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Background:Classical trigeminal neuralgia (CTN) is a common and severe chronic

neuropathic facial pain disorder. The pathologicalmechanisms of CTN are not fully

understood. Recent studies have shown that resting-state functional magnetic

resonance imaging (rs-fMRI) could provide insights into the functional changes of

CTN patients and the complexity of neural processes. However, the precise spatial

pattern of complexity changes in CTNpatients is still unclear. This study is designed

to explore the spatial distribution of complexity alterations in CTN patients using

brain entropy (BEN).

Methods: A total of 85 CTN patients and 79 age- and sex-matched healthy

controls (HCs) were enrolled in this study. All participants underwent rs-fMRI

and neuropsychological evaluations. BEN changes were analyzed to observe

the spatial distribution of CTN patient complexity, as well as the relationship

between these changes and clinical variables. Sixteen di�erent machine learning

methods were employed to classify the CTN patients from the HCs, and the

best-performing method was selected.

Results: Compared with HCs, CTN patients exhibited increased BEN in the

thalamus and brainstem, and decreased BEN in the inferior semilunar lobule.

Further analyses revealed a low positive correlation between the average BEN

values of the thalamus and neuropsychological assessments. Among the 16

machine learning methods, the Conditional Mutual Information Maximization-

Random Forest (CMIM-RF) method yielded the highest area under the curve (AUC)

of 0.801.

Conclusions: Our study demonstrated that BEN changes in the thalamus and pons

and inferior semilunar lobule were associated with CTN and machine learning

methods could e�ectively classify CTN patients and HCs based on BEN changes.

Our findings may provide new insights into the neuropathological mechanisms of

CTN and have implications for the diagnosis and treatment of CTN.

KEYWORDS

classical trigeminal neuralgia, resting-state functionalmagnetic resonance imaging, brain

entropy, machine learning, cross-validation

1 Introduction

Classical trigeminal neuralgia (CTN) is a prevalent and debilitating chronic neuropathic

facial pain disorder (1). This condition is characterized by sudden and intense facial pain

episodes, often triggered by seemingly harmless activities like eating, talking, or teeth

brushing (2, 3). CTN significantly impacts the quality of life and daily functioning of those

affected, highlighting the need for a deeper comprehension of its underlying pathological

mechanisms, however, its precise pathological mechanisms remain elusive (4, 5). The current
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understanding suggests that CTN arises from neurovascular

compression, which leads to demyelination and ectopic neuronal

firing in the trigeminal nerve (2, 6–8). However, this explanation

fails to capture the complexity and heterogeneity of the disorder,

indicating the involvement of additional factors in the development

and maintenance of CTN (9–14).

In recent years, resting-state functional magnetic resonance

imaging (rs-fMRI) has emerged as a valuable tool for investigating

the functional changes associated with neurological disorders (15,

16). By measuring blood oxygenation level-dependent (BOLD)

signals, rs-fMRI allows the assessment of neural activity and

connectivity in the brain (17, 18). Several studies have utilized rs-

fMRI to explore the functional alterations in CTN patients and

gain insights into the complex neural processes underlying the

disorder (12, 19, 20). Recent research findings indicate dynamic

changes in the static and dynamic amplitude of low-frequency

fluctuation (ALFF) within 5 seconds and 30min (19). Similar

results have been found in studies examining static and dynamic

degree centrality (20).

Despite advances in rs-fMRI studies on CTN, the spatial

distribution of complexity changes in CTN patients is still limited.

Brain entropy (BEN), which is derived from rs-fMRI data,

has proven to be a valuable tool for mapping temporal signal

complexity throughout the entire brain (21). BEN exhibits unique

features for assessing brain function compared to fractional ALFF

and cerebral blood flow (22). Recent studies have demonstrated

the neurocognitive correlates of resting BEN in the default mode

network and executive control network (23) and reported that

lower resting brain entropy is associated with stronger task

activation and deactivation in various tasks (24). It is worth

noting that alterations in BEN have been observed in caffeine

ingestion (25), repetitive transcranial magnetic stimulation (26)

and various brain disorders, including Alzheimer’s disease (27),

autism spectrum disorder (28), major depressive disorder (29), and

manic and euthymic adolescent bipolar disorder (30). These studies

have compellingly showcased the unique role of BEN in detecting

both normal brain function and various brain disorders. However,

the role of BEN in CTN patients remains unknown.

This study aims to investigate the spatial distribution of

complexity changes in CTN patients. By comparing CTN patients

to healthy controls (HCs), we aimed to identify regions exhibiting

altered complexity and explore their functional implications. By

examining the patterns of BEN alterations, we hope to gain

a better understanding of the neural mechanisms underlying

CTN and identify potential biomarkers for disease diagnosis and

treatment evaluation.

2 Materials and methods

2.1 Participants

Between July 2021 and March 2022, a total of 85 patients

diagnosed with CTN and 79 age- and sex-matched HCs were

prospectively recruited from the Department of Radiology at

Hangzhou First People’s Hospital, Zhejiang University School

of Medicine. Written informed consent was obtained from all

participants prior to their involvement in this prospective study.

The study was conducted in accordance with the ethical guidelines

and principles outlined in the Declaration of Helsinki and

was approved by the local ethics committee of Hangzhou First

People’s Hospital, Zhejiang University School of Medicine (IRB#

No. 202107002).

The inclusion criteria for CTN patients were as follows: (1)

diagnosis of CTN based on the third edition of the International

Classification of Headache Disorders (ICHD-3), with magnetic

resonance imaging (MRI) evidence of neurovascular compression

(NVC) showing morphological changes (atrophy or dislocation)

in the trigeminal nerve root (1); (2) unilateral pain in the

distribution of one or more branches of the trigeminal nerve;

(3) paroxysmal facial pain triggered by specific factors (e.g., light

touching of the face, opening of the mouth, etc.); (4) normal

brain signals on conventional MRI T1WI and T2WI scans; (5) no

additional neurological or sensory deficits; (6) no prior surgical

or invasive procedures for CTN; (7) no contraindications to MRI;

(8) right-handedness; and (9) all patients underwent microvascular

decompression, confirming the presence of NVC rather than

just contact.

The exclusion criteria were as follows: (1) CTN patients

who had undergone previous surgical treatment; (2) presence of

headaches or other paroxysmal or chronic pain conditions; (3)

family history of headache or other pain in first-degree relatives;

(4) presence of other somatic or psychiatric conditions; (5) left-

handedness; and (6) contraindications to MRI.

2.2 Multimodal MRI data acquisition

All participants underwent MRI scans using a 3.0 T MRI

scanner (Siemens, MAGNETOM Verio, Germany) equipped with

an eight-channel phased-array head coil. The structural data were

acquired using 3D T1 weighted images (magnetization-prepared

rapid gradient-echo) and the functional images were acquired using

gradient echo-echo planar imaging. The imaging parameters were

as follows: for 3D T1weighted images, 176 slices were acquired with

a repetition time (TR) of 1,900ms, an echo time (TE) of 2.52ms,

a slice thickness of 1mm, a field of view (FOV) of 256 × 256

mm2, a voxel size of 1 × 1×1 mm3, and a flip angle of 9 degrees.

For functional images, 240 volumes were acquired with a TR of

2,000ms, a TE of 30ms, a slice thickness of 3.2mm, a voxel size

of 3.44 × 3.44 × 3.20 mm3, a flip angle of 90 degrees, a FOV of

220 × 220 mm2, and a scan duration of 8min. Participants were

instructed to keep their eyes closed, remain awake, and breathe

calmly throughout the scan, controlled breathing throughout the

scan to ensure they were in a resting state.

2.3 Data preprocessing

The rs-fMRI data preprocessing was performed using the

DPABI and SPM12 toolbox in MATLAB (MathWorks, MA,

USA). The preprocessing pipeline involved the following steps:

(1) discarding the initial 10 volumes to achieve a steady-state

MRI signal; (2) correcting for slice timing and head motion using

motion correction parameters; (3) co-register the structural MRI
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image (T1-weighted) to the mean functional image created after

motion correction; (4) the T1-weighted structural images were

then segmented and normalized to the Montreal Neurological

Institute (MNI) space to obtain deformation information using

Diffeomorphic Anatomical Registration Through Exponentiated

Lie Algebra (DARTEL); (5) normalizing the images to the MNI

space by deformation fields derived from tissue segmentation of

structural images as described above and resampling to a voxel

size of 3 × 3 × 3 mm3; (6) detrending the BOLD signal by

removing the linear trend; (7) removing noise through regression

of Friston-24 head motion parameters, cerebrospinal fluid signals,

and white matter signals; and (8) band-pass filtering was applied

in 0.01–0.08Hz. Nine patients and seven HCs were excluded due

to excessive head motion (displacement > 3mm, rotation > 3◦) or

framewise displacement (FD_Jenkinson) > 0.2. The final analysis

included 76 patients with CTN and 72 HCs.

2.4 Brain entropy analysis

After image pre-processing, the calculation of BEN was

performed using BENtbx software (21), which can be accessed at

https://cfn.upenn.edu/~zewang/software.html. BEN was computed

at each voxel using Sample Entropy (SampEn) (31). SampEn is

an approximate entropy measure that quantifies the temporal

coherence of a time series by assessing the likelihood that a

small section of the data matches with other sections as the

window length increases. The matching criterion is determined

by a threshold set as a multiple (r) of the standard deviation of

the entire time series. In this study, a window length of 3 and

a cutoff threshold of 0.6 times the standard deviation were used

(21). Further information on BEN calculation can be found in the

original BENtbx paper (21). The resulting entropy values of all

voxels constituted the BEN map, which was then smoothed with

an isotropic Gaussian kernel (full width at half maxima = 6mm)

to mitigate structural brain differences among individuals that may

arise during spatial normalization to the MNI space.

2.5 Statistical analysis

For demographic and clinical continuous variables, normality

was assessed using the Shapiro-Wilk test. Normally distributed

variables were reported as mean ± standard deviation, and

group comparisons were conducted using two-sample t-tests.

Non-normally distributed variables were reported as median

(interquartile range), and group comparisons were performed

using the Mann-Whitney U test. Gender differences between

groups were examined using the chi-square test.

In the DPABI software, differences in brain entropy between

patients and HCs were assessed using a two sample t-test, and

then multiple comparison correction based on Gauss random

field (GRF) theory was applied with significance thresholds set at

voxel-wise p < 0.001 and cluster-wise p < 0.05. To account for

potential confounding factors, such as age, sex, education, and head

motion, these variables were included as covariates in the analysis.

Additionally, partial correlation analysis was performed to explore

the associations between the average BEN values of significant brain

areas and the neuropsychological assessments, regressing out the

covariates of age, sex, education, and head motion.

2.6 Machine learning classification

Machine learning was conducted using a script within the

MATLAB environment. In our study, we utilized the Automated

Anatomical Labeling (AAL) atlas version 3 as a mask, and for

each voxel, we extracted the corresponding BEN value as a feature.

This process resulted in a total of 54,948 MRI features, each

corresponding to a specific voxel defined by the AAL atlas. Previous

studies have demonstrated the reliability and reproducibility of the

temporal complexity of rs-fMRI (32).

Considering the limited availability of subjects in human

neuroimaging studies, which can impact the generalization ability

of the study, we employed a 10-fold cross-validation strategy.

In each iteration of cross-validation, one-tenth of the samples

were held out as a test set, while the remaining subjects were

used for training the classifier. This process was repeated until

all subjects were used as test samples. Within each fold of cross-

validation, we first performed a two-sample t-test between the

two groups to remove features with p > 0.001 and then utilized

four widely recognized feature selection methods based on filter

approaches: fisher score (FSCR), relief-F (RELF-F), minimum

redundancymaximum relevance (MRMR), and conditional mutual

information maximization (CMIM). To address redundancy,

features exhibiting a Spearman’s correlation of 0.7 or higher were

eliminated to reduce the presence of redundant information.

Moreover, in our effort to address the challenges associated with

the “curse of dimensionality” andmitigate the risk of overfitting, we

followed Harrell’s guideline, which recommends that the number

of selected features should be <10% of the sample size, with a

final feature count of approximately 10 (33–35). Consequently, we

selected the top 10 non-redundant features (36, 37) as the input

for four distinct machine learning classifiers: logistic regression

(LR), k-nearest neighbor (KNN), random forest (RF), and support

vector machines with radial basis function kernel (RBF-SVM).

In response to the question of whether selecting more or fewer

features would significantly improve classification performance, we

conducted additional experiments. We validated the results using

the first 5 features and the first 20 features, respectively. The results

for these different feature selection scenarios were analyzed and

compared to the results obtained using the top 10 features. To

ensure the generalizability of the biomarkers and avoid overfitting

and spurious results (38), we utilized standard/default parameter

settings for all experiments, rather than extensive hyperparameter

tuning, a choice consistent with the previous study (39). We

implemented 16 cross-combinations of feature selection methods

and classifiers (4 feature selection methods × 4 classifiers). Finally,

the results of each repetition were averaged to produce the final

classification outcome.

To further validate the significance of our classification results,

we conducted permutation tests on classification metrics (accuracy,

sensitivity, specificity and area under the curve [AUC]). In

these permutation tests, we generated four null distributions of
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TABLE 1 Demographic and clinical characteristics of CTN patients and

HCs.

CTN HCs Z|χ2 P

Gender

(female:male)

52:24 47:25 0.165 0.685a

Age [years, M

(IQR)]

56.000

(13.000)

54.500

(14.000)

−1.840 0.066b

Education

[years, M

(IQR)]

9.000 (3.000) 10.000 (6.000) −3.641 0.000b

MMSE 27.500 (4.000) 29.000 (2.000) −3.999 0.000b

Symptoms∗ 22.000 (6.000) 6.000 (0.000) −11.164 0.000b

Physical

function∗
19.000 (6.000) 14.000 (5.000) −7.250 0.000b

Psychology∗ 12.500 (6.000) 5.000 (0.000) −9.962 0.000b

Society∗ 14.000 (6.000) 5.000 (0.000) −11.047 0.000b

Total 69.000

(15.000)

31.000 (5.000) −10.502 0.000b

Self-rating

depression

scale

38.000

(11.000)

28.000 (8.000) −7.000 0.000b

Self-rating

anxiety scale

33.000 (8.000) 27.000 (7.000) −5.184 0.000b

Head motion

(FD)

0.057 (0.044) 0.060 (0.049) −0.058 0.954b

ap-values for sex distribution obtained by the chi-square test; bp-value obtained by the

Wilcoxon Mann Whitney test. CTN, classical trigeminal neuralgia; HCs, healthy controls;
∗the four dimensions of the quality of life score of patients with trigeminal neuralgia; R, right;

L, left; MMSE, mini-mental state examination.

classificationmetrics (AUC, accuracy, sensitivity and specificity) for

each classifier using a non-parametric permutation approach with

2,000 permutations. The p-value was determined by calculating the

proportion of the 2,000 permutations for which the classification

metrics of the original data were equal to or larger than the

classification metrics of the permuted data. The classification

metrics of each classifier were considered statistically significant if

the p-values were <5% (p < 0.05).

3 Results

3.1 Demographics and clinical
characteristics

Demographic and clinical information for the final 76 CTN

patients [56 (13) years, 52 females] and 72 HCs [54.5 (14) years,

47 females] were presented in Table 1 and Supplementary Table 1.

There were no significant differences in gender (p = 0.685), age

(p = 0.066), and head motion (p = 0.954), and while significant

differences were observed in Mini-Mental State Examination

(MMSE, p < 0.001), the quality-of-life score of patients with

trigeminal neuralgia (p < 0.001), self-rating depression scale (SDS,

p < 0.001), self-rating anxiety scale (SAS, p < 0.001) between the

two groups.

3.2 Spatial distribution of BEN changes and
correlation analysis

Compared to HCs, CTN patients exhibited distinct patterns of

BEN changes in the brain (Table 2, Figure 1). Specifically, increased

BEN was observed in the thalamus (voxel p < 0.001, cluster p <

0.05, GRF correction, cluster size > 32 voxels) and pons (voxel

p < 0.001, cluster p < 0.05, GRF correction, cluster size > 32

voxels), suggesting enhanced neural activity and complexity in

these areas. Conversely, decreased BEN was found in the inferior

semilunar lobule (voxel p< 0.001, cluster p< 0.05, GRF correction,

cluster size> 32 voxels), indicating disrupted neural processing and

complexity in this region. Further analyses revealed a low positive

correlation between the average BEN values of the thalamus and

neuropsychological assessments (SAS and SDS), regressing out

the covariates of age, sex, education, and head motion (Figure 2,

Table 3).

3.3 Machine learning classification

The classification metrics, including AUC, accuracy, sensitivity,

and specificity, are presented in Figure 3. Among the 16

combinations of machine learning methods utilized in our study,

the CMIM-RF method demonstrated the highest performance in

classifying CTN patients andHCs based on BEN changes, achieving

an AUC of 0.801, and the AUC of most classifiers above 0.75.

Supplementary Tables 2–5 presents the results of permutation

tests for classification metrics. The outcomes of these permutation

tests consistently revealed statistical significance (p < 0.05)

across all classification metrics of CMIM-RF, including accuracy,

sensitivity, specificity, and AUC. The accuracy and AUC of the

other classifiers were also statistically significant (p < 0.05). These

results provide robust evidence that the pattern of complexity

alterations captured by BEN can effectively distinguish CTN

patients from HCs, further underscoring its potential as a

diagnostic tool for CTN.

Moreover, it is noteworthy that our findings remain stable

across different feature selection scenarios. Specifically, the results

obtained using the first 5 features and the first 20 features,

as illustrated in Supplementary Figures 1, 2, exhibited similar

performance, reinforcing the reliability, and consistency of

our findings.

4 Discussion

The present study investigated the spatial distribution of BEN

changes in CTN patients using rs-fMRI. Our findings revealed

distinct patterns of complexity alterations in key brain regions

associated with the experience of pain and the psychological

aspects. The increased BEN was observed in the thalamus and

brainstem, while the BEN decreased in the inferior semilunar

lobule. In addition, the results of the correlation showed a positive

correlation between BEN changes in the thalamus and brainstem

regions. Among the 16 machine learning methods tested, the

CMIM-RF method showed the highest performance in classifying
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TABLE 2 Brain regions with significant di�erences in BEN between CTN patients and HCs (GRF correction, voxel level p < 0.001 and cluster level p <

0.05).

Brain region Peak MNI coordinates Cluster size
(voxels)

Peak intensity t p-value

X Y Z

Thalamus 0 −21 0 35 4.8069 <0.001

Pons 9 −15 −24 44 4.8286 <0.001

Right inferior semilunar

lobule

33 −69 −51 43 −5.1713 <0.001

MNI, Montreal Neurological Institute; CTN, classical trigeminal neuralgia; HCs, healthy controls.

FIGURE 1

Brain entropy analysis between CTN patients and HCs. Brain entropy map showed that significant di�erences in thalamus, pons and inferior

semilunar lobule between CTN patients and HCs. Increased BEN was observed in the thalamus (voxel p < 0.001, cluster p < 0.05, GRF correction,

cluster size > 32 voxels) and pons (voxel p < 0.001, cluster p < 0.05, GRF correction, cluster size > 32 voxels) and decreased BEN was found in the

inferior semilunar lobule (voxel p < 0.001, cluster p < 0.05, GRF correction, cluster size > 32 voxels). CTN, classical trigeminal neuralgia; HCs, healthy

controls.

CTN patients and HCs based on BEN changes, with an AUC of

0.801, highlighting its potential as a diagnostic tool for CTN.

CTN patients exhibited distinct patterns of complexity changes

in the brain, with increased BEN observed in the thalamus and

pons regions, indicating enhanced neural activity and complexity

(21). Consistent with this, a multimodal MRI study by Wang

et al. revealed increased mean diffusivity in the thalamus and

brainstem of individuals with CTN (9). The thalamus is known

to be a key relay station for pain signals, and its hyperactivity has

been implicated in various chronic pain disorders (40, 41). The

increased complexity in the thalamus suggests altered information

processing and integration, which may contribute to the generation

and maintenance of facial pain in CTN. Ge et al. (19) conducted

an rs-fMRI study on pain induced by stimulation and found

that in CTN patients, the values of the right thalamus decreased

immediately after the triggering event and subsequently increased

within 30min. This suggests dynamic changes in thalamic activity

and highlights its involvement in the pathophysiology of CTN

(19). The brainstem, on the other hand, plays a vital role in

pain modulation and descending pain inhibition (42, 43). The

enhanced complexity in the brainstem could indicate abnormal

pain modulation mechanisms, leading to an imbalance between

pain facilitation and inhibition processes in CTN.

The decreased complexity observed in the inferior semilunar

lobule is an interesting finding that warrants further investigation.

This region is part of the cerebellum, which is traditionally

associated with motor coordination but has also been implicated in

pain processing (44, 45). Previous studies have demonstrated that

the cerebellum plays a role in pain modulation and the integration

of sensory information (46, 47). The disrupted BEN in the inferior

semilunar lobule suggests an alteration in its functional complexity

and information processing, which may contribute to abnormal

pain perception and sensory integration in CTN (48). Further

investigation is needed to elucidate the underlyingmechanisms and

functional implications of this finding.

The observed positive correlation between the average BEN

values of the thalamus and neuropsychological assessments (SAS

and SDS) further supports the notion that the thalamus plays a
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FIGURE 2

Partial correlation between BEN value of thalamus and neuropsychological assessment. BEN, brain entropy; SAS, self-rating anxiety scale; SDS,

self-rating depression scale.

TABLE 3 Partial correlation between BEN value of each significant cluster and neuropsychological assessment.

Brain regions MMSE SAS SDS

r p-value r p-value r p-value

Thalamus −0.015 0.856 0.164 0.049∗ 0.183 0.028∗

Pons −0.019 0.825 0.099 0.239 0.150 0.072

Right inferior semilunar lobule 0.053 0.525 −0.014 0.869 −0.156 0.062

MMSE, mini mental state test; SAS self-rating anxiety scale; SDS, self-rating depression scale; ∗ represents significant level p < 0.05.

crucial role in the pathophysiology of CTN, suggesting a potential

relationship between the complexity of brain activity in the

thalamus and the psychological wellbeing of these patients (49).

This correlation implies that as the BEN values in the thalamus

increase (indicating higher neural complexity), there is a tendency

for higher scores on anxiety and depression scales. In summary, the

provided evidence suggests that distinct complexity alterations in

key brain regions, particularly the thalamus, are associated with the

experience of pain and the psychological aspects of CTN.

The machine learning classification analysis demonstrated

the potential utility of BEN changes as a diagnostic marker

for CTN. CMIM is an effective feature selection algorithm that

considers both relevance and redundancy among features (50). It

selects features that are highly informative for classification while

minimizing the redundancy between them. This helps to improve

the efficiency and accuracy of the classification model by focusing

on the most relevant and non-redundant features. CMIM exhibited

higher diagnostic performance in combination with the majority

of classifiers. RF is a powerful and widely used classification

algorithm that often shines when dealing with complex, high-

dimensional data, and when robustness to overfitting is crucial (51).

By integrating CMIMwith RF, the CMIM-RFmethod capitalizes on

the strengths of both algorithms, leading to significantly improved

classification performance. In our study, the CMIM-RF method

exhibited the highest classification performance with an AUC

of 0.801 (p < 0.05). Moreover, most classifiers achieved AUCs

above 0.75 (p < 0.05), underscoring the effectiveness of BEN

in distinguishing CTN patients from HCs based on complexity

alterations in brain activity. Notably, when considering the use

of the first 5 or first 20 features instead of the top 10 features,

we observed similar classification performance. This indicates that

while the initial choice of the top 10 features was based on their

rankings, the classification performance remained robust when

varying the number of selected features within this range. These

compelling findings suggest that BEN analysis holds promise as an

objective and non-invasive biomarker for CTN, offering valuable

support for its diagnosis and monitoring.

However, there are some limitations to consider. Firstly, the

sample size of the study might have been relatively small, which

could limit the generalizability of the findings. A larger and more

diverse sample would provide a stronger basis for concluding the

spatial distribution of complexity changes. Additionally, the cross-

sectional design of the study precludes the establishment of causal

relationships between BEN changes and CTN. Future longitudinal

studies are needed to elucidate the temporal dynamics and potential

predictive value of BEN alterations in CTN.

In conclusion, our study contributes to the understanding of

CTN by revealing the spatial distribution of complexity changes

in the brains of CTN patients. The increased complexity in the

thalamus and brainstem, along with the decreased complexity in
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FIGURE 3

Heat map depicting diagnostic performance (AUC, accuracy, sensitivity, specificity) of paired feature selection (rows) and classification (columns)

methods. FSCR, fisher score; RELF-F, relief-F; MRMR, minimum redundancy maximum relevance; CMIM, conditional mutual information

maximization; LR, logistic regression; KNN, k-nearest neighbor; RF, random forest; RBF-SVM, support vector machines with radial basis function

kernel; AUC, area under the curve.

the inferior semilunar lobule, suggests altered neural processing

and complexity in key regions implicated in pain perception and

modulation. The machine learning classification analysis highlights

the potential of BEN changes as a diagnostic marker for CTN.

These findings provide new insights into the neuropathological

mechanisms of CTN and may have implications for the diagnosis,

treatment, and monitoring of this debilitating facial pain disorder.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

The study was approved by the Local Ethics

Committee of Hangzhou First People’s Hospital, Zhejiang

University School of Medicine (IRB# No. 202107002).

The studies were conducted in accordance with the local

legislation and institutional requirements. The participants

provided their written informed consent to participate in

this study.

Author contributions

XL: Writing—original draft, Writing—review & editing, Data

curation. XG: Data curation, Writing—review & editing. XT:

Visualization, Writing—review & editing. HY: Data curation,

Writing—review & editing. LP: Data curation, Writing—review

& editing. XZ: Data curation, Writing—review & editing. HH:

Visualization, Writing—review & editing. ZD: Conceptualization,

Funding acquisition, Project administration, Resources, Writing—

review & editing. LW: Conceptualization, Methodology, Writing—

original draft, Writing—review & editing.

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2023.1273336
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu et al. 10.3389/fneur.2023.1273336

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This study was supported by the Zhejiang Provincial Medical

and Health Technology Project (2021RC108) and Hangzhou

Agriculture and Social Development Scientific Research Guidance

Project (20211231Y022).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fneur.2023.

1273336/full#supplementary-material

References

1. Olesen J. International classification of headache disorders. Lancet Neurol. (2018)
17:396–7. doi: 10.1016/S1474-4422(18)30085-1

2. Cruccu G, Di Stefano G, Truini A. Trigeminal neuralgia. N Engl J Med. (2020)
383:754–62. doi: 10.1056/NEJMra1914484

3. Fan X, Fu Z, Ma K, Tao W, Huang B, Guo G, et al. Chinese expert consensus
on minimally invasive interventional treatment of trigeminal neuralgia. Front Mol
Neurosci. (2022) 15:953765. doi: 10.3389/fnmol.2022.953765

4. Wang Y, Yang Q, Cao D, Seminowicz D, Remeniuk B, Gao L, et al.
Correlation between nerve atrophy, brain grey matter volume and pain
severity in patients with primary trigeminal neuralgia. Cephalalgia. (2019)
39:515–25. doi: 10.1177/0333102418793643

5. Bendtsen L, Zakrzewska JM, Heinskou TB, Hodaie M, Leal PRL,
Nurmikko T, et al. Advances in diagnosis, classification, pathophysiology,
and management of trigeminal neuralgia. Lancet Neurol. (2020) 19:784–
96. doi: 10.1016/S1474-4422(20)30233-7

6. Ge X, Wang L, Pan L, Ye H, Zhu X, Feng Q, et al. Risk factors for
unilateral trigeminal neuralgia based on machine learning. Front Neurol. (2022)
13:862973. doi: 10.3389/fneur.2022.862973

7. Shankar Kikkeri N, Nagalli S. Trigeminal neuralgia. In: StatPearls. Treasure Island
(FL): StatPearls Publishing (2022).

8. Yu G, Leng J, Xia Y, Min F, Xiang H. Microvascular decompression:
diversified of imaging uses, advantages of treating trigeminal neuralgia and
improvement after the application of endoscopic technology. Front Neurol. (2022)
13:1018268. doi: 10.3389/fneur.2022.1018268

9. Wang Y, Cao DY, Remeniuk B, Krimmel S, Seminowicz DA,
Zhang M. Altered brain structure and function associated with sensory
and affective components of classic trigeminal neuralgia. Pain. (2017)
158:1561–70. doi: 10.1097/j.pain.0000000000000951

10. Liu J, Zhu J, Yuan F, Zhang X, Zhang Q. Abnormal brain white matter in patients
with right trigeminal neuralgia: a diffusion tensor imaging study. J Headache Pain.
(2018) 19:46. doi: 10.1186/s10194-018-0871-1

11. Wu M, Jiang X, Qiu J, Fu X, Niu C. Gray and white matter abnormalities in
primary trigeminal neuralgia with and without neurovascular compression. J Headache
Pain. (2020) 21:136. doi: 10.1186/s10194-020-01205-3

12. Liu H, Zheng R, Zhang Y, Zhang B, Hou H, Cheng J, et al. Alterations of degree
centrality and functional connectivity in classic trigeminal neuralgia. Front Neurosci.
(2023) 16:1090462. doi: 10.3389/fnins.2022.1090462

13. Zhu PW, Chen Y, Gong YX, Jiang N, Liu WF, Su T, et al. Altered brain network
centrality in patients with trigeminal neuralgia: a resting-state fMRI study. Acta Radiol.
(2020) 61:67–75. doi: 10.1177/0284185119847678

14. Ge X, Wang L, Pan L, Ye H, Zhu X, Fan S, et al. Alteration of the cortical
morphology in classical trigeminal neuralgia: voxel-, deformation-, and surface-based
analysis. J Headache Pain. (2023) 24:17. doi: 10.1186/s10194-023-01544-x

15. Wang L, Feng Q, Ge X, Chen F, Yu B, Chen B, et al. Textural features reflecting
local activity of the hippocampus improve the diagnosis of Alzheimer’s disease and
amnestic mild cognitive impairment: a radiomics study based on functional magnetic
resonance imaging. Front Neurosci. (2022) 16:970245. doi: 10.3389/fnins.2022.970245

16. Wu X, Wang L, Jiang H, Fu Y, Wang T, Ma Z, et al. Frequency-dependent and
time-variant alterations of neural activity in post-stroke depression: a resting-state
fMRI study. Neuroimage Clin. (2023) 38:103445. doi: 10.1016/j.nicl.2023.103445

17. Wang L, Feng Q, Wang M, Zhu T, Yu E, Niu J, et al. An effective brain imaging
biomarker for AD and aMCI: ALFF in slow-5 frequency band. Curr Alzheimer Res.
(2021) 18:45–55. doi: 10.2174/1567205018666210324130502

18. Fan Y, Wang L, Jiang H, Fu Y, Ma Z, Wu X, et al. Depression
circuit adaptation in post-stroke depression. J Affect Disord. (2023) 336:52–
63. doi: 10.1016/j.jad.2023.05.016

19. Ge X, Wang L, Pan L, Ye H, Zhu X, Fan S, et al. Amplitude of low-frequency
fluctuation after a single-trigger pain in patients with classical trigeminal neuralgia. J
Headache Pain. (2022) 23:117. doi: 10.1186/s10194-022-01488-8

20. Ge X, Wang L, Wang M, Pan L, Ye H, Zhu X, et al. Alteration of brain
network centrality in CTN patients after a single triggering pain. Front Neurosci. (2023)
17:1109684. doi: 10.3389/fnins.2023.1109684

21. Wang Z, Li Y, Childress AR, Detre JA. Brain entropy mapping using fMRI. PLoS
ONE. (2014) 9:e89948. doi: 10.1371/journal.pone.0089948

22. Song D, Chang D, Zhang J, Ge Q, Zang YF, Wang Z. Associations of
brain entropy (BEN) to cerebral blood flow and fractional amplitude of low-
frequency fluctuations in the resting brain. Brain Imaging Behav. (2019) 13:1486–
95. doi: 10.1007/s11682-018-9963-4

23. Wang Z. The neurocognitive correlates of brain entropy estimated by
resting state fMRI. Neuroimage. (2021) 232:117893. doi: 10.1016/j.neuroimage.2021.
117893

24. Lin L, Chang D, Song D, Li Y, Wang Z. Lower resting brain entropy
is associated with stronger task activation and deactivation. Neuroimage. (2022)
249:118875. doi: 10.1016/j.neuroimage.2022.118875

25. Chang D, Song D, Zhang J, Shang Y, Ge Q, Wang Z. Caffeine
caused a widespread increase of resting brain entropy. Sci Rep. (2018)
8:2700. doi: 10.1038/s41598-018-21008-6

26. Song D, Chang D, Zhang J, Peng W, Shang Y, Gao X, et al. Reduced brain
entropy by repetitive transcranial magnetic stimulation on the left dorsolateral
prefrontal cortex in healthy young adults. Brain Imaging Behav. (2019) 13:421–
9. doi: 10.1007/s11682-018-9866-4

27. Wang Z. Alzheimer’s disease neuroimaging initiative. Brain entropy
mapping in healthy aging and Alzheimer’s disease. Front Aging Neurosci. (2020)
12:596122. doi: 10.3389/fnagi.2020.596122

28. Easson AK, McIntosh AR. BOLD signal variability and complexity in children
and adolescents with andwithout autism spectrum disorder.Dev CognNeurosci. (2019)
36:100630. doi: 10.1016/j.dcn.2019.100630

29. Liu X, Song D, Yin Y, Xie C, Zhang H, Zhang H, et al. Altered brain entropy
as a predictor of antidepressant response in major depressive disorder. J Affect Disord.
(2020) 260:716–21. doi: 10.1016/j.jad.2019.09.067

30. Kuang L, Gao W, Wang L, Guo Y, Cao W, Cui D, et al. Increased resting-
state brain entropy of parahippocampal gyrus and dorsolateral prefrontal cortex in
manic and euthymic adolescent bipolar disorder. J Psychiatr Res. (2021) 143:106–
12. doi: 10.1016/j.jpsychires.2021.08.025

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2023.1273336
https://www.frontiersin.org/articles/10.3389/fneur.2023.1273336/full#supplementary-material
https://doi.org/10.1016/S1474-4422(18)30085-1
https://doi.org/10.1056/NEJMra1914484
https://doi.org/10.3389/fnmol.2022.953765
https://doi.org/10.1177/0333102418793643
https://doi.org/10.1016/S1474-4422(20)30233-7
https://doi.org/10.3389/fneur.2022.862973
https://doi.org/10.3389/fneur.2022.1018268
https://doi.org/10.1097/j.pain.0000000000000951
https://doi.org/10.1186/s10194-018-0871-1
https://doi.org/10.1186/s10194-020-01205-3
https://doi.org/10.3389/fnins.2022.1090462
https://doi.org/10.1177/0284185119847678
https://doi.org/10.1186/s10194-023-01544-x
https://doi.org/10.3389/fnins.2022.970245
https://doi.org/10.1016/j.nicl.2023.103445
https://doi.org/10.2174/1567205018666210324130502
https://doi.org/10.1016/j.jad.2023.05.016
https://doi.org/10.1186/s10194-022-01488-8
https://doi.org/10.3389/fnins.2023.1109684
https://doi.org/10.1371/journal.pone.0089948
https://doi.org/10.1007/s11682-018-9963-4
https://doi.org/10.1016/j.neuroimage.2021.117893
https://doi.org/10.1016/j.neuroimage.2022.118875
https://doi.org/10.1038/s41598-018-21008-6
https://doi.org/10.1007/s11682-018-9866-4
https://doi.org/10.3389/fnagi.2020.596122
https://doi.org/10.1016/j.dcn.2019.100630
https://doi.org/10.1016/j.jad.2019.09.067
https://doi.org/10.1016/j.jpsychires.2021.08.025
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu et al. 10.3389/fneur.2023.1273336

31. Lake DE, Richman JS, Griffin MP, Moorman JR. Sample entropy analysis
of neonatal heart rate variability. Am J Physiol Regul Integr Comp Physiol. (2002)
283:R789–97. doi: 10.1152/ajpregu.00069.2002

32. Omidvarnia A, Zalesky A, Mansour L S, Van De Ville D, Jackson GD, Pedersen
M. Temporal complexity of fMRI is reproducible and correlates with higher order
cognition. Neuroimage. (2021) 230:117760. doi: 10.1016/j.neuroimage.2021.117760

33. Chong H, Gong Y, Pan X, Liu A, Chen L, Yang C, et al. Peritumoral dilation
radiomics of gadoxetate disodium-enhanced MRI excellently predicts early recurrence
of hepatocellular carcinoma without macrovascular invasion after hepatectomy. J
Hepatocell Carcinoma. (2021) 8:545–63. doi: 10.2147/JHC.S309570

34. Zheng BH, Liu LZ, Zhang ZZ, Shi JY, Dong LQ, Tian LY, et al. Radiomics
score: a potential prognostic imaging feature for postoperative survival of solitary HCC
patients. BMC Cancer. (2018) 18:1148. doi: 10.1186/s12885-018-5024-z

35. Ortiz-Ramón R, Larroza A, Ruiz-España S, Arana E, Moratal D. Classifying
brain metastases by their primary site of origin using a radiomics approach
based on texture analysis: a feasibility study. Eur Radiol. (2018) 28:4514–
23. doi: 10.1007/s00330-018-5463-6

36. Foley D. Considerations of sample and feature size. IEEE Trans Inf Theory.
(1972) 18:618–26. doi: 10.1109/TIT.1972.1054863

37. Chalkidou A, O’Doherty MJ, Marsden PK. False discovery rates in PET
and CT studies with texture features: a systematic review. PLoS ONE. (2015)
10:e0124165. doi: 10.1371/journal.pone.0124165

38. Hosseini M, Powell M, Collins J, Callahan-Flintoft C, Jones W, Bowman H, et al.
I tried a bunch of things: the dangers of unexpected overfitting in classification of brain
data. Neurosci Biobehav Rev. (2020) 119:456–67. doi: 10.1016/j.neubiorev.2020.09.036

39. Du D, Feng H, Lv W, Ashrafinia S, Yuan Q, Wang Q, et al. Machine
learning methods for optimal radiomics-based differentiation between recurrence and
inflammation: application to nasopharyngeal carcinoma post-therapy PET/CT images.
Mol Imaging Biol. (2020) 22:730–8. doi: 10.1007/s11307-019-01411-9

40. Tsai YH, Yuan R, Patel D, Chandrasekaran S, Weng HH, Yang JT, et al. Altered
structure and functional connection in patients with classical trigeminal neuralgia.
Hum Brain Mapp. (2018) 39:609–21. doi: 10.1002/hbm.23696

41. Huang T, Lin SH, Malewicz NM, Zhang Y, Zhang Y, Goulding M, et al.
Identifying the pathways required for coping behaviours associated with sustained
pain. Nature. (2019) 565:86–90. doi: 10.1038/s41586-018-0793-8

42. Foo H, Mason P. Brainstem modulation of pain during sleep and waking. Sleep
Med Rev. (2003) 7:145–54. doi: 10.1053/smrv.2002.0224

43. Cruccu G, Biasiotta A, Di Rezze S, Fiorelli M, Galeotti F, Innocenti P, et al.
Trigeminal neuralgia and pain related to multiple sclerosis. Pain. (2009) 143:186–
91. doi: 10.1016/j.pain.2008.12.026

44. Glickstein M, Doron K. Cerebellum: connections and functions. Cerebellum.
(2008) 7:589–94. doi: 10.1007/s12311-008-0074-4

45. Coombes SA, Misra G. Pain and motor processing in the human cerebellum.
Pain. (2016) 157:117–27. doi: 10.1097/j.pain.0000000000000337

46. Moulton EA, Schmahmann JD, Becerra L, Borsook D. The cerebellum
and pain: passive integrator or active participator? Brain Res Rev. (2010) 65:14–
27. doi: 10.1016/j.brainresrev.2010.05.005

47. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev
Neurosci. (2009) 32:413–34. doi: 10.1146/annurev.neuro.31.060407.125606

48. Obermann M, Rodriguez-Raecke R, Naegel S, Holle D, Mueller D, Yoon
MS, et al. Gray matter volume reduction reflects chronic pain in trigeminal
neuralgia. Neuroimage. (2013) 74:352–8. doi: 10.1016/j.neuroimage.2013.
02.029

49. Terrier LM, Hadjikhani N, Destrieux C. The trigeminal pathways. J Neurol.
(2022) 269:3443–60. doi: 10.1007/s00415-022-11002-4

50. Brown G, Pocock A, Zhao M-J, Luján M. Conditional likelihood maximisation:
a unifying framework for information theoretic feature selection. J Mach Learn Res.
(2012) 13:27–66.

51. Dimitriadis SI, Liparas D, Alzheimer’s Disease Neuroimaging Initiative. How
random is the random forest? Random forest algorithm on the service of
structural imaging biomarkers for Alzheimer’s disease: from Alzheimer’s disease
neuroimaging initiative (ADNI) database. Neural Regen Res. (2018) 13:962–
70. doi: 10.4103/1673-5374.233433

Frontiers inNeurology 09 frontiersin.org

https://doi.org/10.3389/fneur.2023.1273336
https://doi.org/10.1152/ajpregu.00069.2002
https://doi.org/10.1016/j.neuroimage.2021.117760
https://doi.org/10.2147/JHC.S309570
https://doi.org/10.1186/s12885-018-5024-z
https://doi.org/10.1007/s00330-018-5463-6
https://doi.org/10.1109/TIT.1972.1054863
https://doi.org/10.1371/journal.pone.0124165
https://doi.org/10.1016/j.neubiorev.2020.09.036
https://doi.org/10.1007/s11307-019-01411-9
https://doi.org/10.1002/hbm.23696
https://doi.org/10.1038/s41586-018-0793-8
https://doi.org/10.1053/smrv.2002.0224
https://doi.org/10.1016/j.pain.2008.12.026
https://doi.org/10.1007/s12311-008-0074-4
https://doi.org/10.1097/j.pain.0000000000000337
https://doi.org/10.1016/j.brainresrev.2010.05.005
https://doi.org/10.1146/annurev.neuro.31.060407.125606
https://doi.org/10.1016/j.neuroimage.2013.02.029
https://doi.org/10.1007/s00415-022-11002-4
https://doi.org/10.4103/1673-5374.233433
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Brain entropy changes in classical trigeminal neuralgia
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Multimodal MRI data acquisition
	2.3 Data preprocessing
	2.4 Brain entropy analysis
	2.5 Statistical analysis
	2.6 Machine learning classification

	3 Results
	3.1 Demographics and clinical characteristics
	3.2 Spatial distribution of BEN changes and correlation analysis
	3.3 Machine learning classification

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


