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Purpose: This bi-institutional study aimed to establish a robust model for

predicting clinically significant prostate cancer (csPCa) (pathological grade

group ≥ 2) in PI-RADS 3 lesions in the transition zone by comparing the

performance of combination models.

Materials and methods: This study included 243 consecutive men who

underwent 3-Tesla magnetic resonance imaging (MRI) and ultrasound-guided

transrectal biopsy from January 2020 and April 2022 which is divided into a

training cohort of 170 patients and a separate testing cohort of 73 patients. T2WI

and DWI images were manually segmented for PI-RADS 3 lesions for the mean

ADC and radiomic analysis. Predictive clinical factors were identified using both

univariate and multivariate logistic models. The least absolute shrinkage and

selection operator (LASSO) regression models were deployed for feature

selection and for constructing radiomic signatures. We developed nine models

utilizing clinical factors, radiological features, and radiomics, leveraging logistic

and XGboost methods. The performances of these models was subsequently

compared using Receiver Operating Characteristic (ROC) analysis and the

Delong test.

Results: Out of the 243 participants with a median age of 70 years, 30 were

diagnosed with csPCa, leaving 213 without a csPCa diagnosis. Prostate-specific

antigen density (PSAD) stood out as the only significant clinical factor (odds ratio

[OR], 1.068; 95% confidence interval [CI], 1.029–1.115), discovered through the

univariate and multivariate logistic models. Seven radiomic features correlated

with csPCa prediction. Notably, the XGboost model outperformed eight other

models (AUC of the training cohort: 0.949, and validation cohort: 0.913).

However, it did not surpass the PSAD+MADC model (P > 0.05) in the training

and testing cohorts (AUC, 0.949 vs. 0.888 and 0.913 vs. 0.854, respectively).

Conclusion: The machine learning XGboost model presented the best

performance in predicting csPCa in PI-RADS 3 lesions within the transitional
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zone. However, the addition of radiomic classifiers did not display any significant

enhancement over the compound model of clinical and radiological findings.

The most exemplary and generalized option for quantitative prostate evaluation

was Mean ADC+PSAD.
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1 Introduction

Prostate cancer is the most common cancer affecting men

worldwide (1), with a lifetime risk as high as 37% (2). By 2040,

global prostate cancer incidences are projected to rise to nearly 2.3

million new cases and 740 000 deaths (3). Multi-Magnetic resonance

imaging (mpMRI) of the prostate, which helps improve the detection,

localization, and staging of prostate cancer (PCa), has been established

as the de facto standard for the imaging assessment of suspected PCa

(4). A large-sample study demonstrated that utilizing MRI for initial

screening before biopsy can minimize needless biopsies by

approximately half for cases with a PI-RADS score of 3 or higher,

and prevent the overdiagnosis of clinically insignificant lesions (5).

The Prostate Imaging Reporting and Data System (PI-RADS) has

undergone continuous refinement and updates since its conception,

allowing for more standardized assessments of prostate lesions. The

most recent iteration, PI-RADSv2.1 revised in 2019, standardizes the

terminology, interpretation, and contents of MRI reports (6). Lesions

are classified into five categories (1 to 5), based on their anatomical

location and MRI signal changes. Higher categories correlate with a

higher probability of detecting clinically significant prostate cancer

(csPCa). Lesions categorized as PI-RADS 1 and 2 bear an exceedingly

low cancer detection rate (CDR) of less than 5% (7, 8) and necessitate

only follow-up. In contrast, lesions classified as PI-RADS 4 and 5

have an extremely high CDR (40–80%) (7, 8) calling for further

biopsy. However, PI-RADS 3 lesions present a moderate CDR,

indicating an ambiguous risk of malignancy.

PI-RADS 3 lesions are frequently identified in patients undergoing

MRI examinations, with reported incidences ranging from 22%–32%

(9); However, most studies indicate a relatively low detection rate for

csPCa, between 2%–22.9% (10, 11). Concurrently, the false negative

rate for csPCa is notably high at 16.2% for cases with PI-RADS scores

of 3 or higher (5). Current guidelines offer no explicit direction for

subsequent treatment of PI-RADS 3 lesions, thereby presenting a

dilemma for urologists in deciding between follow-up prostate-

specific antigen (PSA) testing and imaging monitoring, or immediate

biopsy. It is crucial to selectively submit patients likely to have csPCa to

undergo prostate biopsy, maximizing the benefits from the procedure

and potential aggressive treatment strategies.

Although the implementation of PI-RADSv2.1 has boosted the

precision in identifying csPCa, PI-RADS 3 lesions remain elusive

within the “gray zone” of mpMRI evaluations, especially for the

transition zone (TZ). Benign prostatic hyperplasia, a common
02
condition in elderly men, creates a degree of organized chaos

within the TZ, hampering accurate lesion categorization (12).

Recent studies suggest exploiting radiomic features and mean

apparent diffusion coefficient (ADC) values to quantitively

evaluate MRI enhances diagnostic accuracy for TZ lesions over

mere qualitative PI-RADS assessment (13–15). Engel et al. reported

that the risk stratification for prostatic TZ lesions could be

improved through a quantitative diffusion-weighted imaging

(DWI) analysis (4). Another study demonstrated an achievable

specificity and sensitivity through downgrading PI-RADS lesions at

or above 4 based on mean ADC values or machine learning

algorithms (15). Ultimately, radiomics hold potential in

algorithmically identifying csPCa in PI-RADS 3 lesions (13–16).

A greater balance between biopsy-associated complications,

overdiagnosis, and overlooking csPCa diagnosis might be

achieved using radiomics prostate MRI. For patients with both

PI-RADS 3 and a low risk of csPCa, immediate biopsy can possibly

be deferred. However, previous studies of this nature typically

involved smaller cohorts from a single institution and lacked

distinction between PZ and TZ lesions (17).

Therefore, we hypothesized that the characteristics of detected

TZ lesions can be improved through radiomics. This study aimed to

assess different algorithm models for risk stratification among

patients with PI-RADS 3 in the TZ, using a combination of

individual clinical characteristics and radiological data.

2 Materials and methods

2.1 Demographic information and
clinical data

This retrospective study included patients from two institutions

(The First Affiliated Hospital of Fujian Medical University and

Fuqing Hospital). The institutional ethics committee approved this

study and waived the requirement for informed consent. Data were

retrospectively collected from men who underwent MRI and biopsy

examinations between January 2020 and April 2022 according to

the following eligibility criteria: (a) men with PI-RADS 3 lesions

(v2.1 standard), (b) PI-RADS 3 lesions confirmed by pathology and

matched to the MR images in the same region, and (c) ultrasound-

guided prostate biopsy or radical surgery performed within 1 month

of the MRI examination. The exclusion criteria were: (a) biopsy or a

history of treatment (antihormonal therapy, radiation therapy, focal
frontiersin.org
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therapy, or prostatectomy) for prostate cancer prior to the MRI

examination, (b) multiple primary cancers or a previous history of

cancer, (c) incomplete sequences or severe artefacts on MRI images,

and (d) any PI-RADS 4 or 5 lesions. Figure 1 presents the flowchart

of the inclusion and exclusion criteria of the study.

The following clinical and laboratory data were collected: age, the

most recent serological value of total prostate-specific antigen (tPSA;

ng/mL), free prostate-specific antigen (fPSA; ng/mL), fPSA/tPSA (f/t),

prostate volume(V), PSA density (total PSA/prostatic volume ratio

[PSAD]) during MRI examination and final histopathological analysis,

andmean ADC value (mm2/s). Themean ADC value was calculated in

volumes of interest (VOIs), encompassing the entire lesion without

exceeding the lesion margins. Table 1 presents the baseline

epidemiologic and clinical characteristics, including tumor location,

pathological findings, and clinical assessment.

A 12-core systematic biopsy was performed by urologists with

three to five years of transrectal ultrasound-guided prostate biopsy

experience. Based on biopsy results, the patients were divided into

two cohorts: the csPCa and no csPCa (benign and Grade Group 1

[GG1]) groups. The primary endpoint of csPCa was defined as

patients with≥GG2 (Gleason 3 + 4) prostate cancer.
2.2 MRI examination

During the study period, prostate MRI was performed at

Institution 1 using a 3.0T scanner (Spectra; Siemens Healthineers),
Frontiers in Oncology 03
whereas it was performed using a 3.0T MRI system (Philips Ingenia,

Amsterdam, the Netherlands) at Institution 2. Standard multichannel

body coils and integrated spine phased-array coils were used

according to the guidelines of the European Society of Urogenital

Radiology (18). Appendix Table 1 summarizes the details of the MRI

protocols of each institution.
2.3 MRI lesion segmentation

To confirm that the lesions were classified as PI-RADS 3 as per

the PI-RADS v2.1 guidelines, the MR images were interpreted by

two radiologists (Y. Y. Z. and M. L. X.) with 6 and 10 years of

experience in prostate MRI interpretation, respectively, who were

blinded to the pathological data. In cases of disagreement, a final

consensus was reached by re-reading.

Axial T2-weighted and diffusion-weighted images in DICOM

format were downloaded from the picture archiving and

communication system (PACS). The MRI index lesions were

manually segmented by an investigator (Y. Y. Z.). Given the

importance of heterogeneity analysis while avoiding partial volume

effects, VOIs encompassing the entire lesion, including bleeding,

necrosis, and cystic areas, the urethra, ejaculatory duct, and other

normal anatomical structures were drawn on each slice with the lesion.

Segmentation was performed under the supervision of another

radiologist (T.H.C. with 20 years of experience in prostate MRI),

using the dedicated software ITK-SNAP (version 3.8.0 for Win,
Patients underwent mpMRI according to the European Society of Urogenital Radiology(ESUR)

guidelines at 3 Tesla scanner, and undergoing biopsy between January 2020 and May 2022

n=1819 1310+509

n=1475 patients were excluded that were scored

as PI-RADS categories 2 4 5 or the lesion were

located in the peripheral zone

PI-RADS category 3 lesions were included

n=344

n=69 patients were excluded because images

were performed on MRI scanners at other

facilities or with a 1.5-T magnet

n=23 patients excluded due to artifacts or

incomplete examination

n=6 patients excluded due to different treatment

prior to mpMRI

n=3 patients excluded due to history of other

tumors

Patients available for Study inclusion

n=243

FIGURE 1

Flowchart of the study population.
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http://www.itksnap.org/). In addition, segmentation was also

performed separately on axial T2-weighted and ADC images. The

background obturator internus in the corresponding or adjacent layers

was segmented for reference, excluding the muscle steatosis area while

encompassing at least 50 voxels in at least three adjacent sections.

For the intraobserver and interobserver agreement evaluation in

manual segmentation, we randomly selected 50 patients, and their

ROIs were delineated 1 month later by the same radiologists (Y. Y.

Z. and M. L. X.).
2.4 Image postprocessing and analysis

T2-weighted images were normalized by dividing the voxel

intensities by the mean value of the background obturator internus

tissue. Since ADC is a quantitative measurement, it was not

normalized. Radiomic feature calculations were performed using

the pyradiomics package of Python 3.7.1. (https://github.com/
Frontiers in Oncology 04
Radiomics/pyradiomics) (18) according to the analytical steps

depicted in Figure 2. Within each VOI, 14 volume and shape

features, 198 first-order histogram features, 264 grey-level co-

occurrence matrix (GLCM) features, 154 grey-level dependence

matrix (GLDM) features, 176 grey-level run length matrix

(GLRLM) features, 176 grey-level size zone matrix (GLSZM)

features, and 55 neighboring grey tone difference matrix

(NGTDM) features were calculated, resulting in 1037 features per

VOI. These features were calculated on both the ADCmaps and T2-

weighted images; thus, a total of 2074 radiomics features were

obtained for each lesion.
2.5 Radiomics feature selection and
signature building

All patients were randomly stratified into the training and testing

cohorts in a 7:3 ratio. The mean ADC was extracted from the
TABLE 1 The Characteristics of Demographic and Clinical Data of Patients with PIRADs 3 Lesions on MRI.

level Overall No csPCa csPCa p

n (n=243) (n=213) (n=30)

GGG (%) 0 183 (75.3) 183 (85.9) 0 (0.0) <0.001

1 30 (12.3) 30 (14.1) 0 (0.0)

2 19 (7.8) 0 (0.0) 19 (63.3)

3 8 (3.3) 0 (0.0) 8 (26.7)

4 3 (1.2) 0 (0.0) 3 (10.0)

age (median [IQR])
70 70 72

0.026
[66.00, 75.00] [65.00, 74.00] [68.00, 76.00]

MADC (median [IQR]×10-4)
8.22 8.39 6.98 <0.001

[7.51, 8.83] [7.68, 8.91] [6.43, 7.75]

MT2WI (median [IQR]×102)
2.85 2.85 2.81 0.742

[2.52, 3.38] [2.54, 3.38] [2.42, 3.53]

RT2WI (median [IQR])
3.05 3.06 2.98 0.346

[2.66, 3.40] [2.66, 3.43] [2.75, 3.18]

V (median [IQR])
50 51.94 43.04 0.012

[35.19, 66.60] [35.70, 69.18] [23,68, 52.56]

PSAD (median [IQR]×10-2)
17.69 16.54 38.34 <0.001

[10.10, 29.32] [9.81, 25.38] [19.19, 53.07]

tPSA (median [IQR])
8.65 8.38 10.67 0.009

[5.23, 13.55] [5.07, 12.30] [8.17, 19.18]

fPSA (median [IQR])
1.45 1.42 1.94 0.029

[0.95, 2.20] [0.90, 2.14] [1.35, 2.78]

f/t (median [IQR])
0.17 0.17 0.13 0.044

[0.12, 0.22] [0.14, 0.22] [0.10, 0.20]
frontie
GGG, Gleason grade group; MADC,mean apparent diffusion coefficient; V, the volume of prostate; PSAD, prostate specific antigen density; tPSA, total prostate specific antigen; fPSA,free prostate
specific antigen; f/t,fPSA/tPSA.
rsin.org

http://www.itksnap.org/
https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
https://doi.org/10.3389/fonc.2023.1247682
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2023.1247682
radiomic dataset for separate analyses. Missing data were analyzed

using the Random Forest Multiple Interpolation method (R language

mice package). The features with ICC < 0.75 were filtered out.

Subsequently, upsampling was used to address sample imbalance in

the training cohort, and the Student’s t-test or Mann–Whitney U-test

was used for preliminary feature selection, which was determined

using the Shapiro–Wilk and Levene’s tests. The least absolute

shrinkage selection operator (LASSO)-logistic regression model was

used to select the predictive features, and the radiomics signature (rad

score) was calculated by adding the selected radiomics features,

weighted by their respective coefficients. This procedure was

performed separately on the T2-weighted and ADC images.
2.6 Creation and verification of model

Multivariate logistic regression analysis was used to identify

independent predictive clinical factors. Prediction models were

established based on clinical variables (clinical model),

radiological features (radiological model), radiomic signatures

(radiomics Model), and a combination of clinical variables,

radiological features, and radiomics features (logistic regression

and XGboost models) to generate a quantitative predictive tool

for csPCa diagnosis. Calibration curves were used to evaluate the

robustness of the model. Decision curve analysis (DCA) was used to

evaluate the net benefit of the model for clinical decision-making at

different threshold probabilities.
2.7 Statistical analysis

For demographic data, continuous variables were analyzed

using Student’s t-test or Mann–Whitney U test, as determined by

Shapiro–Wilk and Levene’s test. Continuous variables with normal

distribution were presented as mean ± standard deviation.
Frontiers in Oncology 05
Continuous variables with non-normal distribution were

presented as median (inter-quartile range [IQR]). Categorical

variables were analyzed using the chi-square test or Fisher’s exact

test. Univariate and multivariate logistic regression analyses were

used to identify the significant predictors of csPCa. LASSO logistic

regression analysis was used for screening the predictive radiomics

features. The eXtreme Gradient Boosting (XGboost) model was

created with stratified 10-fold cross-validation, and a grid search

was performed to identify the optimal hyperparameters for training

using the GridSearchCV function in Scikit-learn (estimated by ten-

fold cross-validation). The diagnostic performance of different

models for the prediction of csPCa was assessed using receiver

operating characteristic (ROC) curve analysis and by calculating the

accuracy, sensitivity, specificity, and area under the ROC curve

(AUC) with 95% CI. The Delong test was used to compare the

performance of the different models, regardless of whether they

differed significantly. All data analyses were performed using

Python (version 4.0.1; https://www.r-project.org) and R (version

3.7.3; https://www.python.org/downloads/) software. All tests were

two-sided, with statistical significance set at P ≤ 0.05.
3 Results

3.1 Demographic information and
clinical data

This study included 243 patients (median age, 70 years; IQR, 66–75

years). Prostate biopsy revealed that 213 (87.6%) patients did not have

csPCa [183(75.3%) men had no cancer, and 30 (12.3%) had GG1], and

30 (12.3%) patients had csPCa. The detection rate for csPCa was equal

to 13.7% (23/168 cases) vs 9.3% (7/75 cases) with PI-RADS 3 lesions

diagnosed in the institution 1 vs the institution 2. Themedian PSA level

was 8.65 ng/ml, with a mean prostate volume was 50.0 mL, and the

median PSAD was 0.17 ng/mL2. The patients were randomly allocated
FIGURE 2

Radiomics analysis workflow. Radiomics features were extracted from both T2-weighted images (T2WI) and apparent diffusion coefficient (ADC)
maps. The Student’s t-test or Mann–Whitney U-test and the least absolute shrinkage selection operator were used for feature selection, and the
models were constructed based on logistic regression and XGboost methods for predicting clinically significant prostate cancer.
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to the training (N = 170) and testing (N = 73) cohorts. Table 1 presents

the results of the comparison between the clinical factors of the csPCa

and no csPCa groups.

3.2 Radiomics features selection and
signature building

Initially, 2074 features were generated from the original T2-

weighted and ADC imaging data, and 233 features related to csPCa

diagnosis were selected. Highly correlated features were discarded

(correlation between two variables > 0.6). Subsequently, the seven

most predictive features were selected from the T2-weighted and

ADC images using LASSO-logistic regression (Figure 3 and

Table 2). The radiomic signature was then calculated by

weighting their respective coefficients. The boxplot depicted in

Figure 3 presents the differences between the two groups.

3.3 Development and validation of
individualized logistic prediction models

Univariable logistic regression analysis of all potential factors

identified age (odds ratio [OR], 1.075; 95% confidence interval [CI],

1.006–1.153), V (OR, 0.987; 95% CI, 0.974–0.998), PSAD (OR, 1.07; 95%

CI, 1.034–1.113), and MADC (OR, 0.242; 95% CI, 0.126–0.422) as the

independent parameters for csPCa prediction. When age, V, PSAD, and
Frontiers in Oncology 06
MADC were included in the multivariate logistic regression analysis,

only PSAD and MADC remained significantly correlated with tumor

diagnosis (Table 3). Table 4 presents the eight models built for predicting

csPCa using radiomics, a clinical variable, and the MADC values.

3.4 Development of the XGboost
prediction model

Clinical factors (PSAD) and radiomic signatures were identified

as the predictors most significantly associated with csPCa diagnosis.

Therefore, these three features were employed as the input

variables, whereas diagnostic efficiency was considered the output

variance. The XGboost model hyperparameters were optimized

using grid search and ten-fold cross-validation. The other

parameters were set to default values. The detailed weights of the

trained XGboost with the PSAD, T2 score, and ADC score for

predicting csPCa are presented in Figure 4.

3.5 Performance comparisons of models

As shown in Tables 4, 5, and Figure 5, MADC was found to be the

best-performing single-parameter model, with an AUC of 0.856 (95%

CI, 0.782–0.923), and 0.788 (95% CI, 0.628–0.920) in the training and

testing cohorts, respectively (Figure 4 and Table 4). The best combined

models were PSAD +MADC (AUC, 0.888 [95% CI, 0.814–0.943], and
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FIGURE 3

Radiomics features selection by the least absolute shrinkage selection operator. (A, D) Coefficient profiles of radiomics features of the apparent
diffusion coefficient (ADC) and T2-weighted images (T2WI). (B, E) The adjustment penalty parameter l is -3.229 ×10-4 and -2.294×10-4 for the ADC
and T2WI, and seven features were selected according to 10-fold cross-validation. (C, F) The boxplot of radscores of the csPCa and No csPCa
groups in the training and testing cohorts of the ADC and T2WI.
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0.854 [95% CI, 0.733–0.952] in the training and testing cohorts,

respectively) and PSAD + ADC score + T2 score (0.877 [95% CI,

0.791–0.954], and 0.812 [95% CI, 0.684–0.920] in the training and

testing cohorts, respectively) (Figure 5 and Table 4). However, they

showed no evidence of improvement compared with the MADC

model (P =0.162 and P = 0.687 in the training cohorts, respectively,

and P =0.303 and P = 0.818 in the testing cohorts, respectively).

The XGboost model demonstrated the highest performance

for predicting csPCa, with an AUC of 0.949 (95% CI, 0.904–0.983)

and 0.913 (95% CI, 0.816–0.984) in the training and testing

cohorts, respectively. Significant differences were observed

between the AUCs of the XGboost model and the other five

models (PSAD, ADC score, T2 score, PSAD + ADC score, and

PSAD + ADC score + T2 score) (Figure 4 and Tables 4, 5). The

AUCs of the training cohort were 0.949 vs. 0.778 vs. 0.747 vs.

0.731 vs. 0.849 vs. 0.877. The AUCs of the validation cohort were

0.913 vs. 0.620 vs. 0.688 vs. 0.740 vs. 0.757 vs. 0.812. However, it

did not outperform the PSAD+MADC model (AUC, 0.949 vs.

0.888 and 0.913 vs. 0.854, respectively) (P > 0.05) in the training

and testing cohorts, respectively.
4 Discussion

Precise definition of PI-RADS 3 lesions in the transition zone

(TZ) presents a significant challenge due to the atypical imaging
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features associated with these lesions. This is complicated by the

reality that malignant epithelial cells often associated with csPCa are,

in this classification, usually distributed sparsely and arranged around

the acinar structures. Subsequently, csPCa imaging and benign

conditions like hyperplasia, inflammation, and fibrosis can exhibit

significant overlap (19). This can result in near imperceptible changes

to MRI signal, leading to high rates of interpretation migration and

fair inter-observer agreement (20). Furthermore, prostatic

hyperplasia in elderly men, predominantly originating in the TZ, is

intrinsically heterogeneous and comprises ill-defined tissues, often

mistaken for csPCa due to their cellular and vascular nature (12).

Currently, there is a shortage of effective means to refine lesion

classification, leaving clinical management unclear.

Radiomic analysis provides a non-invasive tool using existing

MRI images to obtain data about target organs and tissues. Its

strength lies in eliminating subjective interpretation and observer

reliance, concurrently analyzing hundreds of imaging features. This

allows for a thorough characterization of tumor heterogeneity,

reflecting tumor cellularity, proliferation, angiogenesis, hypoxia,

and necrosis (21). Guiding classification, risk stratification, and

clinical decision-making measures for suspicious lesions form key

aspects of its performance duties (16, 22, 23). Consequently,

radiomic analysis shows immense potential in distinguishing

csPCas from painless or benign cases (22, 23).

Several studies have probed into the function of radiomics in

prostate imaging (24–26). Hou et al. evaluated radiomics machine
TABLE 2 The final 7 radiomics features selected from T2WI and ADC.

Features Coef OR

ADC.wavelet.HLH_glszm_SizeZoneNonUniformityNormalized -0.60887 0.543965

ADC.wavelet.LLL_firstorder_10Percentile -0.15362 0.857601

ADC.exponential_firstorder_Energy -0.12684 0.880874

ADC.wavelet.HHL_glrlm_LongRunHighGrayLevelEmphasis 0.270977 1.311245

T2WI.original_shape_Sphericity -0.29877 0.741728

T2WI.wavelet.LHL_glcm_MCC -0.06151 0.940344

T2WI.wavelet.LLL_gldm_LargeDependenceLowGrayLevelEmphasis -0.03154 0.968952
TABLE 3 Results of univariate and multivariate logistic regression analyses.

Facotrs Uni_OR Uni_95%CI Uni_P Mul_OR Mul_95%CI Mul_P

age 1.075 (1.006~1.153) 0.036 1.067 (0.968~1.178) 0.188

T 1.034 (0.99~1.076) 0.117 – – –

F 1.276 (0.969~1.654) 0.07 – – –

F/T 0.174 (0~1.228) 0.588 – – –

V 0.987 (0.974~0.998) 0.035 0.995 (0.981~1.008) 0.506

PSAD 1.07 (1.034~1.113) <0.001 1.068 (1.029~1.115) 0.001

MT2WI 0.902 (0.525~1.373) 0.666 – – –

RT2WI 0.854 (0.356~1.96) 0.715 – – –

MADC 0.242 (0.126~0.422) <0.001 0.231 (0.107~0.437) <0.001
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learning (ML) models and reported an enhanced risk stratification,

superior to subjective radiologist evaluation for identifying csPCa in

PI-RADS v2 category 3 lesions, with the AUC of radiomics ML

models ranging from 0.87–0.89 (24). In a different study, Li et al.

utilized a support vector machine (SVM) classification to stratify

the Gleason Score (GS) of prostate cancer in the central gland using

mpMRI. This approach showcased exceptional performance, with

AUC values oscillating between 0.97 (CI 0.94–0.99) and 0.91 (CI

0.85–0.95) (25). Schelb et al. used a U-Net trained with T2-weighted

and diffusion-weighted images, thereby achieving a performance on

par with that of PI-RADS assessment (26). These studies collectively

attest to the superior performance of radiomics in detecting

prostate lesions.

Our study exhibits a classification capability that is, at the very

least, comparable to those reported in the literature, thereby

reiterating the utility of radiomics in prostate MRI. As reported in

Table 4, the XGboost model showed the best performance, with

AUC values of 0.949 and 0.913 in the training and testing cohorts,

respectively. This indicates the XGboost model’s robust capacity to

recognize csPCa, indicating that machine learning’s potential as an

efficient and noninvasive instrument for the prediction of csPCa in

PI-RADS 3 lesions. Commonly deployed to address classification

issues, XGboost stands as the most accurate model for predicting 1-

year survival among non-small cell lung cancer patients diagnosed

with bone metastases (27). XGboost can also infer the tissue sources

of 10 unique cancer types and outperforms traditional machine

learning algorithms (28).
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The predictive potential of clinical and radiological biomarkers

for diagnosing prostate cancer associated with equivocal PI-RADS 3

lesions undergoing biopsy has been evaluated positively in previous

studies (29, 30). For instance, Brancato et al. concluded that the

most vital feature for the detection of cancer in PI-RADS 3 lesions

was based on ADC maps (31). Our data also supported the use of

quantitative ADC measurements for decision-making in PI-RADS

3 lesions, with AUC of 0.856 (0.782–0.923) and 0.788 (0.628–0.920)

in the training and testing cohorts, respectively. Efficient at

discerning the microenvironment of neoplastic tissues, ADC can

identify alterations in compartmental volumes, such as stroma,

epithelium, and lumen space, and cellularity (32), It currently serves

as best parameter for prostate MRI assessment (4, 33). Moreover,

ADC has been consistently proven to be inversely correlated with

factors like tumor grade, tumor aggressiveness, and pathological

stage (34–36). We compared the performance of the mean ADC

with biparametric radiomics to assess whether it had an added value

over that of machine learning. The Delong test results revealed

superior performance from XGboost models as opposed to the

mean ADC model in the training cohorts. However, this superiority

was not replicated in the testing cohorts. Moreover, it did not

outperform the PSAD+MADC model (AUC, 0.949 vs. 0.888 and

0.913 vs. 0.854, respectively) (P > 0.05) in both the training and

testing cohorts. Thus, within the context of our study, ADC values

remained the most decisive parameter, aligning with previous

studies’ findings (33, 36). Bonekamp et al. (36) compared the

performance of biparametric contrast-free radiomics with that of
TABLE 4 The performance of different models in training and testing cohorts for predicting tumor diagnosis in csPCa patients.

Model AUC (95% CI) Accuracy Sensitivity Specificity

Training MADC 0.856 (0.782-0.923) 0.765 0.905 0.745

PSAD 0.778 (0.661-0.888) 0.806 0.714 0.819

ADCscore 0.747 (0.640-0.850) 0.5 0.952 0.436

T2score 0.731 (0.616-0.838) 0.694 0.762 0.685

PSAD+MADC 0.888 (0.814-0.943) 0.688 1 0.644

PSAD+T2score 0.814 (0.689-0.913) 0.829 0.714 0.846

PSAD+ADCscore 0.849 (0.752-0.929) 0.859 0.762 0.872

PSAD+ADCscore+T2score 0.877 (0.791-0.954) 0.824 0.81 0.826

XGboost 0.949 (0.904-0.983) 0.894 0.905 0.893

Testing MADC 0.788 (0.628-0.920) 0.699 0.778 0.688

PSAD 0.620 (0.371-0.846) 0.795 0.556 0.828

ADCscore 0.688 (0.540-0.818) 0.548 0.889 0.5

T2score 0.740 (0.557-0.882) 0.767 0.556 0.797

PSAD+MADC 0.854 (0.733-0.952) 0.63 0.889 0.594

PSAD+T2score 0.809 (0.676-0.922) 0.781 0.556 0.812

PSAD+ADCscore 0.757 (0.627-0.877) 0.74 0.333 0.797

PSAD+ADCscore+T2score 0.812 (0.684-0.920) 0.822 0.667 0.844

XGboost 0.913 (0.816-0.984) 0.904 0.889 0.906
MADC, mean ADC; PSAD, PSA density; XGboost, XGboost machine learning model.
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machine learning for detecting csPCa, also concluded that the

performance of radiomic machine learning did not exceed that of

the mean ADC. This finding is coherent with the results observed in

our study.

However, several differences from the present study should be

noted. Prior studies did not conduct separate analyses for peripheral

zone (PZ) and TZ lesions. Given that the lesion characteristics

significantly differ between PZ and TZ, and the primary sequences

vary, it is recommended to perform targeted analysis based on

lesions in different zones rather than combining them. Second,
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some studies exploring the intelligent diagnosis of PI-RADS 3

lesions were confined to basic radiomic features (33, 35, 36) and

overlooked the additional diagnostic value of clinical indicators.

Compared with these similar studies, the present study evaluated

clinical features associated with csPCa, encompassing age, tPSA,

fPSA, fPSA/tPSA, prostate volume, and PSA density. However, only

one of these, specifically PSAD, proved useful for building

predictive models.

MRI application as an adjuvant examination rather than a

clinical triage tool can pose challenges, considering negative
TABLE 5 The performance comparisons of different models in training and testing cohorts.

Model MADC PSAD
PSAD +
MADC

ADCscore T2score
PSAD +
T2score

PSAD +
ADCscore

PSAD +
ADCscore +
T2score

XGboost

MADC / 0.219 0.162 0.099 0.046 0.505 0.909 0.687 0.023

PSAD 0.322 / 0.014 0.674 0.467 0.247 0.019 0.005 0.000

PSAD +
MADC

0.303 0.06 / 0.031 0.007 0.132 0.357 0.805 0.075

ADCscore 0.367 0.684 0.078 / 0.857 0.38 0.047 0.018 0.000

T2score 0.653 0.519 0.295 0.534 / 0.049 0.061 0.002 0.000

PSAD +
T2score

0.846 0.043 0.513 0.19 0.493 / 0.377 0.022 0.001

PSAD +
ADCscore

0.771 0.183 0.146 0.337 0.88 0.304 / 0.18 0.004

PSAD +
ADCscore 0.818 0.158 0.611 0.017 0.34 0.953 0.307 / 0.003

+ T2score

XGboost 0.133 0.038 0.368 0.000 0.008 0.098 0.015 0.018 /
f

Based on Delong.test, the upper right of the diagonal (yellow) was the P value of model comparisons in the training set, and the down left of the diagonal (blue) was the P value of model
comparisons in the testing set.
A

B

FIGURE 4

(A) The Beeswarm plot depicts the predictive value of each feature for each patient, and (B) the bar plot depicts the importance of each feature.
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findings do not necessarily discourage further progression to a

biopsy, potentially leading to overtreatment (37). Integrating MRI

findings with PSAD may mitigate these concerns. PSAD also

constitutes an essential component of the best-performing

XGboost model in this study, and has been extensively

investigated in several studies (38–40). A large multi-institutional

collaborative study showed that among the men with a solitary PI-

RADS 3 lesion on MRI, nearly 87% of those with a low PSAD had

no or only GG1 prostate cancer. In contrast, as PSAD increases, the

rate of csPCa detection increases to more than one-third of men

biopsied (37). Several studies have identified an independent

association of PSAD with csPCa, even in patients with serum

PSA levels slightly exceeding or within the normal range–a

common occurrence across various clinical scenarios, such as

early diagnosis, repeat biopsy, and active surveillance (38).

Roscigno et al. (39) reported that higher PSAD was associated

with an elevated risk of reclassification, with 0.20 as the threshold in

definitive or follow-up biopsy. Washino et al. (40) increased the

negative predictive value (NPV) of PI-RADS from 0.84 to 0.96 by

using PSAD with a cut-off value of 0.15 ng/mL/cc. Ullrich et al. (41)

concluded that if the PSAD cut-off was 0.15 ng/mL2, 53% of patients

with a PI-RADS v2 score of 3 would have avoided biopsy.

In our study, the predictive performance of radiomics machine

learning models did not surpass that of the comprehensive model

combining clinical variables and radiological features (MADC +

PSAD). This may change with the development of next-generation

machine learning techniques for larger-scale cohorts in multicentric

setups, as machine learning methods rely on large amounts of

training and testing data. These tools typically do not require

segmentation or handcrafted radiomic features. In the current

study, more traditional machine learning methods were used due

to the relatively small sample size and number of csPCa cases.

Our study had several limitations. The retrospective design of

this study, combined with the lack of results from radical

prostatectomy specimens as a reference standard, means that
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selection bias and biopsy bias are potential issues. In addition, the

PI-RADS 3 dataset is notably small and imbalanced. A more sizable,

balanced study group would better facilitate radiomic analyses and

aid in formulating robust predictive models. Lastly, identifying PI-

RADS 3 lesions can prove challenging, making some

lesions ambiguous.
5 Conclusions

Radiomics–based algorithms, notably the XGboost models,

demonstrated substantial proficiency in predicting csPCa in PI-

RADS 3 lesions in TZ. This could potentially elevate the rate of

prostate-positive biopsy for PI-RADS 3 while decreasing the

incidence of unnecessary biopsies. Predictions yielded by the

XGboost classifier could serve as a crucial reference for clinical

decision-making. However, in the current cohort, no additional

benefits of the radiomic classifiers were observed over the combined

model of clinical and radiological findings, suggesting the mean

ADC+PSAD as the most generalized and optimal choice for

quantitative prostate assessment.
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13. Woźnicki P, Westhoff N, Huber T, Riffel P, Froelich MF, Gresser E, et al.
Multiparametric MRI for prostate cancer characterization: combined use of radiomics
model with PI-RADS and clinical parameters. Cancers (Basel) (2020) 12:1767.
doi: 10.3390/cancers12071767

14. Wu M, Krishna S, Thornhill RE, Flood TA, McInnes MDF, Schieda N.
Transition zone prostate cancer: Logistic regression and machine-learning models of
quantitative ADC, shape and texture features are highly accurate for diagnosis. J Magn
Reson Imaging (2019) 50:940–50. doi: 10.1002/jmri.26674

15. Zhang KS, Schelb P, Kohl S, Radtke JP, Wiesenfarth M, Schimmöller L, et al.
Improvement of PI-RADS-dependent prostate cancer classification by quantitative
image assessment using radiomics or mean ADC.Magn Reson Imaging (2021) 82:9–17.
doi: 10.1016/j.mri.2021.06.013

16. Hectors SJ, Chen C, Chen J, Wang J, Gordon S, Yu M, et al. Magnetic resonance
imaging radiomics-based machine learning prediction of clinically significant prostate
cancer in equivocal PI-RADS 3 lesions. J Magn Reson Imaging (2021) 54:1466–73.
doi: 10.1002/jmri.27692

17. Kan Y, Zhang Q, Hao J, Wang W, Zhuang J, Gao J, et al. Clinico-radiological
characteristic-based machine learning in reducing unnecessary prostate biopsies of PI-
RADS 3 lesions with dual validation. Eur Radiol (2020) 30:6274–84. doi: 10.1007/
s00330-020-06958-8

18. Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al. ESUR
prostate MR guidelines 2012. Eur Radiol (2012) 22:746–57. doi: 10.1007/s00330-011-2377-y

19. Jin P, Yang L, Qiao X, Hu C, Hu C, Wang X, et al. Utility of clinical-radiomic
model to identify clinically significant prostate cancer in biparametric MRI PI-RADS
V2.1 category 3 lesions. Front Oncol (2022) 12:840786. doi: 10.3389/fonc.2022.840786

20. Westphalen AC, McCulloch CE, Anaokar JM, Arora S, Barashi NS, Barentsz JO,
et al. Variability of the positive predictive value of PI-RADS for prostate MRI across 26
centers: experience of the society of abdominal radiology prostate cancer disease-
focused panel. Radiology (2020) 296:76–84. doi: 10.1148/radiol.2020190646

21. Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non-small
cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology
(2013) 266:326–36. doi: 10.1148/radiol.12112428

22. Liddell H, Jyoti R, Haxhimolla HZ. Mp-MRI prostate characterised PIRADS 3
lesions are associated with a low risk of clinically significant prostate cancer - A
retrospective review of 92 biopsied PIRADS 3 lesions. Curr Urol (2015) 8:96–100.
doi: 10.1159/000365697

23. Xiong H, He X, Guo D. Value of MRI texture analysis for predicting high-grade
prostate cancer. Clin Imaging (2021) 72:168–74. doi: 10.1016/j.clinimag.2020.10.028

24. Hou Y, Bao ML, Wu CJ, Zhang J, Zhang YD, Shi HB. A radiomics machine
learning-based redefining score robustly identifies clinically significant prostate cancer
in equivocal PI-RADS score 3 lesions. Abdom Radiol (NY) (2020) 45:4223–34.
doi: 10.1007/s00261-020-02678-1

25. Li J, Weng Z, Xu H, Zhang Z, Miao H, Chen W, et al. Support Vector Machines
(SVM) classification of prostate cancer Gleason score in central gland using
frontiersin.org

https://doi.org/10.3322/caac.21708
https://doi.org/10.3322/caac.21654
https://gco.iarc.fr/today
https://doi.org/10.21873/invivo.12963
https://doi.org/10.1016/j.juro.2018.04.061
https://doi.org/10.1016/j.eururo.2019.02.033
https://doi.org/10.1016/j.eururo.2019.02.033
https://doi.org/10.1155/2021/3995789
https://doi.org/10.1155/2021/3995789
https://doi.org/10.1038/s41391-021-00417-1
https://doi.org/10.1016/j.eururo.2017.02.026
https://doi.org/10.1007/s00345-022-04120-1
https://doi.org/10.1016/j.euo.2018.01.002
https://doi.org/10.1148/radiol.2018180123
https://doi.org/10.3390/cancers12071767
https://doi.org/10.1002/jmri.26674
https://doi.org/10.1016/j.mri.2021.06.013
https://doi.org/10.1002/jmri.27692
https://doi.org/10.1007/s00330-020-06958-8
https://doi.org/10.1007/s00330-020-06958-8
https://doi.org/10.1007/s00330-011-2377-y
https://doi.org/10.3389/fonc.2022.840786
https://doi.org/10.1148/radiol.2020190646
https://doi.org/10.1148/radiol.12112428
https://doi.org/10.1159/000365697
https://doi.org/10.1016/j.clinimag.2020.10.028
https://doi.org/10.1007/s00261-020-02678-1
https://doi.org/10.3389/fonc.2023.1247682
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2023.1247682
multiparametric magnetic resonance images: A cross-validated study. Eur J Radiol
(2018) 98:61–7. doi: 10.1016/j.ejrad.2017.11.001

26. Schelb P, Kohl S, Radtke JP, Wiesenfarth M, Kickingereder P, Bickelhaupt S,
et al. Classification of Cancer at Prostate MRI: Deep Learning versus Clinical PI-RADS
Assessment. Radiology (2019) 293:607–17. doi: 10.1148/radiol.2019190938

27. Huang Z, Hu C, Chi C, Jiang Z, Tong Y, Zhao C. An artificial intelligence model
for predicting 1-year survival of bone metastases in non-small-cell lung cancer patients
based on XGBoost algorithm. BioMed Res Int (2020) 2020:3462363. doi: 10.1155/2020/
3462363

28. Zhang Y, Feng T, Wang S, Dong R, Yang J, Su J, et al. A novel XGBoost method
to identify cancer tissue-of-origin based on copy number variations. Front Genet (2020)
11:585029. doi: 10.3389/fgene.2020.585029

29. Sheridan AD, Nath SK, Syed JS, Aneja S, Sprenkle PC, Weinreb JC, et al. Risk of
clinically significant prostate cancer associated with prostate imaging reporting and
data system category 3 (Equivocal) lesions identified on multiparametric prostate MRI.
AJR Am J Roentgenol (2018) 210:347–57. doi: 10.2214/AJR.17.18516

30. Lim CS, Abreu-Gomez J, Leblond MA, Carrion I, Vesprini D, Schieda N, et al.
When to biopsy Prostate Imaging and Data Reporting System version 2 (PI-RADSv2)
assessment category 3 lesions? Use of clinical and imaging variables to predict cancer
diagnosis at targeted biopsy. Can Urol Assoc J (2021) 15:115–21. doi: 10.5489/cuaj.6781

31. Brancato V, Aiello M, Basso L, Monti S, Palumbo L, Di Costanzo G, et al.
Evaluation of a multiparametric MRI radiomic-based approach for stratification of
equivocal PI-RADS 3 and upgraded PI-RADS 4 prostatic lesions. Sci Rep (2021) 11:643.
doi: 10.1038/s41598-020-80749-5

32. Schieda N, Lim CS, Zabihollahy F, Abreu-Gomez J, Krishna S, Woo S, et al.
Quantitative prostate MRI. J Magn Reson Imaging (2021) 53:1632–45. doi: 10.1002/
jmri.27191

33. Tavakoli AA, Hielscher T, Badura P, Görtz M, Kuder TA, Gnirs R, et al.
Contribution of dynamic contrast-enhanced and diffusion MRI to PI-RADS for
detecting clinically significant prostate cancer. Radiology (2023) 306:186–99.
doi: 10.1148/radiol.212692
Frontiers in Oncology 12
34. Surov A, Meyer HJ, Wienke A. Correlations between apparent diffusion
coefficient and gleason score in prostate cancer: A systematic review. Eur Urol Oncol
(2020) 3:489–97. doi: 10.1016/j.euo.2018.12.006

35. Lim C, Flood TA, Hakim SW, Shabana WM, Quon JS, El-Khodary M, et al.
Evaluation of apparent diffusion coefficient and MR volumetry as independent
associative factors for extra-prostatic extension (EPE) in prostatic carcinoma. J Magn
Reson Imaging (2016) 43:726–36. doi: 10.1002/jmri.25033

36. Bonekamp D, Kohl S, Wiesenfarth M, chelb P, Radtke JP, Götz M, et al.
Radiomic machine learning for characterization of prostate lesions with MRI:
comparison to ADC values. Radiology (2018) 289:128–37. doi: 10.1148/
radiol.2018173064

37. Drevik J, Dalimov Z, Uzzo R, Danella J, Guzzo T, Belkoff L, et al. Utility of PSA
density in patients with PI-RADS 3 lesions across a large multi-institutional
collaborative. Urol Oncol (2022) 40:490.e1–6. doi: 10.1016/j.urolonc.2022.08.003

38. Galosi AB, Palagonia E, Scarcella S, Cimadamore A, Lacetera V, Delle Fave RF,
et al. Detection limits of significant prostate cancer using multiparametric MR and
digital rectal examination in men with low serum PSA: Up-date of the Italian Society of
Integrated Diagnostic in Urology. Arch Ital Urol Androl (2021) 93:92–100.
doi: 10.4081/aiua.2021.1.92

39. Roscigno M, Stabile A, Lughezzani G, Pepe P, Galosi AB, Naselli A, et al. The use
of multiparametric magnetic resonance imaging for follow-up of patients included in
active surveillance protocol. Can PSA density discriminate patients at different risk of
reclassification? Clin Genitourin Cancer (2020) 18:e698–704. doi: 10.1016/
j.clgc.2020.04.006

40. Washino S, Okochi T, Saito K, Konishi T, Hirai M, Kobayashi Y, et al.
Combination of prostate imaging reporting and data system (PI-RADS) score and
prostate-specific antigen (PSA) density predicts biopsy outcome in prostate biopsy
naïve patients. BJU Int (2017) 119:225–33. doi: 10.1111/bju.13465

41. Ullrich T, Quentin M, Arsov C, Schmaltz AK, Tschischka A, Laqua N, et al. Risk
stratification of equivocal lesions on multiparametric magnetic resonance imaging of
the prostate. J Urol (2018) 199:691–8. doi: 10.1016/j.juro.2017.09.074
frontiersin.org

https://doi.org/10.1016/j.ejrad.2017.11.001
https://doi.org/10.1148/radiol.2019190938
https://doi.org/10.1155/2020/3462363
https://doi.org/10.1155/2020/3462363
https://doi.org/10.3389/fgene.2020.585029
https://doi.org/10.2214/AJR.17.18516
https://doi.org/10.5489/cuaj.6781
https://doi.org/10.1038/s41598-020-80749-5
https://doi.org/10.1002/jmri.27191
https://doi.org/10.1002/jmri.27191
https://doi.org/10.1148/radiol.212692
https://doi.org/10.1016/j.euo.2018.12.006
https://doi.org/10.1002/jmri.25033
https://doi.org/10.1148/radiol.2018173064
https://doi.org/10.1148/radiol.2018173064
https://doi.org/10.1016/j.urolonc.2022.08.003
https://doi.org/10.4081/aiua.2021.1.92
https://doi.org/10.1016/j.clgc.2020.04.006
https://doi.org/10.1016/j.clgc.2020.04.006
https://doi.org/10.1111/bju.13465
https://doi.org/10.1016/j.juro.2017.09.074
https://doi.org/10.3389/fonc.2023.1247682
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2023.1247682
Appendix

APPENDIX 1 Acquisition Parameters of the Multiparametric MRI Protocol f
or both institution.

Parameter
T2WI DWI

Institution 1 Institution 2 Institution 1 Institution 2

Echo time (msec) 72 93 72 93

Repetition time (msec) 4000 5960 4000 6900

Flip angle (°) 90 150 – –

Matrix 128×128 256×256 128×128 256×256

Field of view (mm2) 360×360 160×160 360×360 190×260

Number of slices 36 40 32 40

Slice thickness (mm) 4 3 4 3

spacing between slices 0.5 0 1 0

b-values (s/mm2) – – 100/800/2000 50/800/1500
F
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