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Anti-inflammatory effect of
dental pulp stem cells
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and Yan He*

Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science
and Technology, Wuhan, China
Dental pulp stem cells (DPSCs) have received a lot of attention as a regenerative

medicine tool with strong immunomodulatory capabilities. The excessive

inflammatory response involves a variety of immune cells, cytokines, and has a

considerable impact on tissue regeneration. The use of DPSCs for controlling

inflammation for the purpose of treating inflammation-related diseases and

autoimmune disorders such as supraspinal nerve inflammation, inflammation

of the pulmonary airways, systemic lupus erythematosus, and diabetes mellitus is

likely to be safer and more regenerative than traditional medicines. The

mechanism of the anti-inflammatory and immunomodulatory effects of DPSCs

is relatively complex, and it may be that they themselves or some of the

substances they secrete regulate a variety of immune cells through

inflammatory immune-related signaling pathways. Most of the current studies

are still at the laboratory cellular level and animal model level, and it is believed

that through the efforts of more researchers, DPSCs/SHED are expected to be

transformed into excellent drugs for the clinical treatment of related diseases.
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1 Introduction

Adult dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous

teeth (SHED) are self-renewing mesenchymal stem cells (MSCs) present in the perivascular

area of the dental pulp (1, 2). DPSCs can typically be obtained from pulp tissue of blocked

wisdom teeth, orthodontic decimated teeth (3). SHED can be extracted from pulp tissue of

deciduous milk teeth of children aged 6-12 years (2). These cells are generally believed to

originate from the cranial neural crest and can express early markers of bone marrow

mesenchymal stem cells and neural ectodermal stem cells (4). These cells have grown in

significance in the field of regenerative medicine due to their capacity for self-renewal,

flexibility, high proliferation, and other potentials (5). Similar to bone marrow mesenchymal

stem cells, they are able to differentiate into dentin-forming cells, osteoblasts, chondrocytes,

adipocytes, endothelial cells, and neurons in vitro under specific conditions (6). (Figure 1)

More importantly, they can modulate a variety of immune cells such as T lymphocytes and B

lymphocytes, dendritic cells (DCs) and natural killer (NK) cells, thus becoming effective
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immunomodulators that inhibit pro-inflammatory processes and

stimulate anti-inflammatory mechanisms (7, 8).

Inflammation is the first response that occurs after an injury or

infection and is an immune defense process of the body (9). If the

inflammatory process continues for too long, an excessive number of

activated cells are drawn to the site of the damage and release an

excessive amount of enzymes, chemokines, etc., which is harmful to

tissue repair and promotes further deterioration (7). Early

inflammatory response management may be essential for regeneration.

The innate immune system is associated with the resolution of

inflammation, and the adaptive immune system also contributes

significantly to this process. The expression of several proteins and

cytokines, the recruitment of numerous immune cells at various

times and in varying numbers, and various signaling pathways all

play major roles in the regulation of the regenerative process (10,

11). Excessive inflammation can develop in a variety of conditions,

including supraspinal nerve inflammation, neonatal hypoxia-

ischemia, pulmonary airway inflammation, systemic lupus

erythematosus, and diabetes (8, 12). Controlling and eliminating

inflammation and modulating immunity will help regeneration and

contribute to the treatment of these diseases (Figure 2).

Clinical practice today favors oral or local injections of

medications like nonsteroidal anti-inflammatory medicines,

corticosteroids, etc. to treat disorders associated to inflammation

(13). To achieve anti-inflammatory effects in a short period of time
Frontiers in Immunology 02
and to be applied to most types of inflammation, glucocorticoids are

used in clinical practice (14). Glucocorticoids have a rapid,

powerful, non-specific anti-inflammatory effect and are effective

in a wide range of inflammatory conditions. However, all kinds of

drugs have their limitations, and the side effects of drugs may make

the benefits outweigh the disadvantages (9, 15). For example, long-

term use of glucocorticoids can reduce the body’s resistance to

pathogenic microorganisms, induce or aggravate infections, induce

ulcers, aggravate mental illness, and cause osteoporosis, muscle

atrophy, and delayed wound healing (15, 16).

In comparison to traditional MSCs, DPSCs are more proliferative,

anti-inflammatory, and anti-fibrotic (17, 18). Proteomics was

employed by Bousnaki et al. to examine the anti-inflammatory

potential of the secretome of DPSCs under various settings, and they

came to the conclusion that DPSCs are a promising therapeutic tool for

the treatment of inflammatory illnesses (19). DPSCs may be as effective

as glucocorticoids for a variety of inflammatory conditions, but are

safer and more favorable to regeneration (20, 21).

Currently, more studies are focusing on the anti-inflammatory

and immunomodulatory roles of DPSCs (22). In this review, we will

discuss the current research progress on the anti-inflammatory

effects of DPSCs in various organ- and tissue-related diseases, as

well as the understanding of the related anti-inflammatory

mechanisms and immunomodulatory functions, which will help

the future clinical application of DPSCs.
FIGURE 1

DPSCs can typically be obtained from pulp tissue of blocked wisdom teeth or orthodontic decimated teeth. Under particular circumstances, DPSCs
can differentiate in vitro into dentinogenic cells, osteoblasts, chondrocytes, adipocytes, endothelial cells, neurons, etc.
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2 Effects of DPSCs on nerve-
associated inflammatory diseases

Peripheral nerve injury (PNI) can cause acute or chronic

neuropathic pain. Neuropathic pain, characterized by sensory and

emotional disturbances, is also known as a neuroimmune disorder

and is the result of the interaction between neurons and

inflammatory mediators of immune cell/immune cell origin,

particularly chemokines and cytokines, as well as histamine,

adenosine triphosphate and prostaglandins (23, 24). PNI induces

the release of certain inflammatory mediators at the site of injury,

in the dorsal root ganglion, and in spinal cord receptor segments,

and also induces the release of inflammatory mediators in the

brain, causing supraspinal nerve inflammation (25). Chronic

inflammation also activates microglia, with elevated reactive

oxygen species and Nuclear Factor-k-gene Binding (NF-kB)
activity and dysregulated homeostasis, accompanied by the release

of pro-inflammatory cytokines, leading to neurodegeneration and

altered synaptic transmission (26). In a study, researchers evaluated

the alleviating effects of DPSCs and neuronal differentiated DPSCs

on PNI-induced neuro-inflammation in a rat model of sciatic nerve

damage (12). Microglia that had been activated by sciatic nerve

injury produced more reactive oxygen species, which increased

downstream NF-kB activation and started the transcription of pro-

inflammatory cytokines by nuclear translocation. The expression of

pAMPK and SIRT1 was decreased, and the pro-inflammatory

responses were amplified while anti-inflammatory components

were downregulated. By migrating to the site of injury and

starting immune and anti-inflammatory effects, decreasing

microglia activation, down-regulate pro-inflammatory markers,

and up-regulate pAMPK/SIRT1, DPSCs may effectively balance
Frontiers in Immunology 03
the inflammation of the supraspinal nerve caused by PNI as well as

alleviate pain and promote rapid regeneration (27–29).

Besides PNI, the central nervous system injury is also worthy of

attention. Spinal cord injury (SCI) is a traumatic disease of the central

nervous system in which a series of cellular responses, such as

inflammation and apoptosis, occur near the site of injury due to

increased release of biomolecules such as interleukin (IL)-6 and tumor

necrosis factor (TNF)-a, as well as some other cytokines (30–32).

Albashari et al. focused their attention on DPSCs when investigating

treatments for SCI. Their work, in which Pluronic F-127, a biosynthetic

hydrogel, was mixed with DPSCs and basic fibroblast growth factor

and applied at the site of SCI, showed that it not only promoted tissue

regeneration at the site of injury, but also contributed to the recovery of

sensory and motor functions, which is inextricably linked to the low

inflammatory microenvironment provided by DPSCs (33). DPSCs

express IL-6, IL-8, and TGFb via the Toll-like receptor (TLR) during

the neural inflammation phase in treating central nerve diseases (34).

Expression of IL-8 is increased in DPSCs in spinal cord injury, and IL-8

is associated with maintenance of neuronal cell integrity and reduction

of injury (35). DPSCs modulate the immune response after nerve

injury by increasing the release rate of anti-inflammatory factors IL-10

and transforming growth factor (TGF)-b and decreasing the release

rate of pro-inflammatory factors IL-6 and TNF-a (36). The NF-kB
pathway plays a key role in pro-inflammatory factor-induced neuronal

cell inflammation and a central role in pro-inflammatory factor-

induced apoptosis (37). At acute SCI stage, pro-inflammatory factors

and NF-kB signaling pathways are activated, causing severe neuro-

inflammation, and microglia are active and act as immune cells in

direct contact with nerve cells (38, 39). DPSCs attenuate the

inflammation of SCI by decreasing NF-kB expression. It is possible

to treat SCI with tropical use of DPSCs by reducing inflammation.
FIGURE 2

The treatment of diseases of various tissues/organs by anti-inflammatory effects of DPSCs and DPSCs-EXOs and DPSCs-CM. DPSCs, dental pulp stem cells;
CM, conditioned medium; EXOs, exosomes; PNI, peripheral nerve injury; SCI, Spinal cord injury; TBI, traumatic brain injury; CIR, cerebral ischemia-
reperfusion; NHI, neonatal hypoxia-ischemia; HD, Huntington’s disease; AD, Alzheimer’s disease, IBD, inflammatory bowel disease; MI, myocardial infarction;
ALI, acute lung injury; COPD, Chronic Obstructive Pulmonary Disease; AAI, allergic airway inflammation; SLE, systemic lupus erythematosus; ALF, acute liver
failure; LF, liver fibrosis; SS, Sjogren’s syndrome; TMJOA, temporomandibular joint osteoarthritis; RA, rheumatoid arthritis.
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Similar to SCI, traumatic brain injury is a trauma-induced disease

of the central nervous system. It is caused by an external mechanical

force striking the skull and causing intracranial damage to neurons,

axons, glial cells, and blood vessels. Next, the blood-brain barrier is

disrupted, which causes neuro-inflammation, oxidative stress, and

excitotoxicity, which causes additional neuronal damage, primarily at

the site of the injury and nearby tissues (40). And in the long term this

secondary damage may even cause lesions in areas of the brain far

from the site of injury or may be referred to as a neuro-degeneration

(41). When traumatic brain injury occurs, to protect the site of injury

from pathogens, an endogenous inflammatory response is activated

and proliferating immune cells secrete various chemokines, pro-

inflammatory cytokines such as TNF-a, IL-1b, IL-6, and IL-12, and

other inflammatory mediators (42). Due to the immunomodulatory

properties of MSCs, which can effectively suppress neuro-

inflammation, it has been shown that stereotactic or intravenous

administration of MSCs can reduce the levels of various pro-

inflammatory cytokines, such as IL-1b, IL-6, IL-17, interferon
(IFN)-g or TNF-a, in the serum and brain after brain injury (43,

44). Its powerful anti-inflammatory effect inhibits the NF-kB
signaling pathway, which facilitates the treatment of secondary

brain injury (43). Importantly, investigators found that MSCs

significantly altered blood-brain barrier function by decreasing

endothelial permeability, increasing VE-cadherin expression and

VE-cadherin/b-catenin interaction, which may be a doorway to

break through multiple neurological diseases (45). DPSCs are

derived from neural crest cells, which can induce apoptosis of

activated T cells in vitro and modulate immune responses, and the

application of DPSCs to resist neuro-inflammation is promising for

the treatment of traumatic brain injury (43).

In addition to traumatic brain injury and SCI, many diseases of

the central nervous system: Huntington’s disease (HD), Alzheimer’s

disease, Parkinson’s disease, neuro-inflammatory multiple sclerosis,

etc., are characterized by varying degrees of inappropriate

inflammatory/immune responses and tissue destruction (8, 46).

Among them, HD is a progressive neurodegenerative disease that

can be fatal with autosomal dominant inheritance. The current

consensus is that striatal degeneration due to chromosomal

abnormalities leads to lateral ventricular effusion, and the main

case is characterized by neuronal loss and neuro-inflammation

within the striatum and cortex, resulting in a range of motor and

cognitive symptoms (47). In the clinic, HD can be diagnosed, but

there is no very clear treatment for this disease. Some scholars have

then focused on the possibility of MSCs treatment for it. In a prior

study, Eskandari et al. used transplanted DPSCs to treat a 3-

nitropropionic acid rat model of HD. These cells were placed in

the mid-posterior region of the rat striatum and were able to survive

and treat motor dysfunction (48). DPSCs treatment inhibited gliosis

and microgliosis in the striatum and reduced the expression of

inflammatory cytokines at the mRNA level. This action of DPSCs is

caused in part by their capacity to release neurotrophic substances,

to reduce apoptosis, and to suppress the expression of inflammatory

cytokines (4, 49). Treatment based on DPSCs seems to provide

effective treatment for HD and other neurodegenerative diseases,

and although this treatment has not yet been translated clinically, it

is well worth looking forward to (50).
Frontiers in Immunology 04
There is growing evidence that inflammatory processes are

involved in the pathogenesis of diabetic neuropathy, which can occur

in various parts of the peripheral and central nervous system (51, 52).

Diabetes is considered to be a chronic low-grade inflammatory disease,

manifested primarily by the transduction of various inflammatory

signals and the release of molecular products that generate and

maintain neurological inflammation through the activation of

mononuclear phagocytes, including resident microglia and blood-

derived macrophages (53, 54). Omi et al. discovered that injection of

skeletal muscle DPSCs significantly decreased the number of sciatic

nervemacrophages in diabetic rats while increasing the gene expression

of M2 macrophages and decreasing that of M1 macrophages. This

resulted in the treatment of diabetes-induced sciatic nerve

inflammation, an improvement in the conduction velocity and blood

flow of the sciatic nerve, and an increase in intraepidermal nerve fiber

density (55). In conclusion, the anti-inflammatory effect of DPSCs by

modulating the ratio of M1/M2 macrophages may be an effective

treatment for diabetic polyneuropathy.

Based on the anti-inflammatory effects of DPSCs in neuro-

inflammation above through multiple pathways, these chronic

diseases causing neuro-inflammation may consider the application

of DPSCs, not necessarily as the only treatment, but as an adjuvant or

collaborative way to combat such diseases by counteracting

inflammation, achieving relief of disease symptoms and relieving

chronic pain.

Neonatal hypoxia-ischemia (NHI), also known as neonatal

hypoxic-ischemic encephalopathy, can lead directly to neonatal

death (56). Even if they live, some neonates may have one or more

neuropsychiatric conditions, such as cerebral palsy, mental

retardation, or learning difficulties (57). When the fetal blood-brain

barrier is not fully developed, if intrauterine infection occurs,

inflammatory cells and toxins will cross the barrier and enter the

brain tissue, which will not only cause inflammation in the

endothelial tissue of the brain, but also stimulate the production of

inflammatory cytokines such as IL-1b, IL-6 and TNF-a, thus
aggravating the condition of hypoxic-ischemic encephalopathy (58).

Existing treatment modalities can partially improve the neurological

deficits of NHI, but there is no effective clinical treatment for this

devastating disease. Chiu et al. used human DPSCs to treat a hypoxia-

ischemia model in rats and found that DPSCs in NHI decreased the

expression of pro-inflammatory factors (IL-1b, IL-6, TNF-a, INF-g)
and increased the expression of anti-inflammatory factors (IL-10,

TGF-b) (57). This suggests that the anti-inflammatory effects of

DPSCs synergize with effects such as neuro-regeneration to

promote neuroplasticity and improve neurological outcome for a

desired improved prognosis (59, 60). DPSCs may provide a viable

strategy for restoring NHI-induced disability.
3 Effects of DPSCs on intestinal-
associated inflammatory diseases

Inflammatory bowel disease (IBD) is an umbrella term for Crohn’s

disease and ulcerative colitis, and is closely related to genetics, flora, and

immunity (61, 62). Pathogenic and benign commensal bacteria coexist

in the gastrointestinal environment, and the human immune system
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regulates intestinal inflammation and tolerance. When this balance is

upset, chronic inflammation and the development of unfavorable

innate and adaptive immune mechanisms occur, which then cause

IBD (63). Barrier disruption leads to altered intestinal flora, which leads

to abnormal activation of the mucosal immune system and is an

important factor in the development of IBD (64). Furthermore,

misregulated Th cell responses play a central role in the progression

of chronic inflammatory processes in the gut (65). It has been shown

that in the intestinal mucosa of healthy mice, CX3CR1+ macrophages

inhibit IL-17 production, express anti-inflammatory molecules such as

IL-10, and induce differentiation of Foxp3+ regulatory T (Treg) cells

(66). CD103+ DCs effectively induce Treg cells to suppress

inflammation by producing IL-10, TGF-b and retinoic acid in

intestinal inflammation (67). Elevated number of Th17 cells and

upregulation of IL-17 in mucosa of IBD patients compared to

normal mucosa (68).

Multiple researchers have used systemic infusion of DPSCs to

treat DSS-induced colitis in mice. DPSCs significantly decreased

inflammatory cell infiltration and downregulated inflammatory

cytokines in the colon, ameliorating colonic transmural

inflammation, which in turn resulted in a reduction in wall

thickness, an inhibition of epithelial ulceration, and the

restoration of normal intestinal architecture (69). In their study,

they also found that DPSCs’ ability to inhibit T-cell viability in vitro

was decreased when the transmembrane protein Fas ligand (FasL)

was knocked down. This could have prevented DPSCs from

inducing T-cell apoptosis, which would have reduced their ability

to improve the colitis phenotype. This finding suggests that FasL

may be necessary for DPSC-mediated immune regulation (69, 70).

The study by Földes et al. also focused on a DSS-induced mouse

model of colitis and used intravenous injections of human DPSCs to

study the effects on IBD (8). Their results showed that a single

intravenous injection of human DPSCs can beneficially modify the

development of acute colitis in vivo, confirming the protective role

of human DPSCs in experimental colitis. Different species sources

of DPSCs and different culture methods may lead to different

biological activities; exogenous and endogenous cytokine levels

and the timing of administration may also affect the efficacy of

DPSCs (71). For example, pre-stimulation with INF-g and TNF-a
significantly enhanced the protective effect of DPSCs against colitis

in mice (72, 73). In conclusion, DPSCs’ contribution to intestinal

inflammation should not be understated based on their

immunomodulatory and anti-inflammatory actions. Although the

mechanism needs to be clarified further, the outlook is

generally favorable.
4 Effects of DPSCs on lung-associated
inflammatory diseases

Acute lung injury (ALI) progresses to a severe stage called acute

respiratory distress syndrome (ARDS), characterized by a variety of

changes caused by lung injury, including increased pulmonary

capillary permeability, enhanced inflammatory cell infiltration,

and diffuse alveolar and interstitial edema (74). When paraquat

enters the human body, it causes ALI, which develops into ARDS.
Frontiers in Immunology 05
As the disease progresses, pulmonary edema and hemorrhage occur

along with the infiltration of inflammatory cells into the

interstitium and alveoli of the lungs, fibrosis, and eventually

respiratory failure, which results in death (75, 76).

Regulating and reducing inflammation is an extremely

important therapeutic strategy for ALI and ARDs due to paraquat

toxicity. Geng et al. focused on this problem with the idea of using

stem cells to act on this ALI-induced inflammation and subsequent

lung fibrosis, and their work concluded that DPSCs have more

potential as a treatment for ALI by comparing the anti-

inflammatory effects of umbilical cord mesenchymal stem cells

and DPSCs (77). Using hepatocyte growth factor (HGF), a

multifunctional cytokine that affects multiple pathophysiological

processes involved in inflammatory and immune responses,

modified DPSCs more significantly inhibit inflammatory

mediators, maintain alveolar structural integrity, and attenuate

interstitial hemorrhage and inflammatory cell infiltration in the

lung (77, 78). Supporting the repair of ALI by this means of

relieving inflammation also can achieve the goal of reducing

mortality due to paraquat toxicity.

Additionally, exposure to some allergens, such as dust, can

cause allergic airway inflammation, and eosinophil infiltration into

the lungs can result in lung inflammation. The work of Laing et al.

used egg yolk OVA to induce allergic lung inflammation in a mouse

model. OVA sensitization and subsequent aerosol stimulation

resulted in intense allergic airway inflammation with eosinophil

infiltration into the lungs. By injecting live/apoptotic DPSCs, the

number of inflammatory cells in the lung lavage fluid of mice

decreased, demonstrating that apoptotic DPSCs are effective in

controlling lung inflammation (79). Indeed, apoptotic cells and

apoptotic cell fragments are known to contribute to the adoption of

an immunosuppressive phenotype by antigen-presenting cells (80,

81). Injection of pre-killed DPSCs may be a more effective, clinically

simpler and safer alternative.

Chronic Obstructive Pulmonary Disease (COPD) encompasses

a wide range of diseases with common functional characteristics,

such as chronic bronchitis, chronic respiratory failure and

emphysema (82). Gao et al. used intratracheal injection to

transplant DPSCs into a mouse model of emphysema for a

therapeutic investigation on chronic obstructive pulmonary

disease. They discovered that DPSCs improved lung function and

emphysema-like changes in COPD by activating the Nrf2 signaling

pathway and decreased IL-1b, TNF-a, and IL-6 levels in lung tissue

and bronchoalveolar lavage fluid (83).

People will inevitably suffer from inflammation of the lungs and

airways due to environmental pollution, work factors, personal

habits and other factors. The long lasting chronic inflammatory

response leads to destruction of the alveolar wall and thinning of the

alveolar sac, which in turn causes breathing difficulties and reduced

lung function, such as COPD, bronchopulmonary dysplasia, ARDS,

asthma, pulmonary fibrosis and pulmonary hypertension (84, 85).

Exploring a safe and effective therapeutic strategy to reduce

inflammatory damage in the lung is a major topic to be addressed

in the field of lung disease research. MSCs suppress deleterious

immune responses and differentiate into alveolar epithelial type II

cells in vitro to suppress inflammation (86). As a type of MSCs,
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DPSCs modulating lung inflammation and related immune

functions are being noticed by more and more researchers, and

there is reason to believe that there will be more and more evidence

of the importance of the anti-inflammatory effects of DPSCs.
5 Effects of DPSCs on kidney-
associated inflammatory diseases

As a typically fatal autoimmune disease, nearly half of patients with

systemic lupus erythematosus develop complications of lupus nephritis

(87). Kidney injury occurs, immune complexes are deposited in

glomeruli, tubules, and microvessels, and clinically occult nephritis,

nephritis syndrome, and nephrotic syndrome occur. The existing

treatment methods mainly include immunosuppression,

glucocorticoids, dialysis treatment and kidney transplantation. Some

patients with lupus nephritis have no effect on both glucocorticoids and

immunosuppressants, and long-term use of immunosuppressants has

obvious toxic side effects, such as ovarian failure, secondary infection

and secondary malignancy (88, 89). The immunomodulatory effect of

MSCs can intervene and block the pathogenesis of this autoimmune

disease, and the therapeutic effect and prospect are more advantageous

than other diseases (90). In their study, Tang et al. treated mice with

lupus nephritis using DPSCs; the mice showed a reduction in IgG and

IgM deposition in the glomeruli, a significant decrease in the number of

CD4+ T cells that produce IFN-g, and a reduction in perivascular

inflammatory infiltrates (91). It has been shown that MSCs

transplantation in lupus nephritis alters the ratio of T cell subsets,

upregulates the proportion of Treg cells, downregulates IL-17 and

TGF-b, and increases Foxp3, thereby suppressing renal inflammation

and improving disease conditions (92). MSCs also exhibit inhibition of

secretion of multiple pro-inflammatory factors by B cells, as well as

suppression of dendritic cell development through secretion of IL-6

and prostaglandin E2 maturation, inhibit the proliferation and

activation of CD8+ T cells, and stimulate CD4+ T cells to produce

Th2 responses, upregulate Treg cells, and attenuate the inflammatory

response associated with lupus nephritis (93). It is believed that DPSCs

can play a role in the treatment of systemic lupus and lupus nephritis.
6 Effects of DPSCs on skin-associated
inflammatory diseases

Psoriasis is a chronic relapsing inflammatory skin disease that can

be complicated by metabolic syndrome, cardiovascular diseases (e.g.

myocardial infarction, stroke, hypertension) and other multisystem

diseases. Available studies suggest that it is a result of excessive

proliferation and abnormal differentiation of epidermal cells caused

by excessive activation of immune cells (94). Its causes and may be

related to genetic and environmental factors. Existing treatments are

mainly aimed at relieving symptoms and have mixed results, and are

not curative. A number of researchers have focused on the possibility

of stem cell therapy for psoriasis (95). Meng et al. investigated the

anti-inflammatory effects of DPSCs in a psoriasis-like mouse model

established by imiquimod cream application. They found that
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intravenous infusion of DPSCs significantly decreased psoriasis-like

pathological changes such inflammatory infiltration, epidermal

thickening, hyperkeratosis, and hyperkeratosis in the skin of mice,

and effectively improved the symptoms of psoriasis-like erythema,

scaling, and thickening in the mice’s dorsal skin (96). The

therapeutic effect of DPSCs on psoriasis was mainly achieved by

reducing the inflammatory response. DPSCs treatment significantly

downregulated T-bet (Th1 transcription factor) DPSCs treatment

significantly downregulated the expression levels of T-bet (Th1-

associated cytokine), IFN-g (Th1-associated cytokine), RORgt
(Th17 transcription factor), IL-17A, IL-17F and IL-23 (Th17-

associated cytokine), and upregulated the expression levels of

GATA3 (Th2 transcription factor), Foxp3 (Treg transcription

factor) and IL-10. The mechanisms associated with DPSCs for the

treatment of psoriasis lie in the down-regulation of Th1 and Th17 cell

activity, as well as the promotion of Treg cell differentiation and the

attenuation of the inflammatory response. HGF is mainly secreted by

mesenchymal cells and helps to reduce the inflammatory response

(97). The role of HGF was also verified by the work of Meng et al.

Overexpression of HGF enhanced the inhibitory effect of DPSCs on

Th1 and Th17 cell activity and the promotive effect of DPSCs on Treg

cell activity (96).
7 Anti-inflammatory role of DPSCs in
oral and other diseases

With their ease of access from teeth and better tissue repair/

regeneration potential, DPSCs have gained a unique position in the

field of regenerative dentistry (98). In the pulp tissue, the

inflammatory and regenerative reactions are closely linked.

Trauma or caries can trigger inflammation as well as regenerative

effects at the molecular, cellular or tissue level in the dentin-pulp

complex (99). As caries progresses and pulp structures become

involved, the organism begins by fighting infection through an

immune inflammatory response, followed by the recruitment of

DPSCs that form the dentin-pulp complex for regeneration of lost

portions of pulp structures including soft pulp tissue structures with

vascular and neural components (100). Smaller and relatively slow

injuries lead to dentin formation that compartmentalizes the injury

from the pulp, whereas larger and rapidly progressive injuries lead

to a more intense immune response in the pulp tissue, with clinical

manifestations of pulpitis that can progress to pulp necrosis up to

periapical periodontitis and alveolar bone inflammation (99).

Some current investigators have proposed that there are two

main types of DPSCs to combat oral-associated inflammation, one

relying on resident DPSCs in the pulp itself being stimulated, i.e.,

occurring during the process described above; the other can be

transplanted into the root canal by ex vivo cultured DPSCs alone or

in combination with appropriate scaffold material (101). When

inflammation occurs, resident DPSCs are thought to exhibit

opposing immunomodulatory and immunosuppressive effects at

multiple cellular levels, particularly on DCs, macrophages and

lymphocytes, reducing the amount of pro-inflammatory cytokines

while locally increasing the amount of anti-inflammatory
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biomolecules (102). Meanwhile, inflammation-associated cytokines

and growth factors significantly enhanced the proliferation,

recruitment, and differentiation of DPSCs, which provided

favorable conditions for further DPSCs to resist inflammation

(103). Controlled activation of the intracellular p38MAPK and

NF-KB signaling pathways in DPSCs during low-grade or short-

term inflammation stimulates pulp repair or regenerative responses

(104, 105). In the late stage of pulpal immunopathology, DPSCs

control the inflammatory process together with endothelial cells,

pulp fibroblasts, inflammatory cells from the peripheral circulation,

and chemoattractive inflammatory cells (106). In conclusion,

DPSCs directly or indirectly modulate the immune response to

the anti-inflammatory phase (107).

Neves et al. found an increase in DPSCs when overlayed with

Wnt agonist small molecules and an increase in macrophages near

Wnt-receiving cells, indirectly regulating the anti-inflammatory

state of macrophages from M1 to M2, with a possible molecular

interaction between these two cell types (108). This suggests that

Wnt/b-catenin signaling has a dual role in promoting restorative

dentin formation by activating DPSCs and promoting anti-

inflammatory macrophage responses, with a dual role in

promoting restorative dentin formation (109). Fyn is a member of

the protein tyrosine kinase family, whose overexpression is

associated with various types of inflammation. Fyn forms a

complex with Neuropilin-1, which inhibits adult dentin cell

differentiation and amplifies inflammatory responses through the

NF-kB signaling pathway. Fyn is involved in inflammatory and

autoimmune disease imbalance, Fyn expression is reduced during

adult dentin cell differentiation in DPSCs, where probably miR-

125a-3p plays an important role in regulating its signaling

pathway (110).

Periodontitis is a chronic inflammatory disease that leads to the

destruction of alveolar bone and eventually to tooth loss (111). In

genetically or environmentally susceptible individuals, periodontal

pathogens trigger an inflammatory immune response in which

activated macrophages secrete inflammatory cytokines and Th17

cells produce IL-17, NF-kB receptor activator ligand and TNF-a.
The use of DPSCs offers the possibility to simultaneously target the

inflammatory response to slow or stop its progression and to

promote the regeneration of periodontal structures (63). Severe

inflammation, progressive cartilage and bone destruction are typical

pathological changes in temporomandibular joint arthritis, which

makes treatment very difficult. Activation of immune cells and

elevated expression of multiple inflammatory factors are closely

associated with the development of inflammatory osteoarthritis

(112, 113). Cui et al. used intra-articular drug injections to mimic

the synovial inflammation and cartilage degradation of the

temporomandibular joint. They then injected DPSCs locally and

systemically, and discovered that local administration of the drug

was superior to systemic administration in terms of reducing the

progression of temporomandibular joint arthritis in rats by

modifying the local immune-inflammatory response and cartilage

matrix metabolism (114). Inhibition of the JAK-STAT1 pathway

effectively downregulates immune cell activation and provides a

target for DPSCs-based therapies (115). It was elaborated in their
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study that DPSCs effectively inhibit STAT1 pathway activation,

leading to the downregulation of MMP3 and MMP13 (114).
8 Therapeutic effects of exosomes
from DPSCs on inflammation
associated with various diseases

The therapeutic potential of adult stem cells is highly dependent on

the release of molecules and factors in the extracellular environment

(116). DPSCs secrete soluble factors (proteins, lipids and nucleic acids)

and extracellular vesicles through paracrine activity (117). Exosomes

(EXOs) are a type of extracellular vesicles and are the main form of

paracellular secretion. EXOs are small, double-layered, membranous

lipid vesicles containing a variety of contents such as proteins and

nucleic acids, with diameters ranging from 30 to 150 nm, involved in

intercellular communication, promoting tissue repair and regeneration

(118, 119). The morphology and structure of the EXOs that DPSCs

secrete are not substantially different from those of other cell sources,

and they maintain the same biological properties and functions as

DPSCs. However, DPSCs-EXOs have the advantage of being more

stable and easier to preserve than DPSCs (120).

Current studies suggest that the therapeutic effects of DPSCs are

mainly attributed to their release of paracrine factors (121). As one of

the most important paracrine mediators, DPSCs-derived EXOs show

therapeutic effects through immunomodulation (122). Pivoraitė et al.

injected SHED-EXOs intravenously into a mouse model of

carrageenan-induced inflammation and found that SHED inhibited

the activity of tissue proteinase B and matrix metalloproteinases at the

site of acute inflammation, demonstrating for the first time that DPSCs

can inhibit the carrageenan-induced acute inflammatory response in

mice (123). In studying the protective effects of DPSC- EXOs against

cerebral ischemia-reperfusion injury, Li et al. found that DPSC- EXOs

inhibited neuro-inflammatory responses in brain cerebral ischemia-

reperfusion mice by reducing the protein expression of IL-6, IL-1b and

TNF-a through the HMGB1/TLR4/MyD88/NF-kB pathway (124). In

another study, researchers established a periodontitis mouse model

followed by local injection of DPSC- EXOs. They demonstrated that in

mice with periodontitis, DPSC-EXOs conjugated chitosan hydrogel

promoted the transformation of periodontal macrophages from a pro-

inflammatory to an anti-inflammatory phenotype. The treatment also

reduced periodontal damage by immune response modulation and

suppression of periodontal inflammation, which sped up the healing of

alveolar bone and periodontal epithelium in periodontitis mice through

a mechanism that may be connected to miR-1246 in DPSC-

EXOs (125).

The application of DPSC-EXOs does not require the direct use

to cells, thus avoiding the limitations and risks associated with cell

transplantation. Although DPSC-EXOs may face some limitations

(heterogeneity, shortcomings of purification methods and tentative

insurmountable large-scale production capacity), they are not only

promising drugs, but may become effective vectors by engineering

treatments that will provide particular ideas for the treatment of

some diseases (15).
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9 Therapeutic effects of conditioned
media of DPSCs on inflammation
associated with various diseases

As mentioned above, the paracrine role of DPSCs can express

their therapeutic capacity to some extent. DPSCs secrete a large

number of nutritional and immunomodulatory factors (126).

Conditioned medium of DPSCs (DPSCs-CM) contain growth

factors, cytokines and other active substances that mimic the

regulatory effects of DPSCs on immunologically active cells.

Conditioned media from various stem cell types have been shown

to have considerable potential in the treatment of a variety of

refractory diseases (127).

Temporomandibular joint osteoarthritis is a degenerative joint

disease characterized by progressive cartilage degeneration, abnormal

bone remodeling, and chronic pain (128). When Ogasawara et al.

administered SHED-CM intravenously to mice in a model of

temporomandibular joint osteoarthritis brought on by mechanical

stress, they saw a decline in the number of chondrocytes expressing

IL-1b, iNOS, and MMP-13, a significant reduction in temporal

muscle inflammation, and a contribution to the regeneration and

repair of the mice’s osteoarthritis (129). Rheumatoid arthritis is an

autoimmune disease characterized by synovial hyperplasia and

chronic inflammation leading to progressive destruction of articular

cartilage and bone (130). The work of Ishikawa et al. by a single

intravenous injection of SHED-CM into a mouse model of anti-

collagen-type antibody-induced arthritis in rheumatoid arthritis-like

mice yielded results that SHED-CM has therapeutic anti-

inflammatory effects, ameliorating arthritic symptoms and

inhibiting tissue damage by shifting the pro-inflammatory synovial

environment to an anti-inflammatory synovial environment through

induction of M2 macrophage polarization (131). As mentioned

earlier, Alzheimer’s disease is a progressive neurodegenerative

disease characterized by cognitive decline and the presence of b-
amyloid plaques in the brain. The disease occurs when activated

microglia release various neurotoxic factors, including pro-

inflammatory cytokines (132). In a study conducted on a mouse

model of Alzheimer’s disease, Mita et al. used SHED-CM and

discovered that it reduced the pro-inflammatory response brought

on by b-amyloid plaques and changed the pro-inflammatory M1-

type microglia microenvironment into an M2-type anti-

inflammatory/neuro-protective microenvironment (133). As was

previously mentioned, anti-inflammation may be a crucial

component of PNI treatment. The study by Fumiya Kano et al.

demonstrated that SHED-CM is a crucial component of PNI

treatment through monocyte chemoattractant protein-1 and the

secreted ectodomain of sialic acid-binding Ig-like lectin-9. This

allowed for the induction of tissue-repairing M2 macrophages and

the promotion of facial nerve function recovery in rats following

injury, confirming that the anti-inflammatory effect of SHEDs can

have a therapeutic effect on severe PNI (134). Similarly, severe

inflammation impedes functional recovery after SCI. Matsubara

et al. injected SHED-CM intrathecally into the injured spinal cord

of a rat model during the acute period of SCI and found that SHED-
Frontiers in Immunology 08
CM induced immunomodulatory activity of anti-inflammatory M2-

like macrophages, thereby promoting axonal growth, peripheral

neural tissue angiogenesis, schwann migration, proliferation and

activation, and neuronal survival, leading to significant functional

recovery, similar to the effect of direct SHEDs transplantation (135).

Acute liver failure occurs with massive hepatocellular destruction and

an intense inflammatory response (136). In a study by Matsushita

et al., SHEDS or SHED-CM were intravenously injected into ALF rat

models. The results showed attenuation of the pro-inflammatory

response and induction of anti-inflammatory M2-like hepatic

macrophages, proving that the anti-inflammatory effect of SHED

helps create a favorable environment for tissue regeneration after ALF

(137). Hepatocyte necrosis and apoptosis, which arise from chronic

liver injury, then activate pro-inflammatory mediators and encourage

the transdifferentiation of hepatic stellate cells into myofibroblasts,

which leads to the development of liver fibrosis. Severe irreversible

liver fibrosis is followed by liver failure (138). The work of Hirata et al.

in which SHED-CM was injected into mouse model of liver fibrosis,

inhibited gene expression of pro-inflammatory mediators, protected

parenchymal hepatocytes from apoptosis, induced apoptosis in

activated hepatic stellate cells, and induced apoptosis by inducing

expression of MMP13 polarization of macrophages to promote

fibrinolysis, ultimately leading to the regression of fibrous scarring

(139). Ischemic heart diseases such as myocardial infarction can

cause irreversible damage to the heart. Yamaguchi et al. showed that

SHED-CM significantly reduced endotoxin-induced expression of

pro-inflammatory genes, decreased the area of myocardial infarction

after ischemia/reperfusion, decreased cardiomyocyte apoptosis under

ischemic and hypoxic conditions, and decreased the levels of

inflammatory cytokines in a mouse ischemia/reperfusion (I/R)

model (140). Sjogren’s syndrome (SS) is a chronic systemic

autoimmune disease with a complex pathogenesis involving

multiple inflammatory cells and inflammatory factors. Compared

to other inflammatory autoimmune diseases, including Rheumatoid

arthritis, blocking TNF-a has little effect on SS patients (141).

Kawashima et al. used DPSC-CM in a mouse SS model to promote

the differentiation of Treg cells and inhibit the differentiation of Th17

cells in the spleen of mice, which reduced the inflammation of

submandibular gland and improved the symptoms of SS (142).

Ogata et al. also used DPSC-CM in a mouse SS model and

obtained the same conclusion (143). As mentioned earlier, ARDS is

a severe inflammatory disease characterized by acute respiratory

failure caused by severe destructive pulmonary inflammation and

irreversible pulmonary fibrosis (74). Wakayama et al. Subjected to

ALI model mice, a single intravenous injection of SHED-CM

attenuated the pro-inflammatory response and produced an anti-

inflammatory/tissue regenerative environment, while inducing anti-

inflammatory M2-like lung macrophages, which facilitated the

treatment of lung injury (144).

The application of DPSC-CM/SHED-CM does not require

direct use to the cells, similar to EXOs, avoiding risks such as

potential tumorigenicity associated with direct use of the cells

themselves, while not requiring the tedious and labor-intensive

processing required to extract EXOs. This provides another

exceptional idea for the treatment of multiple refractory diseases.
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10 Mechanisms related to the anti-
inflammatory and immunomodulatory
effects of DPSCs

Like other MSCs, DPSCs can elude immune identification

and inhibit immunological responses and are considered

less immunogenic, probably because of the low expression

levels of major histocompatibility complex class I molecules

and the negativity of major histocompatibility complex class

II cells (145, 146). Perhaps there are opportunities to use

DPSCs’ immunosuppressive characteristics as a therapeutic

immunomodulatory tool for the management of inflammatory

and other inflammation-related autoimmune diseases, and even

more so for the adjuvant management of allograft rejection and

graft-versus-host disease (147).

As previously mentioned, several existing studies have

addressed the anti-inflammatory effects and immunomodulatory

capacity of DPSCs. DPSCs have a strong immunomodulatory

capacity, either through intercellular contacts or through some of

their secreted components, which can inhibit proliferation, reduce

cytokine and antibody secretion, control immune cell maturation,

and interfere with antigen presentation by T cells, B cells, NK cells,

and DCs (148, 149). The main mechanism associated with the

therapeutic effects of DPSCs is the indirect effect of the release of

various cytokines, growth factors and chemokines through

paracrine action (150). Available studies have pointed out that

they secrete soluble factors mainly including HGF, nitric oxide,

indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 and TGF-b1,
which help to mediate immunosuppression (151–153) (Figure 3).

Lymphocytes are an important component of the immune system

and consist mainly of T cells, B cells, NK cells and DCs. Among them,

T cells and B cells are capable of producing specific immune responses

to pathogens and become a major component of the adaptive immune

system in addition to innate immunity (154). T-cell responses occur

when antigen-presenting cells induce and control the differentiation of

T cells. Initial CD4+ T helper cells may differentiate and transform into

helper T cells1 (Th1), Th2, Th17 and Treg cells (155, 156). IL-17

induces fibroblasts, endothelial cells, macrophages and epithelial cells to

produce pro-inflammatory cytokines, such as IL-1, IL-6 and TNF-a
and certain chemokines, which generate and maintain an

inflammatory environment (157, 158). Treg induces the secretion of

IL-10 and TGF-b, which are used to regulate the immune response and

suppress inflammation (159). B cells produce antibodies and interact

closely with T cells, resulting in a variety of autoimmune diseases.

Among soluble factors, TGF-b, HGF, prostaglandin E2 and IDO are

thought to play an important role in MSCs-mediated B-cell

immunosuppressive activity (160). The two most significant

specialized antigen-presenting cells, DCs and macrophages, are

essential for T-cells activation and the polarization of the adaptive

immune response. Typically, macrophages are categorized as pro-

inflammatory M1-type cells or anti-inflammatory M2-type cells (161,

162). M1 cells initiate inflammation by releasing high levels of pro-

inflammatory cytokines, glutamate, reactive oxygen species, and nitric

oxide. Correspondingly, M2 cells counteract inflammation and

promote tissue repair and regeneration by secreting anti-
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inflammatory cytokines, phagocytic debris, and promoting tissue

repair and regeneration (163). According to a study by Albashari

et al., DPSCs significantly modulated the expression of NF-kB and its

inhibitor IkB-a, attenuated the effect of lipopolysaccharide-induced

polarization of inflammatory macrophages RAW 264.7 toward the M2

type, and decreased the expression of IL-6, which is achieved through

the NF-kB signaling pathway (33). This has been the most likely effect

of DPSCs in inflammatory diseases that many researchers have focused

on, i.e., controlling the polarization of macrophages, inhibiting pro-

inflammation and enhancing anti-inflammation.

Like Bone marrow mesenchymal stem cells, DPSC may inhibit

T cell proliferation by secreting IDO induced by IFN-g (164).

Recruitment of activated t cells by secreting fas (a death receptor

known as tumor necrosis factor receptor superfamily member 6)-

mediated monocyte chemoattractant protein-1 ensures intercellular

contact, which in turn induces t cell apoptosis. Apoptotic t cells

subsequently trigger the production of high levels of TGF-b by mac

rophages, which in turn leads to upregulation of CD4+CD25+Foxp

3+ Tregs, thereby inducing the final immune effect (70). It has been

shown that DPSCs can induce apoptosis of already activated T cells

in vitro (69). DPSCs can inhibit the proliferation of stimulated

T cells, and this inhibition is actually stronger than that of bone

marrow mesenchymal stem cells (165). NK cells are important

effector cells of innate immunity and play a key role in antitumor

and antiviral effects through their cytotoxic and proinflammatory

cytokines, including TNF-a and IFN-g secretion. NK cells are also

closely associated with inflammatory diseases, such as inflammatory

bowel disease and periodontitis, among others (166). Regulation of

B cells and NK cells by MSCs blocks pathogenic inflammatory and

immune responses in vivo (167). The potential mechanism of

DPSCs anti-inflammation is also closely related to the inhibition

of NK cell proliferation, reduction of cytotoxicity, and promotion of

apoptosis (168). DCs are the most potent antigen-presenting cells

and play a key role in the effects of immunity and tolerance

depending on the activation and maturation phases, as well as on

the cytokine milieu at the site of inflammation (169). Mechanisms

of DPSC anti-inflammation and immunomodulation may be

related to interfering with the differentiation, maturation and

function of DCs (170, 171). FasL is a transmembrane protein

whose expression plays an important role in the induction of the

Fas/FasL apoptotic pathway. In in vitro experiments, knockdown of

FasL expression in DPSCs by siRNA led to a reduction in T cell

apoptosis, making the anti-inflammatory effect of DPSCs greatly

reduced which implies that FasL regulates the immunomodulatory

properties of DPSCs in the context of inducing T cells apoptosis

(69). DPSCs may be an effective treatment not only in oral

inflammation, but in a variety of other acute and chronic

inflammatory conditions.

As mentioned above, because DPSCs originate from the dental

pulp, the pulp itself may be attacked by inflammation, complicating

the relationship between inflammation and DPSCs. Inducing cell

proliferation in DPSCs through chronic inflammation mediated by

inflammatory biomolecules like TNF-a and C3a has been

demonstrated; these proliferation-inducing effects are linked to

NF-kB intracellular signaling stimulation, which may be related

to the activation of the typical Wnt/b-Catenin pathway, while the
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1284868
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1284868
atypical Wnt/Ca2+ pathway is inhibited (172, 173). When this

stimulatory inflammatory challenge exceeds the capacity of the pulp

tissue, the positive effect is diminished or even overridden.

Stimulation by IFN-g significantly upregulates the migratory

capacity of DPSCs (173). Enhanced research in this area

may provide more possibilities for DPSCs treatment of

inflammatory diseases.

During inflammation caused by some bacterial injuries, NF-kB
and p38MAPK intracellular signaling pathways are activated,

releasing a large number of inflammation-associated biomolecules

including IL-1a, IL -1b, IL-4, IL-6, IL-8, IL-10, TNF-a and a series of

inflammatory molecular mediators (174). Neutrophils, macrophages,

antigen-presenting DCs, T cells and later B cells are recruited and

activated, producing a very complex effect. Multiple immune cells, in

turn, produce additional inflammatory cytokines and antibodies to

fight bacterial attack (151). Through their immunomodulatory

effects, DPSCs play a decisive role in anti-inflammatory control

through cell-cell contact and secreted substance mediation,

especially IDO and TGF-b1 (33, 175). Through their action, DPSCs

inhibit proliferation, maturation, antigen presentation and antibody/

cytokine production of inflammatory cells (176).
11 Summary

In addition to their well-established self-renewal and pluripotent

differentiation properties, MSCs also possess powerful anti-

inflammatory and immunomodulatory functions in vitro and in

vivo, making them candidates for the treatment of a variety of
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inflammation-related and autoimmune diseases (176). As a

member of MSCs, DPSCs are favored by many researchers because

of their easier availability and superior immunomodulatory ability

than other MSCs (22, 176). The potentiality of DPSCs in the

treatment of neurological, pulmonary, hepatic, renal, intestinal,

skin-related inflammatory and autoimmune diseases should not be

underestimated, probably because they themselves or some

substances they secrete inhibit T cells proliferation and function

through inflammatory immune-related signaling pathways, stimulate

Treg cells, inhibit DCs differentiation, and convert macrophages to an

anti-inflammatory phenotype role (103, 177) (Table 1).

Many countries have set up institutions specializing in the

collection of DPSCs, and they have well-established processes for

accessing DPSCs, including collection, transportation, stem cell

isolation and culture, and cryogenic storage (178). Stockpiled

DPSCs can be used in the future for both their personal use as

well as for family members as necessary because of the low

immunogenicity of DPSCs. Nagpal et al. administered

appropriate concentrations of autologous DPSCs from elderly

people into the infarct foci and surrounding areas of stroke

survivors with moderate to severe disabilities using intracranial

injections (179). After conducting a number of preoperative and

postoperative observations and analyses, they concluded that

autologous DPSC transplantation for the treatment of chronic

symptoms following stroke was safe and practicable (179).

Allogeneic DPSCs were used in a clinical trial by Ye et al. to treat

severe COVID-19. They confirmed the safety and effectiveness of

allogeneic DPSC transplantation by contrasting experimental and

control groups in a limited sample size (180). Li et al. infused SHED
FIGURE 3

DPSCs secrete soluble factors mainly including, nitric oxide (NO), indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2) and transforming
growth factor b1 (TGF-b1), which help to mediate immunosuppression. DPSCs stimulate regulatory T cell (Treg) function and inhibit all other cell
types of the immune system, such as B and T cells, monocytes, dendritic cells. Gene transfer of an immunomodulatory or other factor may further
enhance the efficacy of DPSCs therapy. DPSCs promote regeneration and healing by up-regulating anti-inflammatory immune cells and associated
cytokines and down-regulating pro-inflammatory immune cells and associated cytokines to inhibit excessive inflammatory responses.
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in type 2 diabetes patients receiving insulin, and the outcomes

demonstrated that SHED infusion is a secure and reliable treatment

that enhances islet function and glucose metabolism in type 2

diabetes patients (181). The therapeutic potential and storage
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value of DPSCs are anticipated to get an increasing amount of

attention as their safety and efficacy have been widely established.

However, as mentioned in this paper, DPSCs are derived from pulp

tissue, which itself may experience inflammatory stimuli while in the
TABLE 1 Examples of the anti-inflammatory effects of DPSCs in animal models.

Cell
Type

Disease
Model

Organs/
Tissues

Administration Mode Outcome
Effect Evaluation And Safety

Assessment
References

human
DPSCs

Peripheral nerve
injury rat model,

SD rats
nerve

1×106/20µL DPSCs were
transplanted

Iba1, ROS,
NF-kB ↓
pAMPK/
SIRT1↑

IL-1b,TNF-a
↓

IL-4,TGF-b↑

DPSCs attenuate inflammation of the
supraspinal nerve caused by oxidative

stress and homeostatic dysregulation after
sciatic nerve injury.

(12)

human
DPSCs

Acute spinal cord
injury model, SD

rats
nerve

DPSCs (1×106cells/mL) were
mixed in hydrogels, in situ

injection of 10 mL

IL-6,TNF-a ↓
NF-kB,IkB-

a↓

DPSCs were effective in controlling
inflammation in SCI rats, thus greatly

promoting neural repair.
(33)

human
DPSCs

3-nitropropionic
acid rat model of
Huntington’s
disease, SD rats

brain

After 2 days, 2.5 × 105 DPSCs was
suspended in 2mL culture media,

transplanted in the Medio-
posterior part of the striatum

TNF,IL-1b, ↓

DPSCs reduce the expression of
inflammatory cytokines in the striatum

and facilitate the treatment of
Huntington’s chorea.

(48)

DPSCs
of SD
rats

STZ-induced
diabetic

polyneuropathy, SD
rats

sciatic
nerve

After 8 weeks, Skeletal muscle
injection (1mL in total, 1×106

cells)

TNF-a ↓
IL-10,
CD206↑

DPSCs could be an efficacious anti-
inflammatory cell therapy for diabetic
polyneuropathy by modulating the
proportions of M1/M2 macrophages.

(55)

human
DPSCs

Hypoxia-Ischemia
rat model, SD rats

brain
1 × 106 DPSCs in 10 mL PBS,
stereotactic injection into the

subdural cortical area

IL-1b,IL-6,
TNF-a,INF-

g↓
IL-10, TGF-

b↑

Implantation of autologous DPSCs
reduced the inflammatory response in the

NHI brain and promoted neuronal
growth, differentiation and regeneration.

(57)

DPSCs
of SD
rats

Dextran Sulfate
Sodium

-induced mouse
colitis, C57BL/6

mice

colon
After 3 days, 1 x 105

cells/10g body weight in 100 mL
PBS, infused into mice

DPSCs were capable of ameliorating
inflammatoryrelated tissue injuries when
systemically infused into a murine colitis

model.

(69)

human
DPSCs

Paraquat Model,
C57BL/6J mice

lung
After 1 or 3 days,1 × 106DPSCs in
200 mL of saline, injected into the

tail vein

IL-1b,IL-6,
TNF-a↓

HGF-modified DPSCs have a robust
ability to modulate inflammation by

suppressing lung inflammation to treat
paraquat -induced lung injury.

(77)

SHEDs

Ovalbumin induced
model of allergic

airway
inflammation,
BALB/c mice

lung
4 × 106 DPSCs via tail vein

injection

Mice treated with DPSCs displayed a
significant inhibition of allergic airway

inflammation.
(79)

human
DPSCs

COPD model,
C57BL/6 mice

lung
After two weeks, intratracheal

injection of 5*105 fifth generation
DPSCs in 50 µL PBS

IL-1b,IL-6,
TNF-a↓

DPCSs can reduce inflammation and
oxidative stress in COPD. DPSCs may

inhibit inflammation and oxidative stress
by increasing the expression of Nrf2 and

its downstream factors.

(83)

DPSCs
lupus mice model,
B6.MRL-Faslpr/J

mice
kidney

DPSCs were resuspended in PBS
and intravenously infused at

2×105 per 10 g body weight into
mice.

IL-6,IL-10,IL-
17↓

Transplantation of DPSCs ameliorates
nephritis in lupus mice.

(91)

human
DPSCs

imiquimod cream
BALB/C mice

skin
200mL normal saline suspension of
2×106 DPSCs, intravenous tail

injection

IFN-g,TNF-
a,IL-17A↓

HGF overexpression enhanced the
treatment effect of DPSCs on psoriasis by

reducing inflammatory responses.
(96)
DPSCs, dental pulp stem cells; SHEDs, stem cells from human exfoliated deciduous teeth; SD rats, Sprague−Dawley rats; SCI, Spinal cord injury; HGF, hepatocyte growth factor; NHI, Neonatal
hypoxia-ischemia; IL, interleukin; TNF, tumor necrosis factor; IFN, interferon; TGF, transforming growth factor; ROS, reactive oxygen species; NF-kB, Nuclear Factor-k-gene Binding; Iba,
indole butyric acid; PBS, phosphate buffered saline.
Figures 1, 2 were created with MedPeer (www.medpeer.cn).
"↑", means increase; "↓", means decline.
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oral cavity or during the process of being acquired, and furthermore,

the means of culturing DPSCs, the environment, and the manner and

method of delivering DPSCs or its products to the organismmay affect

the functional effects of DPSCs (3, 17). IFN-g, TNF-a and IL-1b
infusion into DPSCs may enhance their immunosuppressive capacity

and can be considered as a feedback mechanism to suppress the

exacerbated immune response (20). The role of the interface between

DPSCs and immune cells is complex, and the roles of leader and

leaderee may be interchanged under specific conditions (151). To really

explain it in depth this is still a problem that needs to be overcome.

Perhaps we can use such relationships to purposefully engineer DPSCs

in order to obtain the drugs we are targeting to treat various diseases.

For example, stimulating DPSCs to release engineered extracellular

vesicles loaded with specific molecular cargoes for targeted delivery to

cells and tissues treated with the ligand of interest (182).

We expect more research to be conducted on DPSCs, not only

to achieve results in the laboratory and animal models, but also to

serve clinical needs and transform them into practical tools that can

truly contribute to the treatment of diseases and human health.
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