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Background: Fusobacterium nucleatum has been recognized as an important key

bacterium in the cause and spread of colorectal carcinogenesis. Nevertheless,

the clinical relevance of F. nucleatum in colorectal cancer (CRC) and its effect on

immune factors and the tumor microenvironment have not been fully elucidated.

Materials and methods: The frequency of F. nucleatum was measured in 100

paired tumor and normal tissue specimens by TaqMan quantification Real-Time

Polymerase Chain Reaction (qPCR). The mRNA expression levels of cytokines

(IL-6, IL-10, IL-12β, IL-17, TNF-α, TLR-2, and TLR-4), and miRNAs (miR-21, miR-

31) were examined. Eventually, any potential correlations between the molecular

and clinicopathological features of the neoplastic samples and the abundance of

F. nucleatum were analyzed.

Results: The relative frequency of F. nucleatum was significantly increased in

cancerous tissue compared to adjacent non-tumor tissues. Furthermore, the high

level of F. nucleatum was significantly associated with histological grade III and

IV CRC tissues (P = 0.027 and P = 0.022, respectively) and perineural invasion-

positive patients (P = 0.037). In addition, the expression levels of IL-6, IL-17,

TNF-α,IL-12β, TLR-2, and TLR-4 as well as miR-21 and miR-31 showed a significant

increase in the cancer group. A notable correlation was also observed between

the high status of F. nucleatum and the expression of IL-6, TNF-α and miR-21.

Conclusion: Our results emphasize the importance of F. nucleatum and changes

in the expression of genes involved in CRC. Studying the microbial profile and

gene expression changes in CRC patients may be a promising approach to

improve screening methods and provide therapeutic strategies.
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1 Introduction

Colorectal cancer (CRC) is a major global health problem,
ranking second in mortality with more than 600,000 deaths
and third in incidence with more than 1.8 million new
cases annually arising. The International Agency for Research
on Cancer (IARC) has predicted that the global number of
mortality and new CRC cases will increase to 3 and 1.6
million, respectively, by 2040 (Cheng et al., 2020; Kaźmierczak-
Siedlecka et al., 2020; Sung et al., 2021; Stolzer, 2022). The
etiology of CRC includes both genetic and environmental
factors. CRC with heritability aspects that account for only 12–
35% of the risk factors includes multiple associated polyposis
(MAP), hereditary non-polyposis colorectal cancer (HNPCC or
Lynch syndrome), multiple associated polyposis (MAP), Peutz-
Jeghers syndrome and familial adenomatous polyposis (FAP)
(Dekker et al., 2019; Stolzer, 2022). Environmental factors
have a significant impact on the occurrence and progression
of CRC, including sedentary lifestyle and obesity, smoking,
heavy alcohol consumption, diabetes mellitus, and bad eating
habits such as consumption of a diet containing low fiber,
high fat, and food carcinogens (Kaźmierczak-Siedlecka et al.,
2020; Stolzer, 2022). Among the aforementioned environmental
factors, intestinal microbiota is a crucial component in colorectal
carcinogenesis.

Previous research points toward the importance of the human
intestinal microbiota in influencing normal physiological activities
that contribute to the maturation of the immune system and
act as a barrier to pathogens (Rea et al., 2018; Dadgar-Zankbar
et al., 2023). Gut microbiota dysbiosis, described as an increase
in the levels of pathogens alongside a decrease in the levels of
beneficial bacteria, is caused by a variety of factors including
lifestyle and dietary changes, widespread use of antibiotics, chronic
stress and host genetics (Chen et al., 2019). Bacterial dysbiosis
is closely associated with inflammatory gastrointestinal diseases
such as ulcerative colitis, inflammatory bowel disease (IBD) and
CRC. They lead to carcinoma by inducing inflammatory responses,
boosting inflammation, aberrant immune regulation, activation
of tumorigenic pathways, production of oncogenic substances,
metabolic dysregulation, and damage to host DNA (Chen et al.,
2019; Wong and Yu, 2019).

Current studies have identified several specific bacterial species
associated with the initiation and progression of CRC through the
aforementioned mechanisms, including Fusobacterium nucleatum,
Bacteroides fragilis, Salmonella enterica, and Escherichia coli (Zeller
et al., 2014; Yachida et al., 2019). Interestingly, considerable
evidence has shown that F. nucleatum is more abundant in
colorectal tumor tissue compared to adjacent normal mucosa,
suggesting its potential involvement in the pathogenesis of CRC
(Allali et al., 2015; Thomas et al., 2019; Wong and Yu, 2019;
Tran et al., 2022). F. nucleatum is an invasive, pro-tumorigenic,
and pro-inflammatory pathogen that adheres to and invades
epithelial and endothelial cells by means of several virulence factors
and induces inflammatory cytokines in the mucosa surrounding
the tumor. This interaction is recognized by Toll-like Receptors
(TLRs) and leads to activation of both innate and adaptive
immunity (Sakamoto and Maeda, 2010; Huang et al., 2014;
Brennan and Garrett, 2016; Henstra et al., 2021). Chemokines

and cytokines, which are examples of inflammatory mediators,
are extensively produced by inflammatory cells and alter the
immune system as well as a wide range of cancers. These
cytokines, such as IL-6, IL-17, and TNF-α, directly promote
tumorigenesis, tumor cell proliferation, angiogenesis, metastasis,
and cell death (Bhat et al., 2022). It is noteworthy that inflammatory
cells can also produce cytokines that restrict tumor growth,
such as IL-10 and IL-12, which lead to modulating apoptosis
and suppressing angiogenesis. However, some studies show their
dual role as both tumor promoters and inhibitors (Kabel,
2014).

Numerous genetic factors can serve as molecular markers for
CRC diagnosis and prognosis. Among these factors, the family of
MicroRNAs (miRNAs) has been identified as a promising candidate
(Ghafouri-Fard et al., 2021). miRNAs are small, endogenous,
non-coding RNA molecules of 18–23 nucleotides. Aberrant
expression patterns and functional abnormalities of miRNAs have
been observed in inflammatory processes and several types of
human cancer. MiRNAs can act as either tumor inhibitors or
oncogenes, depending on their downstream target genes (Chi and
Zhou, 2016). miR-21 and miR-31 are considered to be critical
miRNAs in CRC and exhibit a statistically significant increase
in expression levels in CRC patients compared to the healthy
group (Eslamizadeh et al., 2018). miR-21 is a highly prominent
miRNAs that is involved in cell proliferation and invasion in
CRC via targeting of phosphatase and tensin homolog (PTEN)
and Programmed cell death protein 4 (PDCD4) (Li et al., 2014;
Shen et al., 2019). Furthermore, miR-31 has been identified
as a potent cancer-related miRNA that plays a role in CRC
carcinogenesis by targeting tumor suppressor genes (Cottonham
et al., 2010).

However, there are few studies regarding the interaction and
regulation between the presence of F. nucleatum and inflammatory
genes and miRNAs in CRC. Therefore, in the current study, we
investigated the amount of F. nucleatum and its relationship with
the expression of inflammatory genes (TLR-2, TLR-4, TNF-α, IL-
6, IL-10, IL-12β, and IL-17) and miRNAs (miR-21, and miR-31) in
tumor and adjacent normal tissue of Iranian CRC patients.

2 Materials and methods

2.1 Sample preparation

A total of 100 pairs of fresh-frozen colorectal adenocarcinoma
and matched adjacent non-tumor tissues were provided by
the Iran National Tumor Bank, which was founded by the
Cancer Institute of Tehran University of Medical Sciences,
for Cancer Research, during the 2021–2023 period. After
the surgical procedure, the tissue samples were expeditiously
conveyed to the pathology unit for expert inspection and
assessment by a pathologist. In addition, a segment of the
tumor tissues as well as normal adjacent mucosal samples
were selected and fixed in RNAlater stabilization buffer
(QIAGEN, Hilden, Germany). Samples were preserved at
−70◦C for further analysis. All clinical histopathological
parameters and necessary information were captured from
patients’ records. Patients who had colorectal tumors of
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other types than adenocarcinoma or concomitant malignant
tumors originating from other organs were excluded from
the study. All patients were new cases and did not use any
treatment methods such as antibiotics, probiotics, radiotherapy, or
chemotherapy before surgery.

2.2 Acid nucleic extraction and cDNA
reverse transcription

Total DNA and RNA were extracted from the frozen CRC and
adjacent normal mucosal tissue specimens using a FavorPrepTM
DNA Mini Kit and FavorPrepTM Tissue Total RNA Mini Kit
(Favorgen, Taiwan, Cat. No: FATGK 001), respectively, according
to the manufacturer’s instructions. A nanodrop instrument (WPA
Biowave II Nanospectrophotometer, USA) at OD 260 and 280 nm
was used to measure the concentration and purity of the extracts.
A reverse transcriptase reaction was performed using the cDNA
synthesis kit (Yekta Tajhiz Azma, Iran and Cat. No: YT4500). For
further analysis, the DNA and synthesized cDNA were stored at
−20◦C.

2.3 Relative quantification of
F. nucleatum

The levels of F. nucleatum in both cancerous and matched
normal tissues were identified by employing the 16S rDNA
gene sequence through the utilization of a real-time TaqMan
primer/probe on a Rotor-Gene 6000 real-time PCR cycler (Qiagen
Corbett, Hilden, Germany). The gene solute carrier organic
anion transporter family member 2A1 (SLCO2A1) of the human
reference was used to normalize the Cycle quantification (Cq)
values, as previously elucidated (Mima et al., 2016). The primer
and probe sequences are indicated in Table 1, and their specificities
were examined through the use of EMBL-EPI, NCBI BLAST
databases, and Allele ID software (v.7.5). Each reaction mixture,
having a total volume of 20 µl, contained 20 ng of genomic
DNA, 0.5 µM of each primer, 0.25 µM of the probe, 9 µl of
Universal Probe Ex Taq PCR Master Mix (Ampliqon, Denmark),
and deionized distilled water (6 µL). The qPCR experiment
was conducted as follows: an initial incubation at 95◦C for
15 min, followed by 40 cycles of denaturation at 95◦C for
15 s, and annealing/extension at 62◦C for 30 s. Moreover, all
assays for each individual sample were carried out in duplicate
in a single patch, and the average outcomes of the dual qPCR
investigations were utilized for statistical assessment. The negative
control in all analyses consisted of all the components of the
reaction mixture, excluding bacterial genomic DNA. Following
the guidelines on the minimum information for publication of
quantitative real-time PCR experiments (MIQE) (Bustin et al.,
2009) (Supplementary material). In addition, F. nucleatum ATCC
25586 was used as a positive control. The computation of the fold
change (2−11Cq) in F. nucleatum abundance in tumor compared
to normal tissue involved subtracting 1Cq tumor from 1Cq
normal, where 1Cq represents the average Cq value difference
between each F. nucleatum and the reference gene (Mima et al.,
2016).

2.4 Inflammatory and anti-inflammatory
genes expression

In the present study, relative quantification real-time PCR
was used to assess the expression of the interleukin (IL)-6, IL-
10, IL-12β, IL-17, TNF-α, TLR-2, and TLR-4 genes. All of the
primers utilized in this investigation are presented in Table 1.
Real-time PCR was performed using a Rotor-Gene 6000 real-time
PCR cycler (Qiagen Corbett, Hilden, Germany) according to the
manufacturer’s instructions. A final volume of 12.5 µL was used,
consisting of 3 µL cDNA template, 0.5 µM appropriate forward
and reverse primers, 5.25 µL Power SYBR Green PCR Master
Mix (Bioneer, Korea) and 2.5 µL deionized distilled water. All
reactions were performed in duplicate and all experiments had
a no-template control. Each amplification protocol included an
initial denaturation step of 12 min at 95◦C, followed by 40 cycles
of 15 s at 95◦C, 45 s at 58–61.5◦C (depending on the primer
temperature), and extension at 72◦C for 25 s. The SLCO2A1 was
used as an internal control, and mRNA levels were quantified using
the 2−11Cq approach as described above.

2.5 microRNA extraction and cDNA
synthesis

The FavorPrepTM miRNA Isolation Kit (Favorgen,
Taiwan) was used to extract microRNA (miRNA) from frozen
tissues. The integrity of the miRNAs was checked using a
nanospectrophotometer. Stem-loop primers for specific reverse
transcription (RT) of miRNAs and Ana microRNA detection kit
(AnaCell Co, Iran) were used according to the manufacturer’s
protocol. Briefly, a 20 mL RT reaction master mix was prepared
with a 10 ng microRNA sample, 4 µL RT buffer (5X), 1 µL dNTP
(10 mM), 0.5 µL RT enzyme (20 U/mL), and 1.5 µL stem-loop RT
primers (5×). The reaction conditions were: 37◦C for a duration of
60 min, 70◦C for 5 min.

2.6 miRNA gene expression

Relative quantification real-time PCR was performed using
2X QPCR Master Mix SYBR Green (AnaCell, Iran) to assess
the expression of miR-21, and miR-31 in accordance with the
guidelines provided by the manufacturer. Cycle conditions for the
aforementioned genes were as follows: initial denaturation at 95◦C
for 5 min following 40 cycles at 95◦C for 30 s, annealing at 60◦C for
30 s, and extension at 72◦C for 30 s. The mRNA expression levels
were analyzed using the 2−11Cq method as previously described.
The relative levels of miR-21 and miR-31 were compared to the
geometric mean of U6 snRNA (RNU6B) expression (Schee et al.,
2012).

2.7 Statistical analyses

Statistical analysis was performed with SPSS version v.26.0
software(SPSS Inc., Chicago, IL, USA) and GraphPad Prism v.8.3.0.
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TABLE 1 Utilized oligonucleotide primers and TaqMan probes in the present study.

Target Primer/
probe

Oligonucleotide sequence (5′_3′) Size (bp) Product size (bp) References

Fusobacterium
nucleatum

Primer F AGCTACAAGAGAAGAAAATGAAAATGG 27 105 Shariati et al., 2021

Primer R CCAACTCCTACAAATCCAGTAACC 24

Probe TTACTTCATACCATACACGAGGATCTACTT 30

SLCO2A1 Primer F GAGAGATTTGAATGTTGGACAAAGC 25 89 Shariati et al., 2021

Primer R ACACTTCTGTGGTCACTCGTC 21

Probe TCCTACTGCCATCCTTCTACCTGCCA 26

IL-6 Primer F ACTCACCTCTTCAGAACGAATTG 23 149 Wang et al., 2021

Primer R CCATCTTTGGAAGGTTCAGGTTG 23

IL-10 Primer F GTAGATGCCTTTCTCTTGGAGC 24 160 Zonoobi et al., 2018

Primer R CCCAGACATCAAGGCGCATGTG 22

IL-12β Primer F GCTTCTTCATCAGGGACATCATC 23 112 Bidkhori et al., 2020

Primer R CTCCAGGTCTCAGGGTACTC 20

IL-17 Primer F CAGCAAGAGATCCTGGTCCTG 21 176 Zonoobi et al., 2018

Primer R GGTCGGCTCTCCATAGTCTAAC 22

TNF-α Primer F CCCCAGGGACCTCTCTCTAATC 22 98 Leija-Martínez et al.,
2021

Primer R GGTTTGCTACAACATGGGCTACA 25

TLR-2 Primer F ATCCTCCAATCAGGCTTCTCT 21 163 Shan et al., 2011

Primer R ACACCTCTGTAGGTCACTGTTG 22

TLR-4 Primer F TTGAGCAGGTCTAGGGTGATTGAAC 25 143 Shan et al., 2011

Primer R ATGCGGACACACACACTTTCAAATA 25

IL: interleukin; TLR: toll-like receptor; TNFα: tumor necrosis factor; SLCO2A1: solute carrier organic anion transporter family member 2A1.

A two-tailed P-value < 0.05 was considered statistically significant.
Paired samples t-test was used to compare the relative amounts
of F. nucleatum and the expression of microRNA and pro-
inflammatory genes in the tumor and adjacent normal mucosa
of paired samples, while the difference in copy number was
analyzed using the rank sum test. Fisher’s exact test and chi-
squared test (χ2) were used to assess the relationships between
F. nucleatum status and clinicopathological and molecular features.
Multivariate logistic regression analysis was performed to estimate
odds ratios (ORs) and corresponding 95% confidence intervals
(CIs) for associations between high F. nucleatum DNA levels and
clinicopathological features.

3 Results

3.1 Clinicopathological characterization
of CRC patients

The histopathological and demographic features of the
individuals are summarized in Table 2. In brief, the study consisted
of a total of 59 men and 41 women with a mean age of 56.39 years
(SD ± 14.80). The majority of CRC patients exhibited signs of

grade-II cancer (36%), characterized as moderately differentiated.
while 28%, 17%, 15%, and 4% of patients demonstrated
grade III (poorly differentiated), grade IV (undifferentiated),
grade I (well-differentiated), and grade X (unknown) cancers,
respectively. Based on the initial examinations conducted by a
gastroenterologist and the microscopic examinations performed
by a pathologist, the involvement frequency of various sections
of the intestine in CRC has been recorded in Table 2. Tumor
location mainly involved rectum (35%), cecum (15%), and
sigmoid colon (13%). Overall, 82 colorectal carcinoma patients
were diagnosed with adenocarcinomas, twelve patients had
mucinous (colloid) adenocarcinoma, two patients had Signet-ring
Cell Adenocarcinoma and one patient had mucinous carcinoid.
Notably, around 3% of CRC patients had other histology of
CRC.

3.2 Fusobacterium nucleatum
quantification

In this particular research, we quantitated CRC-associated
F. nucleatum in both colorectal carcinoma tissue and matched
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TABLE 2 Correlations between F. nucleatum status and clinicopathological features.

No. (%)

Amount of F. nucleatum in colorectal carcinoma tissue

Characteristic All patients
(n = 100)

High
(n = 28)

Low
(n = 16)

Negative
(n = 56)

P-value

Age, mean (SD), year 56.39 (14.80) 56.32 (16.83) 58.31 (11.88) 55.88 (14.69) 0.847

Sex Female 41(41) 12 (42.90) 6 (37.50) 23 (41.10) 0.941

Male 59 (59) 16 (57.10) 10 (62.50) 33 (58.90)

Tumor location Cecum 15 5 (17.90) 4 (25.00) 6 (10.70) 0.886

Ascending colon 7 3 (10.70) 0 (0.00) 4 (7.10)

Hepatic flexure 2 0 (0.00) 0 (0.00) 2 (3.60)

Transverse
colon

4 0 (0.00) 0 (0.00) 4 (7.10)

Splenic flexure 2 0 (0.00) 0 (0.00) 2 (3.60)

Descending
colon

3 1 (3.60) 1 (6.30) 1 (1.80)

Sigmoid colon 13 3 (10.70) 2 (12.50) 8 (14.30)

Rectosigmoid 9 2 (7.10) 1 (6.30) 6 (10.70)

Rectum 35 11 (39.30) 5 (31.30) 19 (33.90)

Colon, NOS 10 3 (10.70) 3 (18.80) 4 (7.10)

Tumor size Size ≤ 5 38 (38.0) 11 (39.30) 6 (37.50) 21 (37.50) 0.986

Size > 5 62 (62.0) 17 (60.70) 10 (62.50) 35 (62.50)

Histology Adenocarcinoma 82 23 (82.10) 14 (87.50) 45 (80.40) 0.597

Mucinous
carcinoid

1 0 (0.00) 1 (6.30) 0 (0.00)

Mucinous
(colloid)
adenocarcinoma

12 4 (14.30) 1 (6.30) 7 (12.50)

Signet-ring cell
adenocarcinoma

2 1 (3.60) 0 (0.00) 1 (1.80)

Other 3 0 (0.00) 0 (0.00) 3 (5.40)

Histology grade I (well
differentiated)

15 (15.0) 2 (7.14) 1 (6.30) 8 (14.30) <0.001*

II (moderately
differentiated)

36 (36.0) 3 (10.71) 6 (37.50) 23 (41.10)

III (poorly
differentiated)

28 (28.0) 12 (42.85) 6 (37.50) 15 (26.80)

IV
(undifferentiated)

17 (17.0) 11 (39.28) 3 (18.80) 7 (12.50)

X (unknown) 4 (4.0) 0 (0.00) 0 (0.00) 3 (5.40)

Lymphatic
invasion

Yes, Nos 58 15 (53.60) 13 (81.30) 30 (53.60) 0.297

Yes, extensive 1 0 (0.00) 0 (0.00) 1 (1.80)

No 38 11 (39.30) 3 (18.80) 24 (42.90)

Unknown 3 2 (7.10) 0 (0.00) 1 (1.80)

Vascular
invasion

Yes 65 17 (60.70) 13 (81.30) 35 (62.50) 0.327

No 35 11 (39.30) 3 (18.80) 21 (37.50)

Perineural
invasion

Yes 38 27 (96.42) 1 (3.57) 10 (17.85) 0.033*

No 62 1 (3.57) 16 (93.75) 46 (82.14)

(Continued)
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TABLE 2 (Continued)

No. (%)

Amount of F. nucleatum in colorectal carcinoma tissue

Characteristic All patients
(n = 100)

High
(n = 28)

Low
(n = 16)

Negative
(n = 56)

P-value

Perineal
invasion

Yes 2 0 (0.00) 0 (0.00) 2 (3.60) 0.683

No 98 28 (100.00) 16 (100.00) 54 (96.40)

Extramural
blood vessel
invasion

Yes 7 4 (14.30) 0 (0.00) 3 (5.40) 0.249

No 93 24 (85.70) 16 (100.00) 53 (94.60)

Extranodal
extension

Yes 9 1 (3.60) 4 (25.00) 4 (7.10) 0.071

No 91 27 (96.40) 12 (75.00) 52 (92.90)

Perforation Yes 6 3 (10.70) 0 (0.00) 3 (5.40) 0.440

No 94 25 (89.30) 16 (100.00) 53 (94.60)

Peritoneal
seeding

Yes 10 1 (3.60) 3 (18.80) 6 (10.70) 0.215

No 90 27 (96.40) 13 (81.30) 50 (89.30)

Pathological T Tx 2 0 (0.00) 0 (0.00) 2 (3.60) 0.580

T2 10 4 (14.30) 2 (12.50) 4 (7.10)

T3 78 21 (75.00) 11 (68.80) 46 (82.10)

T4 9 3 (10.70) 3 (18.80) 3 (5.40)

N/A 1 0 (0.00) 0 (0.00) 1 (1.80)

Pathological N Nx 1 0 (0.00) 0 (0.00) 1 (1.80) 0.966

N0 39 11 (39.30) 8 (50.00) 20 (35.70)

N1 31 10 (35.70) 4 (25.00) 17 (30.40)

N2 28 7 (25.00) 4 (25.00) 17 (30.40)

NA 1 0 (0.00) 0 (0.00) 1 (1.80)

Clinical
metastasis

M0 89 25 (90.0) 14 (87.5) 50 (89.40) 0.782

M1 11 3 (10.70) 2 (12.50) 6 (10.70)

Stage Stage I 6 2 (7.10) 1 (6.30) 3 (5.40) 0.957

Stage IIA 26 7 (25.00) 5 (31.30) 14 (25.00)

Stage IIB 2 0 (0.00) 1 (6.30) 1 (1.80)

Stage IIIA 4 2 (7.10) 1 (6.30) 1 (1.80)

Stage IIIB 26 8 (28.60) 3 (18.80) 15 (26.80)

Stage IIIC 25 6 (21.40) 3 (18.80) 16 (28.60)

Stage IV 11 3 (10.70) 2 (12.50) 6 (10.70)

Family history Yes 33 11 (39.30) 5 (31.30) 17 (30.40) 0.705

No 67 17 (60.70) 11 (68.80) 39 (69.60)

Alcohol
consumption

None drinker 94 26 (92.90) 15 (93.80) 53 (94.60) 1.00

Social drinker 6 2 (7.10) 1 (6.30) 3 (5.40)

Smoking status Non-smoker 82 26 (92.90) 10 (62.50) 46 (82.10) 0.143

DX-smoker at
diagnosis but
discontinued

5 0 (0.00) 2 (12.50) 3 (5.40)

Smoker 11 2 (7.10) 4 (25.00) 5 (8.90)

Ex-smoker 2 0 (0.00) 0 (0.00) 2 (3.60)

*: Statistically significant correlation.
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FIGURE 1

Comparison of the presence of F. nucleatum in cancerous and
matched normal tissues (P < 0.004∗∗).

normal mucosal samples through relative quantification Real-
time-PCR assay. The mean abundance of F. nucleatum was
significantly higher in CRC tissues in comparison to adjacent
normal tissues (CRC vs. normal: 28.57 ± 22.82 vs 6.04 ± 10.45,
n = 100, P = 0.004, paired t-test) (Figure 1). F. nucleatum was
detected in 44% and 25% of cancer tissues and adjacent non-
tumor tissue, respectively. The Receiver Operating Characteristic
(ROC) curve was utilized to calculate an optimal cutoff value,
based on the quantity of F. nucleatum, to categorize F. nucleatum-
positive CRCs into low and high groups. Consequently, out of
the 44 colorectal carcinoma cases with detectable F. nucleatum,
28 cases were split into high-level groups and 16 cases into low-
level groups. None of the patients in the high-level group had
previous cancer, with a mean age and tumor sample size of
56.32 years (SD ± 16.83) and 6.13 cm (SD ± 2.15), respectively.
However, the statistical analyses revealed no significant correlation
(p > 0.05) between F. nucleatum and the aforementioned
markers.

3.3 Inflammatory and anti-inflammatory
gene expression

In this study, the expression levels of IL-6, IL-10, IL-12β, IL-
17, TNF-α, TLR-2, and TLR-4 were investigated by real-time PCR
and 2−11Cq. The ROC curve was used to classify the expression
of each gene in CRC into low and high groups. IL-6, IL-17, TNF-
α, TLR-2, and TLR-4 were significantly more highly expressed in
the cancer tissues (p < 0.05). However, there was no meaningful
difference between the tumor and normal samples for IL-10, and
IL-12β (p > 0.05) (Figure 2).

3.4 miRNA gene expression

As a control, the U6 gene was used to evaluate the expression
levels of miR-21, and miR-31 genes in cancer and adjacent normal
tissues (Schee et al., 2012). According to the results, miR-21 and
miR-31 gene expression was significantly higher in the cancer
tissues compared to the adjacent non-tumor mucosa (P < 0.001)
(Figure 3).

3.5 Clinicopathological and molecular
association of F. nucleatum in CRC

The clinicopathological and molecular characteristics of CRCs
according to F. nucleatum status (high expression group vs. low
expression group vs. negative group) in CRC tissue are presented
in Tables 2, 3.

According to logistic regression analysis, a significant
correlation was observed between high levels of F. nucleatum and
histology grade III and IV CRC tissues (P = 0.027 and P = 0.022,
respectively), in which the levels of F. nucleatum DNA were
5.25-fold and 14-fold higher in grade III and IV CRC tissues,
respectively, compared with grade I tissues. Moreover, perineural
invasion-positive patients displayed a significant association with
high-level F. nucleatum (P = 0.037). Compared to perineural
invasion-negative patients, the presence of F. nucleatum DNA
was 2.79-fold higher in perineural invasion-positive patients. No
significant correlation between F. nucleatum infection with other
clinicopathological variables was observed (P > 0.05).

According to the results, significant positive correlations were
observed between the greater amount of F. nucleatum and high
levels of IL-6 (P = 0.014) and TNF-α (P = 0.047) genes. Logistic
regression results suggested that the level of F. nucleatum DNA was
3-fold and 4.4-fold higher in IL-6 and TNF-α high groups compared
to low groups. There was a conspicuous correlation between miR-
21 gene expression and F. nucleatum-high status in CRC tissues
(P = 0.012). Conversely, no significant relation was found between
the expression of the miR-31 gene and this group (P = 0.063).

4 Discussion

The dynamic and observable effect of microorganisms involved
in carcinogenesis is a key issue in investigating their role in many
types of cancer (Collins and Altman, 2012; Guo et al., 2021).
F.nucleatum, has been recognized as one of the predisposing factors
for CRC and plays a role in the progression of cancer through
multiple mechanisms (McIlvanna et al., 2021). Recently, research
into the F. nucleatum and its relationship with CRC has been the
focus of many studies. However, the mechanism of action and the
relationship between F. nucleatum and other microenvironmental
factors in the development of CRC are unclear. To address this
knowledge gap and gain a more thorough comprehension of the
existing relationship, in this study, we investigated the frequency
and association of F. nucleatum with the expression of cytokines
and miRNAs involved in tumor tissue samples and non-neoplastic
mucosa of Iranian patients.

In our current study, F. nucleatum was expressed at significantly
higher levels in tumor samples compared to the adjacent normal
tissues, which is aligned with previous studies (Castellarin et al.,
2012; Viljoen et al., 2015; Rye et al., 2022). The percentage of
presence of F. nucleatum in this study is also within the average
range reported in previous studies from different countries (8.6–
87%) (Mima et al., 2015; Baxter et al., 2016; Suehiro et al., 2017;
Wong et al., 2017; Tunsjø et al., 2019; Kim et al., 2020; Shariati
et al., 2021). This discrepancy is influenced by a multitude of
factors such as the utilization of different diagnostic methods,
various biological samples, and sample quality (Li et al., 2016;
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FIGURE 2

Relative quantification of Inflammatory and anti-inflammatory genes in cancerous and matched normal tissues (P < 0.05∗ and P > 0.05ns).

Suehiro et al., 2017; Leung et al., 2019). In addition, Lee et al. (2018)
found that the method of tissue fixation may influence the variable
results of F. nucleatum analysis. Shariati et al. (2021) reached
similar conclusions by comparing the frequency of F. nucleatum
in the colorectal tumor specimens and matched normal tissue
by quantitative PCR analysis. They found F. nucleatum DNA
in 23% of CRC biopsies (Shariati et al., 2021). On the other
hand, in some studies in Iran, approximately 70% of patients
with CRC were colonized by F. nucleatum (Kashani et al., 2020;
Bostanshirin et al., 2023). The possibility of an excess rate of
F. nucleatum in these studies may be due to disparities in technical
methodologies employed, including simple PCR, SYBR qPCR, and
quantitative PCR. Other factors influencing the inconsistency of
reports include the diversity of the gut microbiome within the
population, dietary habits, and geographical location. Nishijima
et al. (2016) have shown that the gut microbiome of Japanese people
is significantly different from that of other populations. Of course,
this difference cannot be attributed to differences in geographical
location alone (Nishijima et al., 2016). Recent studies have shown
that the association between F. nucleatum and CRC is higher in
Asian populations than in European or American populations
(Huang et al., 2018; Janati et al., 2020). This population-level
association may be explained by differences in lifestyle and diet
in different communities, or by population-level variations in the
human gut microbiome. Studies have shown that a conservative
diet that includes more vegetables, fruits and fiber is associated with
a reduced risk of F. nucleatum-positive CRC. On the other hand,
higher consumption of fats, red/processed meat increases the risk

FIGURE 3

Fold change analysis of miR-21, and miR-31 gene expression in
cancerous and matched normal tissues (P < 0.001∗).

of the F. nucleatum-positive CRC tumor subtype. Therefore, the
composition and diversity of the colonic microbiota is influenced
by dietary changes, and the balance between beneficial and harmful
microbial metabolites is crucial in mediating CRC risk factors (Leng
et al., 2018; Zhang et al., 2018). However, these results should
be investigated further and different factors should be taken into
account.

We also assessed the association of F. nucleatum status
with clinicopathological features and found that high levels of
F. nucleatum in tumor tissue were related to poorly differentiated
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TABLE 3 Correlations between F. nucleatum status and molecular features.

No. (%)

Amount of F. nucleatum in colorectal carcinoma tissue

Gene All patients
(n = 100)

High
(n = 28)

Low
(n = 16)

Negative
(n = 56)

P-value

IL6.T High 54 27 (96.42) 11 (68.80) 16 (28.57) 0.013*

Low 46 1 (3.57) 5 (31.30) 28 (50.00)

IL10.T High 36 12 (42.90) 5 (31.30) 19 (33.90) 0.660

Low 64 16 (57.10) 11 (68.80) 37 (66.10)

IL12.T High 48 8 (28.60) 8 (50.00) 32 (57.10) 0.590

Low 52 20 (71.40) 8 (50.00) 24 (42.90)

IL17.T High 48 16 (57.10) 6 (37.50) 26 (46.40) 0.427

Low 52 12 (42.90) 10 (62.50) 30 (53.60)

TLR2.T High 45 8 (28.60) 8 (50.00) 29 (51.80) 0.119

Low 55 20 (71.40) 8 (50.00) 27 (48.20)

TLR4.T High 44 10 (35.70) 5 (31.30) 29 (51.80) 0.201

Low 56 18 (64.30) 11 (68.80) 27 (48.20)

TNFα.T High 52 15 (53.60) 10 (62.50) 27 (48.20) 0.047*

Low 48 13 (46.40) 6 (37.50) 29 (51.80)

microRNA-21 T High 82 28 (100.00) 10 (62.5) 44 (78.57) <0.001*

Low 18 0 (0.00) 6 (37.50) 12 (22.22)

microRNA-31 T High 59 20 (71.42) 6 (37.5) 33 (58.92) 0.063

Low 41 8 (28.57) 10 (62.5) 23 (41.07)

IL: interleukin; TLR: toll-like receptor; TNFα: tumor necrosis factor; T: tumor. *: Statistically significant correlation.

and undifferentiated tumors. Previous studies have shown that
there is a significant association between elevated levels of this
bacterium and poor tumor differentiation (Sun et al., 2016; de
Carvalho et al., 2019). Notably, a significant association has been
observed between high levels of F. nucleatum and perineural
invasion (PNI) positive tumors. However, further studies are
needed to prove this association. PNI is the invasion of tumor
cells into the perineural space of nerves. PNI is a strong prognostic
factor in CRC and is significantly associated with reduced survival
and high recurrence rates. Studies have shown a significant
improvement in 5-year survival in patients with negative PNI
tumors compared with those with positive PNI tumors (Poeschl
et al., 2010; Betge and Langner, 2011).

The precise mechanisms by which the gut microbiota
influences the development of CRC are not fully understood.
However, one of the most encouraging hypotheses is that it occurs
via microbe-induced inflammation. In particular, inflammation is
a critical and well-known risk factor for the development and
progression of CRC (Gerhard Rogler et al., 2010). Dysbiosis of
gut bacteria may be the cause of immune dysregulation and pro-
inflammatory mediator production (Jm, 2009; Swidsinski et al.,
2011). Numerous studies have investigated the potential factors
by which F. nucleatum contributes to colorectal tumorigenesis
(McCoy et al., 2013; Hashemi Goradel et al., 2019). The presence
of F. nucleatum in the gut promotes the expression of tumor-
associated cytokines and an inflammatory response through the
action of virulence factors.

Fusobacterium nucleatum can activate β-catenin signaling
through two pathways. The first pathway is the binding of FadA to
E-cadherin which can active the zipper mechanism and transport
F. nucleatum into cells. The second pathway is the TLR4/P-PAK1
cascade that leads to the initiation of inflammatory responses,
followed by the amplification of transcription of NF-κβ genes and
pro-inflammatory cytokines. Also, it can intensify inflammatory
responses through the binding of the Fap2 factor to Gal-GalNAc
(Kostic et al., 2013; Rubinstein et al., 2013). TLR-2 and TLR-4
are mainly involved in recognizing F. nucleatum and regulating
inflammatory factors induced by this bacterium via Tregs (Jia et al.,
2017). Both the observations of Kostic et al. (2013) and Rubinstein
et al. (2013) support the role of F. nucleatum in stimulating
the production of an inflammatory microenvironment, leading
to an increase in the oncogenic potential of this microorganism
(20, 21). Given the reports of previous studies, we assessed the
mRNA expression of mucosal inflammatory cytokines and the
association between their expression levels and the abundance of
F. nucleatum in CRC tissues compared to adjacent normal tissues.
Our results showed that IL-6, IL-17, TNF-α, TLR-2 and TLR-4
genes were overexpressed in tumor tissues compared to adjacent
normal tissues. IL-10 and IL-12β genes were downregulated, but the
difference was not significant. We also found a significant positive
correlation between a high amount of F. nucleatum and high levels
of IL-6, and TNF-α expression in the tumor tissues.

IL-6 is a pro-inflammatory cytokine with pro-tumorigenic
properties. It regulates multiple signaling pathways including
survival, invasion, apoptosis, proliferation, angiogenesis and
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metastasis. Overexpression of IL-6 has been well-studied in several
malignancies including lung, breast, and colon cancer (Sethi et al.,
2012; Heichler et al., 2020; Ke et al., 2020). Consistent with our
findings, Akhmaltdinova et al. (2020) and Proença et al. (2018)
have shown that IL-6 levels are significantly elevated in CRC
patients. In contrast, two British studies found no association
between IL-6 levels and CRC risk (Heikkilä et al., 2009). The small
sample size may be a reason for this conclusion. Another study
measured the concentration of IL-6 in serum samples from 208
patients with stage I to IV CRC. Patients with stage III and IV
disease had significantly higher serum IL-6 concentrations than
those with stage I and II disease (Belluco et al., 2000). TNF-α is
another pro-inflammatory cytokine that is produced by tumor or
inflammatory cells and is involved in the regulation of a variety of
signaling processes. Like IL-6, it is involved in tumor initiation, cell
proliferation, promotion of angiogenesis, and metastasis (Lan et al.,
2021). Consistent with the study by Akhmaltdinova et al. (2020) our
data show that TNF-α levels are significantly elevated in all CRC
tissues. Previously published results on colorectal adenomas found
that a high abundance of F. nucleatum was positively correlated
with the expression of inflammatory cytokine genes, such as IL-
6 and TNF-α, which is similar to our findings (McCoy et al.,
2013; Velsko et al., 2015; Martinho et al., 2016; Wei et al., 2016).
Despite the positive correlation between Fusobacterium species
and IL-6, the results were not statistically significant in the study
by McCoy et al. (2013). Studies have shown that some markers
of inflammatory responses, such as IL-1β, IL-6 and TNF-α, are
specific to F. nucleatum infection and their expression is enriched in
F. nucleatum-infected CRCs. However, they were not seen in CRC
tissue with other bacteria (Wu et al., 2019). As mentioned above,
F. nucleatum can shape the inflammatory microenvironment in
CRC through multiple mechanisms. It binds to colon epithelium
and leads to the activation of NF-κB. Also, it can stimulate IL-6
production by activating both TLR-2 and TLR-4 in bone marrow-
derived macrophages (Park et al., 2014). F. nucleatum increases
the infiltration of inflammatory cells such as dendritic cells, M2
macrophage polarization, and granulocytes (Chaushu et al., 2012;
Noh et al., 2016). Natural killer (NK) cells can directly recognize
F. nucleatum through its surface ligand and secrete TNF-α to
exacerbate the expression and secretion of IL-6 (Chaushu et al.,
2012). Consequently, the concentration of circulating IL-6 and
TNF-α as gastrointestinal inflammation may be an indicator of
promoting CRC development.

IL-17 is another cytokine investigated in this study, which
is mainly synthesized and released by Th-17 lymphocytes and
contributes to the development of terminal inflammation. In
addition, IL-17 is a potent immunomodulator and can promote
angiogenesis and tumor growth (Kuen et al., 2020). Our results
showed a significant difference in IL-17 expression levels between
CRC patients and similar normal tissues, which seems to be in line
with the results of other studies, especially in those with poorly
differentiated and well-differentiated tumor tissues (Lin et al., 2015;
Feng et al., 2019). Taken together, these results support the role
of IL-17 in CRC development and progression. In contrast to our
results, Stanilov et al. (2010) found no significant difference in IL-
17 levels between plasma samples from CRC patients and healthy
subjects. Sample type and method of measurement may explain this
difference in results.

IL-12 is an inflammatory cytokine that has been shown to play
an anti-tumor and anti-metastatic role in vivo in a number of
murine models of colon adenocarcinoma. The anti-tumor activity
of IL-l2 is mediated by activation of Th1 adaptive immunity
and increased interferon production, which has a direct toxic
effect on cancer cells (Trinchieri, 2003; Lan et al., 2021). Our
results showed that the expression level of the IL-12β gene was
decreased in cancer tissues, suggesting the anti-tumor activity of
IL-12β in CRC patients. The findings presented here align with
the investigation conducted by O’Hara et al. (1998) in which the
authors observed that patients with CRC have decreased IL-12β

production. According to the results, the use of IL-12β as a cancer
immunotherapy may be beneficial in controlling tumor growth
(Briukhovetska et al., 2021).

IL-10 is a cytokine with bidirectional immunomodulatory
properties. The immunosuppressive effect of IL-10 on dendritic
cells and macrophages results in attenuated antigen presentation,
allowing tumor cells to evade immune surveillance and impair
cell maturation and differentiation. IL-10 inhibits NF-κB signaling;
therefore it can downregulate the expression of proinflammatory
cytokines and act as an antitumor cytokine (Li et al., 2020).
Abtahi et al. (2017) showed that the serum level of IL-10 was
significantly lower in CRC patients than in controls. This finding
is consistent with our current research. However, they highlighted
the association between the expression of this cytokine and the
prognosis of CRC patients, and those with a poor prognosis had
high levels of IL-10 (Abtahi et al., 2017). Inconsistent with our
results, previous studies have shown overexpression of IL-10 in
CRC tissues compared to normal tissues (Li et al., 2019; Cuellar-
Gómez et al., 2022). This variation in IL-10 levels is contingent
upon the onset and progression of CRC and supports the potential
ambivalent function of IL-10. Nevertheless, further investigation
is imperative in order to comprehend the underlying processes of
IL-10 whether it is a tumor-stimulating or inhibitory factor.

Until recently, a number of studies have suggested aberrant
expression of miRNAs and their oncogenic or suppressive functions
in the initiation and progression of various malignancies such as
CRC (Nosho et al., 2016; Rapado-González et al., 2019). The trend
of miR-31, and miR-21 expression in our results was significantly
upregulated in CRC patients compared to adjacent normal tissues,
which is similar to previous researches (Kanaan et al., 2012; Wu
et al., 2012; Nosho et al., 2014; Wang et al., 2017; Sabry et al.,
2019; Farouk et al., 2020; Nassar et al., 2021; Zhou et al., 2022).
Therefore, with this comparison, we can refer to the role of these
genes in the development of CRC. However, Wang et al. (2014)
showed that the expression of miR-31 was significantly decreased
in serum samples from patients with CRC. This may demonstrate
the dual and contradictory function of miRNA in different types of
tumors. miR-31 may not only promote the growth and progression
of malignancies such as pancreatic, cervical, and CRC, but also
suppress carcinogenesis and induce apoptosis in cancers such as
ovarian and prostate cancer (Laurila and Kallioniemi, 2013; Braga
et al., 2017). Studies suggest that the diverse role of this factor
in cancer regulation may be due to spatiotemporal specificity,
characteristics of adenocarcinoma tissue and target genes, which
have significant interaction with the signaling pathway (Loya et al.,
2009; Yu et al., 2018). However, further research is required to
understand the underlying mechanism. In general, miR-21 and
miR-31 have been reported to be valuable diagnostic biomarkers
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for CRC (Sur et al., 2022). We identified a significant association
between high levels of F. nucleatum and miR-21 expression in CRC
tissue, which is consistent with previous studies (Nosho et al., 2016;
Yang et al., 2017; Bostanshirin et al., 2023). F. nucleatum can trigger
the TLR4/MYD88 signaling pathway by lipopolysaccharide (LPS).
Subsequently, hyperactive NF-κB binds to the miR-21 promoter
and upregulates its expression in CRC patients (Yang et al., 2017; Yu
et al., 2017). This finding partially supports the role of F nucleatum
in carcinogenesis through the induction of miR21.

In contrast, no correlation was observed between miR-31
expression and the aforementioned colonization. Similarly, Ito
et al. (2015) also showed that there was no significant correlation
between miR-31 expression and F. nucleatum status. However,
Tang et al. (2023) demonstrated that the upregulation of miR-
31 was significantly correlated with the presence of F. nucleatum
in CRC tissues and resulted in the promotion of tumorigenesis.
Furthermore, they reported that miR-31-mediated inhibition of
autophagic flux via suppression of syntaxin-12 (STX12) was
linked to enhanced intracellular survival of F. nucleatum infection
(Tang et al., 2023). The investigation of the relationship between
F. nucleatum and miRNAs expression has been very limited.
Understanding this relationship will provide new insights into
strategies for cancer control and treatment.

5 Conclusion

The results showed that the abundance of F. nucleatum was
significantly greater in cancerous tissue compared to normal
tissue. In addition, a significant association was found between
F. nucleatum and the expression of miR-21, IL-6 and TNF-α. The
current findings provide important insights into the function of
F. nucleatum and its potential association with increased gene
expression in carcinogenesis, thereby playing a critical role in CRC
progression and metastasis. The data presented provide ample
evidence for the pathogenic role of F. nucleatum in CRC, thus
opening new avenues for targeting the microbiota to accelerate the
prognosis of cancer progression and prevent the development of
CRC. Furthermore, due to the effect of inflammatory factors and
miRNAs and the effect of F. nucleatum on their expression, they
may serve as biomarkers for acceptable cancer diagnosis.
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