machinery. The presence of phenothiazines can delay membrane resealing and thus lead to cell death. Similarly,
phenothiazines can primarily induce membrane thinning and increased membrane permeabilization which can then also lead to membrane
disruption. In contrast to the increased Ca2+ influx associated with membrane disruption phenothiazines can also inactivate the Ca2+ channels
causing Ca2+ dysregulation affecting multiple cellular functions including growth. A more specific effect on growth is the interaction between
phenothiazine and K-RAS, causing K-RAS to dissociate from the plasma membrane and accumulate in the cytosol, leading to cell cycle arrest and/or
apoptosis. Finally, phenothiazines can inhibit the sphingomyelinase leading to sphingomyelin accumulation in the plasma membrane and subsequent
cell death. Created with Biorender.
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microorganisms, which include bacteria (29), fungi, and protozoa.

These compounds exhibit antipsychotic, antiemetic, antihistaminic,

and anti-inflammatory properties and have been used in the

treatment of a wide range of diseases (6).

Phenothiazines exert their anticancer effects through multiple

mechanisms (30). They inhibit cell proliferation by targeting

different stages of the cell cycle (8), including DNA repair (31)

and microtubule dynamics (32). In addition, they also modulate

signaling pathways such as, PDK1/Akt and MAPK/ERK1/2, which

are involved in cancer progression and survival (7, 33). Other

studies support the induction of apoptosis by phenothiazines

through inhibiting the Akt/mTOR pathway, leading to decreased

cell proliferation (33, 34).

Phenothiazines also inhibit angiogenesis, the formation of new

blood vessels necessary for tumor growth, by inhibiting the

production of VEGF (vascular endothelial growth factor) and

VEGF-mediated signaling. Additionally, phenothiazines modulate

other molecular pathways involved in angiogenesis, such as the

MAPK signaling pathway (6, 35).

Furthermore, phenothiazines can induce oxidative stress by

generating reactive oxygen species (ROS) or inhibiting

antioxidant enzymes. This oxidative stress leads to DNA damage,

mitochondrial dysfunction, and cell death. Cancer cells, which often

have higher levels of oxidative stress, are particularly susceptible to

this cytotoxicity (36).
2.2 Disruption of membrane integrity

Phenothiazines disrupt the integrity of cell membranes via their

intercalation with the lipid bilayer (22). These compounds

accumulate selectively within the lipid membrane and have

profound effects on its biophysical properties (20, 37). By

influencing membrane fluidity and organization, phenothiazines

can impact crucial membrane-dependent processes such as signal

transduction, ion channel activity, and membrane repair

mechanisms (23). The study of the complex interaction between

phenothiazines and membrane dynamics gives significant insight

into their multiple pharmacological activities and highlights their

potential as therapeutic agents in various contexts of disease.
3 Plasma membrane integrity is
essential for cell life

3.1 Membrane integrity in maintaining
cellular homeostasis

The plasma membrane is a vital component of all living cells,

serving as a selective barrier between the intracellular and

extracellular environments. Maintaining membrane integrity is

essential for cellular homeostasis, since membrane disturbances

may impair function and result in cell death (38, 39). The plasma

membrane is composed of a phospholipid bilayer containing
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various proteins and molecules. Integral membrane proteins, like

receptors, transporters, and channels, are pivotal for specific cellular

functions and external interactions. The plasma membrane is

involved in cell signaling through surface receptors that sense

external signals like hormones or neurotransmitters. These signals

are conveyed into the cell, triggering specific responses crucial for

communication, growth, differentiation, and survival (40).

Furthermore, the plasma membrane contributes to maintaining

cellular homeostasis by regulating the balance of ions, nutrients,

and waste products. This regulation ensures that the intracellular

environment remains stable and suitable for cellular function.

Additionally, the membrane facilitates cellular adhesion, allowing

cells to interact with neighboring cells and form tissues and

organs (41).

Beyond its structural and functional roles, the plasma membrane

is dynamic and capable of remodeling and reorganizing in response

to various stimuli (41). It can change its shape, form specialized

structures such as microvilli or pseudopodia, and undergo processes

such as endocytosis and exocytosis, allowing an internalization or

release of substances (42).
3.2 Perturbations in membrane
integrity associated with cancer
development and progression

Compromised membrane integrity is closely associated with the

induction of cell death pathways (38). Understanding repair

mechanisms is crucial for unraveling the complex relationship

between membrane integrity and cellular homeostasis, offering

therapeutic opportunities in conditions like cancer. A notable

characteristic of metastatic cancer cell membranes is that lipid

content may change over time. For example, cells undergoing

metastasis reduce their cholesterol levels and increase their

fluidity and plasticity to facilitate penetration into blood arteries

(43). Additionally, reduced cholesterol levels disrupt lipid raft

formation and can affect the localization and activity of

membrane-associated proteins, influencing important cellular

processes such as proliferation, apoptosis, and invasion (44, 45).

Calcium ions (Ca2+) are crucial molecules involved in intracellular

signaling, which is important for cell proliferation and survival (46).

Repair of plasma membrane wounds is initiated by the influx of

Ca2+ and the recruitment of Ca2+-regulated proteins, particularly

annexins (13, 47). Annexin protein family members (ANXA) (in

mammals: ANXA1-11 and ANXA13) play a crucial role in

membrane fusion and wound healing (14). They are recruited to

the damaged plasma membrane by binding to negatively charged

phospholipids, facilitating membrane reshaping and fusion, thus

promoting effective resealing. Annexins have diverse properties that

contribute to membrane shaping and enable customized responses

for efficient repair (15, 16, 48, 49).

Understanding membrane repair mechanisms opens novel

avenues to target these processes and develop novel potential

therapeutic strategies.
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4 Changes in the structure of the
cell membrane in response
to phenothiazines

Multiple studies support the notion that phenothiazines exert

therapeutic effects by modulating membrane function (72, 73).

Derivatives of phenothiazine have demonstrated the ability to

induce a range of alterations in the structure of cell membranes

through molecular interactions with lipid bilayers in cancer cells (25).

In this context, we have investigated the impact of various well-

known phenothiazines on the plasma membrane of cancer cells and

their ability to inhibit repair upon membrane damage (Table 1).
4.1 Trifluoperazine (TFP)

TFP has been shown to induce lysosomal membrane

permeabilization (69) and conformational alterations in membrane

organization, caused by a reorganization of the surrounding lipids (74).

Moreover, TFP offers great potential as an inhibitor of plasma

membrane repair that sensitizes cancer cells to plasma membrane

damage (23). The findings of our study demonstrate that TFP

intercalation in the plasma membrane induces membrane thinning

and sensitizes cells to membrane injury and cell death. Moreover,

the cationic properties of TFP compromise ANXA2 binding to the

membrane, delaying the recruitment of ANXA proteins and

weakening their attachment to the membrane. This further

reduces their ability to induce ANXA4 and ANXA6-mediated

membrane curvature around the damaged areas of the membrane

(49, 75). This cascade of events initiated by TFP compromises the

overall membrane repair response, leaving ruptures unrepaired and

sensitizing cells to potential spontaneous injury and death (23).

Other in vitro experiments have shown that TFP induces cell cycle

arrest and apoptosis in different cancer cell lines, including triple-

negative breast cancer (TNBC) and brain metastases (70). Both in vitro

and in vivo xenograft models demonstrated TFP binding to calmodulin

(CaM), inhibiting glioblastoma proliferation and invasion by targeting

Ca2+ signals (76). This interaction may have a significant impact on the

inositol 1,4,5-triphosphate receptor (IP3R), a Ca2+ release channel

located in intracellular Ca2+ stores, and IP3R-mediated Ca2+ release

(24, 77, 78). Moreover, TFP has demonstrated the ability to enhance

the radiosensitivity of glioblastoma multiforme (GBM), resulting in

increased tumor cell mortality and extended survival (71). These

findings highlight the potential of TFP as an anticancer agent with

the ability to sensitize cancer cells to plasma membrane damage and

target Ca2+ signals in glioblastoma, offering new possibilities for

therapeutic interventions in cancer treatment.
4.2 Prochlorperazine (PCZ)

PCZ, as primarly an antipsychotic and antiemetic medication,

shows promise in cancer therapy by targeting specific cancer-

related molecules, including KRAS mutants. PCZ binds to KRAS
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mutants’ GTP-binding sites, inhibiting their continuous activation.

Additionally, the combination of PCZ and irradiation treatment

synergistically increases the radiosensitivity of xenografted mice by

downregulating the Ras/Raf/MEK/ERK signaling pathway and

reducing the clonogenic survival of KRAS-mutant NSCLC. This

combination treatment activates p-ATM, p53, and p21 proteins,

leading to cell cycle arrest (59). PCZ also modulates plasma

membrane P2X7 receptors, leading to the inhibition of P2X7-

mediated Ca2+ entry, and potential impacts on cellular processes

such as proliferation and apoptosis (57). PCZ disrupts the structural

organization between lipids and proteins in microsomal

membranes, thereby altering the activity and regulation of

integral membrane proteins (79). Moreover, studies have shown

that PCZ can reversibly inhibit the in vivo endocytosis of membrane

proteins (58).
4.3 Chlorpromazine (CPZ)

CPZ is known for its evident interactions with biological

membranes. It accumulates in membranes and modulates their

permeability and fluidity, contributing to the biochemical and

pharmacological effects of phenothiazines (73, 80). As an

antipsychotic drug, CPZ antagonizes the CNS dopamine D2

receptor (DRD2) and reduces the postsynaptic effect of dopamine

(81). CPZ has also demonstrated potential as an anticancer agent

through interactions with key cancer-related proteins, including

p53, YAP, Ras protein, ion channels, and MAPKs, influencing cell

cycle regulation, cancer growth, metastasis, resistance to

chemotherapy, and stemness (50, 82). CPZ has shown a

suppression of cell growth in chemoresistant glioma cells and

glioma stem cells. In terms of its mechanism of action, CPZ

inhibited the activity of cytochrome c oxidase (CcO, complex IV)

in chemoresistant cells while leaving chemosensitive cells

unaffected, and it had no impact on other mitochondrial

complexes (51). CPZ also disrupts Ca2+ signaling, raising

intracellular Ca2+, altering Ca2+ homeostasis, and causing

cytotoxicity in glioblastoma cells (83, 84). Furthermore, CPZ

induces endoplasmic reticulum (ER) stress and unfolded protein

response (UPR), influencing cell fate through autophagy (50). The

interaction between CPZ and negatively charged phospholipids has

demonstrated a reduction of the link between oncogenic K-Ras and

the plasma membrane, hence causing an increase in the cytosolic

pool of K-Ras, followed by cell cycle arrest and apoptosis in cancer

cells (53, 54).
4.4 Promethazine (PMTZ)

PMTZ, as an initial-generation antihistamine, antipsychotic,

sedative, and antiemetic drug, has shown a wide range of effects on

several cancer types. PMTZ induces cell death in leukemia by

activating AMPK and inhibiting the PI3K/AKT/mTOR pathway,

leading to autophagy-associated apoptosis (60, 61). In chronic

myeloid leukemia (CML), increasing concentrations of PMTZ have

been associated with early phosphatidylserine externalization,
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followed by subsequent plasma membrane permeabilization (60). In

colorectal cancer (CRC), PMTZ not only suppresses the proliferation

of cancer cells but also initiates mitochondrial apoptosis through the

PI3K/AKT pathway (61). Additionally, research has illuminated
Frontiers in Oncology 05
PMTZ’s capacity to induce autophagy in pancreatic ductal

adenocarcinoma (PDAC), where it functions as an antagonist of

proliferation (62). Furthermore, PMTZ has demonstrated a potent

inhibitory impact on the proliferation of both human and murine
TABLE 1 Phenothiazines effecting cell membrane integrity and their respective anti-tumor activities.

Phenothiazines Anti- tumor activity Cancer
Types

Effects on Membrane
Integrity

In Vivo/Vitro Efficacy

Chlorpromazine Induces cytotoxic autophagy in
glioblastoma cells via ER stress and the
unfolded protein response, causes mitotic
arrest through KSP/Eg5 inhibition (50),
affects CcO, complex IV in chemo
resistant cells in GBM (51).

Leukemia
(52), GBM
(51), EC
(53)

Reduces the association of K-Ras
with the plasma membrane and
increases its exchange between
membrane and cytoplasmic pools
leading to apoptosis (54).

In vitro: CPZ suppresses in vitro wound
healing of PANC-1 GFP-K-Ras (G12V) cells
and inhibits colony formation in soft agar
(54).
In vivo: cell-cycle arrest at the G2/M phase
in rat C6 glioma cells, selectively inhibits
growth and proliferation of chemo resistant
glioma cells expressing COX4-1 (51).

Fluphenazine Inhibits sphingomyelinase and causes
cellular sphingomyelin accumulation (55),
targets the Akt and Wnt signaling,
induces DNA alterations and affects
migration (8, 36, 56).

liver (36),
oral and
ovarian
cancer (36),
LC (8, 56),
TNBC (56).

Alters membrane integrity by
perturbing lipid bilayer structure
and affecting membrane
dynamics (23). Potentially, affects
membrane repair processes (36).

In vitro: Induced G0/G1 cell cycle arrest and
mitochondria mediated intrinsic apoptosis
(8).
In vivo: induced cancer cell apoptosis in a
TNBC subcutaneous xenograft mouse model
(56).

Prochlorperazine Inhibits the P2X7 receptor on plasma
membrane (57), enhance the efficacy of
anti-tumor mAbs (58), Blocks D2
dopamine receptors (57).

TNBC (58),
LC (59)
GBM (57).

Calcium channel blockade (57),
disrupts the structural
organization between lipids and
proteins in microsomal
membranes (59).

In vitro: PCZ exhibits a synergistic effect on
cancer cell death, both in vitro and in
xenograft models, and improves the overall
survival of mice (59).
In vivo: alters EGFR distribution, reversibly
inhibit the endocytosis of membrane
proteins targeted by therapeutic monoclonal
antibodies (58).

Promethazine Initiating of autophagy-associated
apoptosis through AMPK activation and
PI3K/AKT/mTOR inhibition (60),
promotes apoptosis by suppressing the
PI3K/AKT signaling pathway (61),
hinders proliferation and induces
autophagy by increasing LC3II and p62
levels in cancer cell lines (62).

CML (60),
CRC (61),
SCLC (63),
PDAC (62).

Indicates an early
phosphatidylserine
externalization followed by later
plasma membrane
permeabilization (60).

In vitro: Exhibits potent and specific
cytotoxicity against various leukemia cell
types through the activation of AMPK and
the inhibition of the PI3K/AKT/mTOR
pathway (60), impedes cell proliferation and
triggers autophagy by elevating the levels of
LC3II and p62 in human pancreatic ductal
adenocarcinoma (PDAC) cell lines (62).
In vivo: Reduces the growth of both mouse
and human SCLC by inducing cell death
(63).

Thioridazine Induces eryptosis (64), targeting and
inhibiting the PI3K/Akt/mTOR/p70S6K
signaling pathway, leading to cell cycle
arrest, apoptosis, and cytotoxic effects (65,
66), modulates endothelial cells and
impedes angiogenesis via the VEGFR-2/
PI3K/mTOR pathway, triggers autophagy
by upregulating AMPK activity (67).

TNBC (65),
cervical and
endometrial
cancer (34),
OC (35),
GBM (67)

Membrane permeabilization (66);
triggering of cell membrane
scrambling with increase of
phosphatidylserine abundance at
the cell surface, Thioridazine is
partially effective by activation of
p38 kinase and by increase of
cytosolic Ca2+ concentration (64).

In vitro: induces autophagy in glioblastoma
multiforme (GBM) cell lines and upregulates
AMPK activity (67), inhibited the viability
and migration of TNBC cells (65).
In vivo: Strong antiproliferative effects on
B16 melanoma cells, inducing DNA
fragmentation and increasing the expression
of Caspase-3, a key mediator of apoptosis
(68), TZ reduces growth and angiogenesis in
ovarian cancer by reducing the
phosphorylation of VEGFR-2 and inhibiting
PI3K/mTOR signaling in xenografts (35).

Trifluoperazine Disrupts ANXA-mediated plasma
membrane repair (23), induces G0/G1
cell cycle arrest and inhibit proliferation
and apoptosis of tumor cells (69),
suppress tumor cell growth (70, 71).

Metastatic
melanoma
(69), TNBC
(70), GBM
(71)

disrupts ANXA-mediated plasma
membrane repair (23), reduces
plasma membrane fluidity by
intercalating into the lipid
bilayer, thins the membrane
bilayer and making it more
fragile (23, 69).

In vitro: Induced G0/G1 cell cycle arrest via
decreasing the expression of both cyclinD1/
CDK4 and cyclin E/CDK2 in TNBC (70),
decreased cell viability and proliferation,
colony formation and spheroid growth on
metastatic melanoma (69).
In vivo: Increased the radiosensitivity of
GBM, resulting in increased tumor cell
death and prolonged animal survival (71),
cytotoxic effects on melanoma brain
metastases (69)
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small cell lung cancer (SCLC). Its ability to inhibit the growth of

human H82 SCLC xenografts demonstrates its potential as a diverse

and effective anticancer treatment (63).
4.5 Thioridazine (TZ)

TZ shows promise as a multifaceted anticancer agent with the

ability to induce apoptosis, inhibit tumor growth, modulate

angiogenesis, and target key signaling pathways involved in

cancer progression. Earlier studies have demonstrated that TZ

triggers eryptosis, the programmed death of red blood cells. This

process is marked by disruption of the cell membrane, resulting in

heightened binding of Annexin V to red blood cells situated on the

cell surface, along with an elevation in cytosolic Ca2+ concentration

and the activating p38 kinase (64). TZ exhibited inhibitory effects

on TNBC cells, both in vitro and in vivo, by targeting the PI3K/AKT

signaling pathway, resulting in G0/G1 cell cycle arrest, apoptosis,

and mitochondrial dysfunction. This led to tumor growth

suppression and the prevention of lung metastasis in TNBC

models (65). TZ possesses the capability to suppress the PI3K/

Akt/mTOR/p70S6K signaling pathway and exhibits cytotoxic

effects on cervical and endometrial cancer cells through the

induction of cell cycle arrest and apoptosis (34, 66). Moreover,

TZ was found to disrupt signaling pathways downstream of PI3K,

including Akt, PDK1, and mTOR, in ovarian tumor progression via

vascular endothelial growth factor receptor 2 (VEGFR-2). This

suggests that TZ can modulate endothelial cell function and

inhibit angiogenesis through the VEGFR-2/PI3K/mTOR pathway,

making it a potential anti-angiogenic agent in ovarian cancer (OC)

treatment (35). Furthermore, TZ induces autophagy in GBM cell

lines and upregulates AMPK activity (67). TZ has shown a strong

antiproliferative effect on melanoma by inducing DNA

fragmentation and increasing the expression of caspase-3 (68).

These findings highlight the potential of TZ as a therapeutic

agent against cancer.
4.6 Fluphenazine

Fluphenazine shows promising potential as a repurposed drug

for cancer treatment, effectively reducing the viability of various

types of cancers such as lung, TNBC, colon, liver, brain, leukemia,

oral, ovarian, and skin (36). Fluphenazine shows anticancer

properties, and its antitumor activity is mainly mediated by an

effect on the cell cycle, proliferation, or apoptosis. This effect is

partly mediated by the inhibition of the lysosomal enzyme

sphingomyelinase which leads to increased cellular levels of

sphingomyelin (55). It should also be noted that this mechanism

differs from other known lysosomal-disrupting agents (85, 86).

Furthermore, fluphenazine’s interaction with dipalmitoyl

phosphatidylcholine (DPPC) bilayers, the main component of

pulmonary surfactants, leads to the disruption of the lipid bilayer

and the formation of an isotropic phase at higher concentrations.

These interactions contribute to its multidrug-resistant (MDR)
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activity, which offers a potential strategy for cancer

chemoprevention (87). In the context of TNBC and brain

metastases, fluphenazine hydrochloride (Flu) was investigated. Flu

effectively inhibited the survival of metastatic TNBC cells, inducing

arrest of the G0/G1 cell cycle and mitochondrial-mediated intrinsic

apoptosis in vitro. Pharmacokinetic studies in mice demonstrated

favorable brain bioavailability of Flu for at least 24 hours. In

particular, Flu exhibited strong antimetastatic effects in a mouse

model of brain metastasis, achieving an impressive 85% inhibition

rate. Furthermore, Flu showed a significant inhibition of

spontaneous lung metastasis without severe side effects (56).

These promising findings urge further research to evaluate Flu’s

potential as a treatment option for metastatic TNBC and address

the urgent need for novel therapeutic approaches.
5 Conclusions and prospects

Repurposing drugs offers innovative solutions that can exceed

standard cancer treatments in effectiveness and safety.

Phenothiazines show promise against drug resistance and cancer

due to their unique properties, including hydrophobicity and

specific structure (2, 6, 26). They exhibit diverse effects on cancer

cells, including inhibiting proliferation, disrupting cell cycles,

preventing metastasis, inducing apoptosis, and enhancing

chemotherapy sensitivity (61, 65, 70, 82).

Maintaining cell membrane integrity is vital for survival. Cancer

cells, much like normal cells, reprogram themselves to repair

damaged membranes and avoid apoptosis (38). Phenothiazines

are gaining scientific attention for their impact on membrane

dynamics. They interact with the lipid bilayer and profoundly

disturb the biophysical properties of cell membranes, such as

fluidity and lipid organization, affecting downstream signal

transduction and ion channel activity (20, 37). These compounds

also inhibit annexin-mediated plasma membrane repair, which

induces membrane thinning and reduces annexin-mediated

membrane curvature (23). Disturbances in membrane repair

machinery sensitize cells to membrane ruptures, ultimately

triggering a cascade of cellular responses that culminate in cell

death (15, 23, 39, 49). In addition, they may influence Ca2+

regulation by modifying the activation of Ca2+ receptors such as

PMCA and IP3R, hence influencing downstream signaling cascades

(24, 83, 84). Furthermore, phenothiazines suppress the PI3K/AKT

(7, 34, 61, 65) pathway and interfere with critical cancer-related

proteins like K-RAS (54), directing cellular outcomes toward cycle

arrest, apoptosis, and reduced proliferation and survival. Their

involvement in disturbing membrane permeability and

sphingomyelin accumulation provides insights into the complex

mechanisms driving cytotoxicity (21, 55, 86, 87).

The anticancer properties of phenothiazines may vary depending

on their dosage, since it has been shown that clinically significant

levels (~ 1-2 µM) might promote tumor growth (88, 89). However,

the membrane-compromising actions of phenothiazines seem to

need greater concentrations (~ 7-15 µM) (23). Consequently, the

use of higher dosages may elevate the risk of potential side effects,
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particularly when taken in combination with chemotherapeutic

agents. The inconsistent findings regarding these antipsychotic

drugs in cancer cells underscore their concentration-dependent

characteristics. The role of phenothiazines in cancer treatment may

not only vary in relation to concentration but also in accordance with

the cancer type. Hence, it is important to evaluate both aspects, when

assessing the therapeutic potential of phenothiazines.

In summary, the multifaceted effects of phenothiazines on

cellular membranes present significant potential for their

repurposing in cancer therapy. Their ability to disrupt membrane

integrity, inhibit repair processes, and modify critical cellular

pathways positions them as intriguing options for the targeted

therapy of cancer. A comprehensive understanding of their

interaction with membrane dynamics introduces a fresh

perspective for developing innovative therapeutic approaches to

combat cancer and address various pathological conditions.
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