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busulfan, vorinostat and
olaparib in AML cells
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Xiaowen Tang3 and Borje S. Andersson1

1Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson
Cancer Center, Houston, TX, United States, 2Department of Oncology, University of Alberta,
Edmonton, AB, Canada, 3Department of Hematology, The First Affiliated Hospital of Soochow
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Combinations of nucleoside analog(s) and DNA alkylating agent(s) are used for

cancer treatment as components of pre-transplant regimens used in

hematopoietic stem cell transplantation. Their efficacies are enhanced by

combining drugs with different mechanisms of action, which also allows a

reduction in the individual drug dosages and thus potentially in toxicity to the

patient. We hypothesized that addition of SAHA and olaparib, an HDAC- and a

PARP-inhibitor, respectively, to the established combination of fludarabine,

clofarabine and busulfan would enhance AML cell cytotoxicity. Exposure of the

AML cell lines KBM3/Bu2506, MV4-11, MOLM14 and OCI-AML3 to the 5-drug

combination resulted in synergistic cytotoxicity with combination indexes < 1.

Increased protein acetylation and decreased poly(ADP-ribosyl)ation were

observed, as expected. Activation of apoptosis was suggested by cleavage of

Caspase 3 and PARP1, DNA fragmentation, increased reactive oxygen species, and

decreased mitochondrial membrane potential. The reduction in poly(ADP-ribosyl)

ation was independent of caspase activation. Several proteins involved in DNA

damage response and repair were downregulated, which may be contributing

factors for the observed synergism. The increased phosphorylation of DNAPKcs

suggests inhibition of its kinase activity and diminution of its role in DNA repair. A

similar synergism was observed in patient-derived cell samples. These findings will

be important in designing clinical trials using these drug combinations as pre-

transplant conditioning regimens for AML patients.

KEYWORDS
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1 Introduction

Preclinical and clinical studies have demonstrated the

synergistic cytotoxicity of fludarabine (Flu), clofarabine (Clo), and

busulfan (Bu) towards acute myeloid leukemia (AML) cells (1–5).

The antineoplastic activities of Bu, a DNA alkylating agent, and the

two nucleoside analogs Flu and Clo involve different mechanisms;

Bu forms DNA adducts/crosslinks while Flu and Clo become

incorporated into newly replicating DNA strands during DNA

synthesis, and they transiently arrest the cell cycle at G2- and S-

phase, respectively (6, 7). Both processes trigger a chain of events

including formation of DNA strand breaks and subsequent

activation of pro-apoptotic pathways (7–9). Combinations of

DNA alkylator(s) and nucleoside analog(s) are effective pre-

transplant regimens for hematopoietic stem cell transplantation

(HSCT) for AML patients, provided that the drugs are sequenced

properly, with the nucleoside analog(s) being administered before

the alkylating agent (1, 7, 10).

The cytotoxicity of [Flu+Clo+Bu] is enhanced with histone

deacetylase (HDAC) inhibitors (11–14), hypomethylating agents

(13), BCL-2 inhibitors (15), and FLT3 inhibitors (16). HDAC

inhibitors (HDACi) such as SAHA/vorinostat restore appropriate

gene expression, resulting in induction of cell differentiation, cell

cycle arrest and apoptosis (17). Despite their preclinical efficacy,

HDACi do not seem to have high clinical effectiveness as

monotherapy, and potentially more effective anti-tumor activity is

observed when they are combined with other anti-cancer drugs

(18–20). In this context, the differential effects of HDACi on the

expression of cellular drug transporters must also be considered

before applying them in combination chemotherapy, e.g., they are

known to decrease MRP1 protein and increase MDR1 protein levels

in human hematologic cancer cell lines (21). Such mechanisms may

partly explain the lack of clinical efficacy when the HDACi

romidepsin was combined with MDR1 ligands such as

doxorubicin or vincristine (22, 23).

The efficacy of HDACi in combination chemotherapy may be

attributed in part to its ability to induce DNA double-strand breaks

(DSBs); in fact, HDACi-mediated changes in chromatin structure

directly activate the DNA damage response (24, 25). HDACi affect

the acetylation status of proteins involved in different DNA repair

pathways and may have an impact on the genomic instability of

cancer cells (26).

Another class of drugs which affect genomic instability are the

poly(ADP-ribose) polymerase (PARP) inhibitors. PARP enzymes

catalyze protein poly(ADP-ribosyl)ation (PARylation); they bind to

DNA strand breaks, self-ribosylate, and recruit and PARylate DNA

repair proteins (27). Inhibition of PARP enzymes compromises the

localization, stability and activity of chromatin factors including

histones, topoisomerases and DNA repair proteins, thereby

affecting the DNA damage response (28, 29).

HDACi interact significantly with PARP inhibitors (PARPi)

(30, 31). We recently showed that HDACi inhibit protein

PARylat ion and exhibi t synergist ic cytotoxicity with

chemotherapeutic agents such as gemcitabine (Gem), Bu and

melphalan (Mel) in lymphoma cell lines (31). Clinically, the

combination [Gem+Bu+Mel+SAHA+Olaparib (Ola)] provided
Frontiers in Oncology 02
~90% event-free and overall survival rates for lymphoma patients

undergoing autologous HSCT (32). These results prompted us to

expand this rationale into myeloid malignancies and determine the

synergistic cytotoxicity of an alkylating agent, nucleoside analog(s),

HDACi, and PARPi in AML cells. Using the proven clinical efficacy

of [Flu+Clo+Bu] in AML as a basis, this three-drug combination

was combined with the HDACi SAHA/vorinostat and the PARPi,

Ola. We now report the synergistic cytotoxicity of these five drugs in

AML cell lines and cell samples derived from patients with acute

leukemia. The results provide another level of mechanistic insight

into the previously reported observations on the HDACi- and

PARPi-mediated inhibition of DNA repair in hematologic cancers

and its potential exploitation for therapeutic purposes in allogeneic

stem cell transplantation.
2 Methods

2.1 Cell culture

The AML cell lines MV4-11, MOLM14 and OCI-AML3 were

obtained from Dr. Michael Andreeff at the University of Texas MD

Anderson Cancer Center (UTMDACC). The busulfan-resistant

KBM3/Bu2506 (KBu) cell line was established in our laboratory

by serial exposure of KBM3 cells (33) to increasing concentrations

of Bu. All cells were cultured in RPMI 1640 (Mediatech, Inc.,

Manassas, VA) with 10% heat-inactivated fetal bovine serum

(FBS: Gemini Bio Products, West Sacramento, CA), 100 U/ml

penicillin and 100 mg/ml streptomycin (Mediatech) at 37°C in a

fully humidified atmosphere of 5% CO2 in air.
2.2 Patient samples

Leukemia cell samples were isolated from patients’ peripheral

blood using lymphocyte separation medium (Mediatech) and

incubated in suspension in the RPMI 1640 medium described

above. Patient 1 had T-cell prolymphocytic leukemia (T-PLL),

patient 2 had mixed phenotype acute leukemia and patient 3 had

AML, as shown in Figure 1. Patient samples were collected after

obtaining written informed consent, and all studies using these

samples were performed under a protocol approved by the

Institutional Review Board of the UTMDACC, in accordance

with the Declaration of Helsinki.
2.3 Drugs

Fludarabine (Flu), clofarabine (Clo), SAHA/vorinostat, olaparib

(Ola), NU7741, LTURM34 and AZD7648 were purchased from

Selleck Chemicals LLC (Houston, TX), and busulfan (Bu) was

obtained from Sigma-Aldrich Chemical Sciences Corporation (St.

Louis, MO). Z-VAD-FMK was purchased from Cayman Chemical

Co. (Ann Arbor, MI). Drug stock solutions were dissolved in

dimethyl sulfoxide (DMSO) and the final concentration of DMSO
frontiersin.org
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was <0.08% by volume, a level that does not induce differentiation

of these cell lines.
2.4 Cell proliferation and cell death assays

Cell proliferation assays were done in triplicate using 96-well

plates. Cell aliquots (100 µl of 0.5 X 106 cells/ml) were analyzed for

proliferation using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl

tetrazolium bromide (MTT) assay as previously described (34).

The inhibition of cell proliferation after a 48-h drug exposure was

determined relative to the control cells exposed to solvent alone.

Graphical analyses including calculations of IC10–IC20 values (the

concentration of drug required for 10–20% growth inhibition) were

done using Prism 5 (GraphPad Software, San Diego, CA).

Programmed cell death was determined by flow cytometric

measurements of phosphatidylserine externalization with

Annexin-V-FLUOS (Roche Diagnostics, Indianapolis, IN) and 7-

aminoactinomycin D (BD Biosciences, San Jose, CA) using a Muse

Cell Analyzer (MilliporeSigma, St. Louis, MO).

Drug combination effects were estimated based on the

combination index (CI) values calculated using the CompuSyn

software (Combo Syn, Inc., Paramus, NJ). This program was

developed based on the median-effect method: CI < 1 indicates

synergy, CI ≈ 1 is additive, and CI > 1 suggests antagonism.
2.5 Western blot analysis

Cells were exposed continuously to drug(s) for 48 h, harvested

and washed with cold phosphate-buffered saline (PBS). Cells were

lysed with lysis buffer (Cell Signaling Technology, Danvers, MA).

Total protein concentrations in the cell lysates were determined
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using a BCA Protein Assay kit (Thermo Fisher Scientific, Rockford,

IL). Western blot analysis was done by separating protein extracts

on polyacrylamide-SDS gels and blotting onto nitrocellulose

membranes (Bio-Rad, Hercules, CA). Immunoblot analyses were

done using the Immobilon Western Chemiluminescent HRP

Substrate (MilliporeSigma). The sources of the antibodies and

their optimum dilutions are available upon request. The b-actin
protein was used as an internal control.
2.6 Determination of the
level of PARylation

The levels of total PARylated proteins were determined by

Western blot analysis (as described above) and enzyme-linked

immunosorbent assay (ELISA) using the poly(ADP-ribose) ELISA

kit from Cell Biolabs, Inc. (San Diego, CA). The monoclonal anti-

PAR antibody used for Western blotting was obtained from R&D

Systems, Inc. (Minneapolis, MN). The antibody is specific for PAR

polymers 2 to 50 units long, but does not recognize structurally

related RNA, DNA, ADP-ribose monomers, NAD, or other nucleic

acid monomers.
2.7 Analysis of reactive oxygen species

Cells were analyzed for production of ROS using CM-H2DCFDA

(5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate,

acetyl ester), an ROS indicator that diffuses into cells where it is

oxidized to a fluorescent product (Thermo Fisher Scientific). Briefly,

cells were aliquoted (0.4ml) into tubes and CM-H2DCFDA (3 ml of
0.12 mM solution in DMSO) was added. Cells were incubated at 37°C

for 1 h and immediately analyzed with a Gallios Flow Cytometer
FIGURE 1

Effects of drugs on molecular markers of apoptosis in patient-derived cell samples. Mononuclear cells were isolated from peripheral blood of
patients with leukemia (upper panel) and exposed to the indicated drugs for 48 h prior to analysis by Western blotting (lower panel). F: 0.15 µM
fludarabine; C: 15 nM clofarabine; B: 15 µg/ml busulfan; S: 0.6 µM SAHA/vorinostat; O: 7 µM olaparib. Casp, caspase.
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(Beckman Coulter, Inc., Indianapolis, IN) using excitation/emission

wavelengths of 492/520 nm. Arithmetic means of the fluorescence

intensities were compared and the relative fold increase in ROS

production was calculated.
2.8 Analysis of mitochondrial
membrane potential

An MMP kit (Cayman Chemical Co.) was used to determine

changes in the MMP using the JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-
tetraethylbenzimidazolylcarbocyanine iodide) reagent. Cells to be

analyzed were aliquoted (0.4 ml) into flow cytometry tubes. Diluted

(1:10 with cell growth medium, 3 ml) MMP-sensitive fluorescent

dye JC-1 was added to each tube, incubated at 37°C for 20 min, and

analyzed by flow cytometry (lex = 488 nm) using the 530 nm (FL-1

channel, green) and 585 nm (FL-2 channel, red) band-pass filters.

Healthy cells with functional mitochondria and high MMP exhibit

red fluorescence (aggregated JC-1), whereas cells with disrupted

mitochondria and low MMP show green fluorescence (monomeric

JC-1).
2.9 Statistical analysis

Results are presented as the mean ± standard deviation of at

least three independent experiments and statistical analysis was

performed using Student’s paired t-test with a two-tailed
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distribution (Microsoft Excel, Redmond, WA, USA). A P value of

<0.05 was considered statistically significant.
3 Results

3.1 [Flu+Clo+Bu+SAHA+Ola] combination
shows synergistic cytotoxicity in AML cells

Cells were exposed to individual drugs to calculate their IC10-20

values, which were used in the drug combination experiments to

determine their effects on cell proliferation and apoptosis. Exposure

of KBu, MV4-11, MOLM14, and OCI-AML3 cells to Flu, Clo, Bu,

SAHA or Ola resulted in 9-28% growth inhibition. [Flu+Clo+Bu]

inhibited growth by 42%, 45%, 52%, and 56% in KBu, MV4-11,

MOLM14, and OCI-AML3 cells, respectively (Figure 2A). Addition

of SAHA and Ola to the three-drug combinations inhibited cell

proliferation by 66%-71% versus control (Figure 2A). The [Flu+Clo

+Bu+Ola] combination decreased cell proliferation more than [Flu

+Clo+Bu+SAHA] in AML cells (data not shown). All of these

results correlate with the corresponding Annexin V data. The [Flu

+Clo+Bu] combination caused ~28%-56% cell death as indicated by

Annexin V positivity. Exposure to the [Flu+Clo+Bu+SAHA+Ola]

combination increased Annexin V positivity to 38%-72% of control

(Figure 2A). To test for a synergistic interaction, cells were exposed

to different concentrations of the individual drugs or to the five-

drug combination at a constant concentration ratio, and the MTT

assay was performed. The calculated CI at increasing drug effects
A

B

C

FIGURE 2

Cytotoxicity of fludarabine (Flu/F), clofarabine (Clo/C), busulfan (Bu/B), vorinostat (SAHA/S), and olaparib (Ola/O) in AML cell lines. Cells were
exposed to the indicated concentrations of the drugs, alone or in combination, for 48 h prior to determination of relative cell proliferation by the
MTT assay and apoptosis by the Annexin V (Ann V) assay (A). The results are averages of three independent experiments and each experiment was
done in duplicate. P values less than 0.05 are indicated by an asterisk (*). (B) To determine drug synergism, cells were exposed to various drug
combinations at constant ratio concentrations for 48 h prior to the MTT assay. The relationships between the calculated combination indexes (CI)
and fraction affected (Fa) are shown; CI <1.0 indicates synergism. The graphs are representatives of two independent experiments. (C) After 48-h
drug exposure, cells were lysed, boiled and analyzed for the levels of protein acetylation and poly(ADP-ribosyl)ation by Western blotting.
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was graphically analyzed. Figure 2B shows combination index (CI)

values <1 at fraction affected (Fa) > 0.5 in all cell lines tested,

suggesting synergism for drug concentrations where potentially

clinically relevant cytotoxicity was apparent. The graphs also

suggest that drug antagonism (CI > 1) may exist at lower drug

concentrations where lower Fa values were observed, and which

resulted in relatively little cytotoxicity (Figure 2B).

SAHA is known to inhibit histone deacetylases, and Ola is a

potent inhibitor of PARP. We, therefore, sought to determine their

effects on the acetylation of histone 3 and a-tubulin as well as on the

PARylation of proteins. Exposure of AML cells to low levels of

SAHA (0.4 µM – 0.8 µM) did not cause any significant increase in

the level of AcH3K9 but resulted in a modest increase in the level of

Ac a-tubulin K40 (Figure 2C). The [Flu+Clo+Bu] combination had

minimal effect on the acetylation of histone 3 and a-tubulin;
addition of [SAHA+Ola] to this combination increased the

acetylation of both proteins (Figure 2C). Olaparib alone at the

concentrations used here (4.5 µM – 9 µM) did not decrease the

PARylation levels except in MV4-11 cells; its addition to [Flu+Clo

+Bu+SAHA] combination, however, markedly decreased the levels

of PAR in all four AML cell lines tested (Figure 2C). These

observations are consistent with the previously reported

synergistic interactions between HDAC and PARP inhibitors (27,

30, 31); addition of [Flu+Clo+Bu] apparently enhances the

inhibition of PARylation.
3.2 [Flu+Clo+Bu+SAHA+Ola]
induces apoptosis

Whether the observed increases in Annexin V positivity

(Figure 2A) might be associated with apoptotic cell death was

assessed by analyzing the cleavage of Caspase 3 and PARP1,
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which are indicators of apoptosis. While [Flu+Clo+Bu] caused

cleavage of Caspase 3 and PARP1, addition of SAHA and Ola to

this triple-drug combination markedly enhanced their cleavage

(Figure 3A). Phosphorylation of histone 2AX also increased in

cells exposed to [Flu+Clo+Bu] and even more so after [Flu+Clo+Bu

+SAHA+Ola], suggesting DSB formation and/or activation of the

DNA-damage response, consistent with the observed cleavage of

genomic DNA as shown by agarose gel analysis (Figure 3B), which

was probably due to caspase-mediated activation of nuclear

DNases (35).
3.3 [Flu+Clo+Bu+SAHA+Ola] induces
production of ROS

To further identify possible mechanisms of apoptosis activation,

we examined the production of ROS in AML cells exposed to [Flu

+Clo+Bu+SAHA+Ola]. Flow cytometric analysis showed an ~2-

fold increase in ROS levels in KBu andMV4-11 cells exposed to [Flu

+Clo+Bu] versus control cells, which further increased to ~3.5- to 4-

fold versus control cells after exposure to the [Flu+Clo+Bu+SAHA

+Ola] 5-drug combination (P < 0.05 in both cell lines); in contrast,

no significant change (P > 0.05 in both cell lines) was observed when

SAHA and Ola were added to the [Flu+Clo+Bu] combination in

MOLM14 and OCI-AML3 cells (Figure 3C). Mitochondrial

membrane potential (MMP) decreased in all four cell lines after

exposure to [Flu+Clo+Bu+SAHA+Ola] whereas more modest

effects were seen with the [Flu+Clo+Bu] combination, as

suggested by the relative increases in monomer JC-1/aggregate

JC-1 ratio (Figure 3D); the increase in the JC-1 ratio between

[Flu+Clo+Bu] and [Flu+Clo+Bu+SAHA+Ola] treatments was

statistically significant (P < 0.05) in KBu and MV4-11 cell lines.

The decrease in MMP may cause pro-apoptotic factors to leak from
A

B D EC

FIGURE 3

The five-drug combinations strongly activate apoptosis. Cells were exposed to the indicated drugs for 48 h, harvested, and analyzed for (A) molecular
markers of apoptosis by Western blotting, (B) cleavage of DNA by agarose gel electrophoresis, (C) reactive oxygen species (ROS) production, and (D)
changes in mitochondrial membrane potential (MMP). The results in panels (C, D) are averages of three independent experiments. P values less than 0.05 are
indicated by an asterisk (*). (E) Cells were pre-exposed to 5 mM N-acetylcysteine (NAC) for 1 h prior to addition of the 5-drug combination and cells were
analyzed by Western blotting after 48 h. Casp: Caspase; other abbreviations are the same as in Figure 2.
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the mitochondria and activate caspases. Indeed, the level of active

Caspase 3 (based on its cleavage) also increased more in cells

exposed to [Flu+Clo+Bu+SAHA+Ola] than to [Flu+Clo+Bu]

(Figure 3A). This Caspase 3 activation and decreased MMP

closely paralleled the triggering of apoptosis as shown by the

Annexin V assay (Figure 2A). Overall, cell exposure to [Flu+Clo

+Bu+SAHA+Ola] induced ROS production and decreased MMP,

potentially contributing to the leakage of pro-apoptotic factors and

activation of caspases, and committing cells to apoptosis as shown

by the cleavage of Caspase 3 and PARP1, as well as by genomic

DNA fragmentation (Figures 3A, B). The conclusion that ROS

production and mitochondrial dysfunction are in part responsible

for apoptosis induction was supported by the observation that

treating KBu or MV4-11 cells with 5 mM N-acetylcysteine, an

ROS scavenger, for 1 h prior to the 5-drug combination treatment

did not completely inhibit apoptosis as shown by partial decrease in

the levels of cleaved caspase 3 and g-H2AX (Figure 3E).
3.4 The inhibition of PARylation mediated
by [Flu+Clo+Bu+SAHA+Ola] does not
depend on caspase activation

Since Caspase 3 was activated by the [Flu+Clo+Bu+SAHA

+Ola] combination, we wished to determine if the observed

inhibition of PARylation was caspase-dependent. To this effect,

cells were exposed to an irreversible pan-caspase inhibitor, Z-VAD-

FMK, 30 min prior to addition of the five-drug combination and

analyzed by Western blotting and ELISA. Figure 4A shows

PARylation of multiple proteins in both the control and [Flu+Clo

+Bu] treatment groups. The [SAHA+Ola] and [Flu+Clo+Bu

+SAHA+Ola] combinations significantly inhibited PARylation;

however, addition of Z-VAD-FMK did not affect this drug-
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mediated inhibition (Figure 4A). Again, significant cleavage of

Caspase 3 and PARP1 was observed in cells exposed to [Flu+Clo

+Bu+SAHA+Ola] and addition of Z-VAD-FMK inhibited Caspase

3 cleavage in MV4-11 and MOLM14 cells but had little effect on

PARP1 cleavage (Figure 4A). Interestingly, the phosphorylation of

histone 2AX seen after [Flu+Clo+Bu+SAHA+Ola] treatment was

markedly inhibited by Z-VAD-FMK in MV4-11 cells but not in

MOLM14 cells (Figure 4A). Quantitative determination of the levels

of PARylation by ELISA provided similar results (Figure 4B),

suggesting that the observed inhibition of PARylation is

caspase independent.
3.5 [Flu+Clo+Bu+SAHA+Ola] has similar
synergistic effects in patient-derived
leukemia cells

To assess the potential clinical extension of our results, cells

from patients with leukemia were exposed to [Flu+Clo+Bu], [SAHA

+Ola], or [Flu+Clo+Bu+SAHA+Ola] and analyzed by Western

blotting. Increased cleavage of Caspase 3 was apparent in patient

samples 1 and 3 exposed to the five-drug combination (patient 2

had protein loading problems as indicated by unequal levels of

b-ACTIN), suggesting robust activation of the apoptosis pathway; a

modest cleavage of PARP1 was observed in cells exposed to the

5-drug combination (Figure 1). Phosphorylation of histone 2AX

was also observed in cells exposed to the 5-drug combination,

suggesting DSB formation and/or activation of the DNA-damage

response. These findings suggest a synergism of [Flu+Clo+Bu

+SAHA+Ola] in cells derived from patients with leukemia

involving mechanisms similar to those seen in the cultured cell

lines. Additional patient samples may need to be analyzed to

confirm the clinical relevance of these results.
A B

FIGURE 4

The inhibition of poly(ADP-ribosyl)ation by [Flu+Clo+Bu+SAHA+Ola] is caspase independent. Cells were exposed to the indicated drug combinations
with or without 40 µM caspase inhibitor Z-VAD-FMK (added 30 min before the other drugs) for 48 h prior to (A) Western blot analysis and (B) Poly
(ADP-ribose) ELISA assay. The results in panel B are averages of two independent experiments. Abbreviations and drugs concentrations are the same
as in Figure 2. Casp, Caspase.
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3.6 [Flu+Clo+Bu+SAHA+Ola] combination
affects the levels and phosphorylation of
proteins involved in DNA damage response
and repair

Acetylation and PARylation are known to occur in some proteins

involved in DNA repair (27, 36). These post-translational

modifications affect the stability of the proteins, as previously shown

for UHFR1 and BRCA1 (37, 38). We, therefore, examined the effects of

Flu, Clo, Bu, SAHA and Ola, individually or in combinations, on DNA

damage response protein levels (total and phosphorylated) in AML cell

lines. In general, the levels of phosphorylated and pan ATM (which

functions in DNA DSB repair and cell cycle checkpoint activation)

decreased in cells exposed to the five-drug combination; the level of

BRCA1 (which functions in homologous recombination (HR) repair)

greatly decreased (Figure 5). ATRX is a chromatin remodeling protein

involved in HR (39) while DAXX has multiple functions in human

cells, including regulation of DNA repair (40). The levels of both

proteins decreased in AML cells exposed to the five-drug combination

(Figure 5). While the level of the non-homologous end joining (NHEJ)

repair protein DNAPKcs decreased in cells exposed to [Flu+Clo+Bu

+SAHA+Ola], its phosphorylation at serine 2056 dramatically

increased; the level of another NHEJ protein, Artemis, also

decreased (Figure 5).

The NuRD complex is involved in chromatin remodeling and

deacetylation processes (41) and plays a key role in the cellular

DNA damage response by regulating DNA damage signaling and

repair events (42). The levels of the CHD3, CHD4, RBAP46, and

MTA1 subunits of NuRD decreased in all cell lines exposed to [Flu

+Clo+Bu+SAHA+Ola]; the HDAC1 subunit also modestly

decreased, but HDAC2 was only minimally affected (Figure 5).

Of all the DNA damage response/repair protein events analyzed,

the increased phosphorylation of DNAPKcs at serine 2056 was most
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intriguing. We, therefore, analyzed the kinetics of its

phosphorylation. Figure 6A shows a marked increase in the level of

P-DNAPKcs (S2056) within 6 h of exposure to [Flu+Clo+Bu+SAHA

+Ola], similar to the kinetics of P53 phosphorylation at serine 15 and

phosphorylation of histone 2AX in the MV4-11 and MOLM14 cell

lines. These results are consistent with the reported function of

DNAPKcs, which is to control the repair of the broken DNA ends

and transmit the damage signal through P53 protein to induce cell

cycle arrest and apoptosis (43). Whereas the level of P-DNAPKcs

increased with drug treatment, the level of unphosphorylated

DNAPKcs decreased within 24 h, which coincides with the

cleavage of Caspase 3. DNAPKcs autophosphorylation at Ser2056

results in inactivation of its kinase activity and DNA repair ability

(44–46). These results suggest significant effects of [Flu+Clo+Bu

+SAHA+Ola] on the complex interactions among proteins

involved in the DNA damage response, DNA repair, cell cycle, and

programmed cell death.

To further analyze the possible interaction between DNAPK

and P53, MV4-11 cells were exposed to DNAPK inhibitors prior to

addition of the chemotherapy drugs. The inhibitors Nu7741,

LTURM34 and AZD7648 increased the level of P-DNAPKcs

(S2056) but decreased the level of pan P53 relative to the control

(i.e., no inhibitor) after the 24 h five-drug exposure (Figure 6B),

suggesting that the stability of P53 was compromised in the

presence of DNAPK inhibitors. These findings are consistent with

DNA-PK phosphorylating and stabilizing P53 in this setting as

previously reported (47, 48).
4 Discussion

We recently reported the in vitro synergistic cytotoxicity of Bu,

gemcitabine (Gem), melphalan (Mel), SAHA and Ola in lymphoma
FIGURE 5

Effects of drugs on the levels and phosphorylation status of various proteins involved in DNA repair/DNA damage response. Cells were exposed to
the indicated drug concentrations for 48 h prior to analysis by Western blotting. NuRD, Nucleosome Remodeling and Deacetylase.
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cells (31). A clinical trial of [Gem+Bu+Mel+SAHA+Ola] as a pre-

transplant (salvage) regimen for autologous HSCT for 35 patients

with refractory Hodgkin’s and Non-Hodgkin’s lymphomas was

very promising, yielding ~90% event-free and overall survival

rates with a median follow-up of 16 months, without adding any

discernible risk to patient safety by the addition of SAHA+Ola (32).

The significant efficacy of such a combination of chemotherapeutic

agents, HDACi, and PARPi in lymphoma prompted us to

determine their activity in leukemia cells and the potential benefit

of this combination as part of pre-transplant regimens in the

context of patients with acute leukemia who typically receive

allogeneic HSCT. Using the combination [Flu+Clo+Bu] as a

backbone, which has proven to be an efficacious pre-transplant

regimen for AML patients receiving allogeneic HSCT (2–5, 49), the

HDACi SAHA and the PARPi Ola were added with the expectation

of further enhancing drug cytotoxicity. Indeed, the present study

shows a synergistic cytotoxicity of [Flu+Clo+Bu+SAHA+Ola] in

AML cells, which may be attributed to a combination of drug-

induced histone modifications, decreased protein PARylation, DNA

damage, increased ROS production, decreased MMP, and down-

regulation of the levels of DNA repair proteins.

The low individual concentrations of Flu, Clo and SAHA used

in these combination treatments with the expectation of ultimately

minimizing patient toxicity in clinical trials may have provided the

initial histone acetylation needed for chromatin remodeling, which

in turn may have resulted in increased exposure of the DNA to Bu-

mediated alkylation, as we described previously in the context of the

so-called “Loop of Death” model for synergy between alkylating

agents and nucleoside analogs in hematological malignancies (7,

50). The resulting DNA adducts may provide signals for additional

histone acetylation to further open up the chromatin and increase

the accessibility of the DNA to further alkylation, as per the “Loop

of Death” model (Figure 7). These effects are presumably enhanced

when Flu and Clo are incorporated into growing nascent DNA

strands during replication via the same mechanism(s). This futile
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cycle of histone acetylation, DNA alkylation and nucleoside analog

incorporation into DNA exacerbates DNA damage and potentially

increases its complexity, making it more challenging for the DNA

damage response to process correctly. This model does suggest the

importance of drug sequencing for optimal anticancer efficacy, with

the nucleoside analogs ideally being added prior to the alkylating

agents. However, in the present study the cells were exposed

concurrently to the various drugs, which thus represents a

limitation in terms of its mechanistic implications.

Consistent with this model, the complex DNA damage invoked by

[Flu+Clo+Bu] strongly activates the DNA damage response as

indicated by increased phosphorylation of histone 2AX, a response

that is even more strongly activated in combination with the HDACi

and PARPi (Figure 4). Repair of the damaged DNA is known to require

the initial binding of PARP1 at the damage site(s) (51), after which

PARP1 PARylates itself, histones and certain chromatin-associated

proteins to provide a scaffold for recruitment of the DNA repair

machinery (52). This process could be abrogated by the combined

effects of SAHA and Ola through inhibition of PARylation via PARP1

trapping to chromatin, a mechanism that explains the cytotoxicity of

the HDACi trichostatin A and the PARPi talazoparib in leukemia cells

(53). The DNA damage inflicted by [Flu+Clo+Bu] combined with the

high levels of oxidative and replication stress characteristic of many

human cancers may render these AML cells highly dependent on

protein acetylation and PARylation, and therefore extremely sensitive

to the added [HDACi+PARPi] exposure (Figure 7).

One disadvantage of using high dosages of chemotherapeutic

agents is their known tissue toxicities. Our data show that combining

low dosages of these drugs and agents with different mechanisms of

action enhanced synergistic cytotoxicity against leukemia cells.

Addition of SAHA and Ola to [Flu+Clo+Bu] significantly induced

apoptosis as indicated by increased Annexin V positivity and

activation of Caspase 3 (Figures 2, 3). Since our clinical trial on

[Gem+Bu+Mel+SAHA+Ola] in lymphoma resulted in minimal

normal tissue toxicities, and notably with no cases of serious veno-
A B

FIGURE 6

Kinetics of the phosphorylation of the DNA-dependent protein kinase catalytic subunit (DNAPKcs). (A) Cells were exposed to five-drug combinations
for various times and analyzed by Western blotting. MV4-11 cells: 70 nM fludarabine, 9 nM clofarabine, 1.8 µg/ml busulfan, 0.4 µM SAHA and 5 µM
olaparib. MOLM14 cells: 140 nM fludarabine, 17 nM clofarabine, 8 µg/ml busulfan, 0.45 µM SAHA and 4.5 µM olaparib. (B) MV4-11 cells were pre-
exposed to the indicated DNAPK inhibitors for 1 h prior to addition of [Flu+Clo+Bu+SAHA+Ola] and analyzed by Western blotting after 6 h and 24 h.
Casp, caspase.
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occlusive disease (32), we anticipate that the [Flu+Clo+Bu+SAHA

+Ola] combination will potentially result in low toxicities in AML

patients undergoing HSCT. Further investigations, notably clinical

trials, will be required to establish the therapeutic relevance of this

drug combination. It should be noted however, that for such clinical

trials, high-risk patients with relapsed/refractory AML and a low

comorbidity index should be favored as the most optimal group in

which to test the novel combination (4).

In summary, our data with [Flu+Clo+Bu+SAHA+Ola] provide

evidence of interrelated mechanisms that commit AML cells to

apoptosis following complex genotoxic insult. Since similar

synergistic cytotoxicity of this 5-drug combination was observed

in established AML cell lines and patient-derived cell samples, our

results may be used as a hypothetical basis to justify a clinical trial to

evaluate these drugs as part of pre-conditioning regimens for high-

risk AML patients undergoing allogeneic HSCT.
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FIGURE 7

Suggested mechanism of the synergistic cytotoxicity of fludarabine,
clofarabine, busulfan, SAHA and olaparib. The activated nucleoside
analogs inhibit DNA synthesis and DNA repair, which results in
complex DNA lesions. DNA strand breaks may cause histone
modifications and chromatin remodeling, which may expose
genomic DNA and make it potentially more accessible to DNA
alkylation with busulfan. Attempts to repair DNA cross-links results
in additional DNA strand breaks and the cycle is further amplified by
additional DNA alkylations. The increased levels and complexity of
DNA damage results in enhanced cell death. Olaparib and SAHA
inhibit protein PARylation and histone deacetylation, respectively,
resulting in inhibition of DNA repair and further enhancement of the
cycle of DNA damage-repair and cell death. DNA damage is
associated with decreased mitochondrial potential and consequently
with increased apoptosis.
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