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Introduction: Autism spectrum disorder (ASD) is associated with both functional

and microstructural connectome disruptions. We deployed a novel methodology

using functionally defined nodes to guide white matter (WM) tractography and

identify ASD-related microstructural connectome changes across the lifespan.

Methods: We used diffusion tensor imaging and clinical data from four studies

in the national database for autism research (NDAR) including 155 infants, 102

toddlers, 230 adolescents, and 96 young adults – of whom 264 (45%) were

diagnosed with ASD. We applied cortical nodes from a prior fMRI study identifying

regions related to symptom severity scores and used these seeds to construct

WM fiber tracts as connectome Edge Density (ED) maps. Resulting ED maps

were assessed for between-group differences using voxel-wise and tract-based

analysis. We then examined the association of ASD diagnosis with ED driven from

functional nodes generated from different sensitivity thresholds.

Results: In ED derived from functionally guided tractography, we identified ASD-

related changes in infants (pFDR ≤ 0.001–0.483). Overall, more wide-spread

ASD-related differences were detectable in ED based on functional nodes with

positive symptom correlation than negative correlation to ASD, and stricter

thresholds for functional nodes resulted in stronger correlation with ASD among

infants (z = −6.413 to 6.666, pFDR ≤ 0.001–0.968). Voxel-wise analysis revealed

wide-spread ED reductions in central WM tracts of toddlers, adolescents, and

adults.

Discussion: We detected early changes of aberrant WM development in

infants developing ASD when generating microstructural connectome ED map

with cortical nodes defined by functional imaging. These were not evident

when applying structurally defined nodes, suggesting that functionally guided

DTI-based tractography can help identify early ASD-related WM disruptions
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between cortical regions exhibiting abnormal connectivity patterns later in life.

Furthermore, our results suggest a benefit of involving functionally informed

nodes in diffusion imaging-based probabilistic tractography, and underline that

different age cohorts can benefit from age- and brain development-adapted

image processing protocols.
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autism spectrum disorder, neurodevelopment, DTI, connectome, microstructure

1 Introduction

In the United States, one in thirty-six (2.8%) 8-year-old
children have been diagnosed with autism spectrum disorder
(ASD) (CDC, 2023). Intense efforts to study ASD etiology and
pathophysiology have identified numerous etiological contributors,
including genetic factors (Jacquemont et al., 2014; Grove et al.,
2019) and morphological correlates (Li et al., 2017; Figueiredo
et al., 2020), with converging evidence for connectome disruptions
playing a central role in the pathogenesis of ASD (Assaf et al., 2010;
Hong et al., 2019; Benkarim et al., 2021; Weber et al., 2022).

ASD typically manifests in difficulties in communication and
social interaction, as well as through repetitive behavior patterns.
These three core symptoms build the basis for the Autism
diagnostic observation schedule (ADOS) (Lord et al., 2000), the
gold-standard for diagnostic interviewing in ASD (Levy et al.,
2009). Among individuals on the autism spectrum, symptom
manifestation, onset and severity are largely heterogeneous. Timely
diagnosis and therapeutic intervention are crucial for optimal
support of autistic individuals, but high heterogeneity in symptom
manifestation and severity can impede recognition of early
symptoms and access to appropriate resources. While ASD is
commonly first diagnosed in childhood and at school age, new
diagnoses occur throughout the lifespan (Hume et al., 2021).
Depending on a subject’s sex, socioeconomic resources, individual
symptom profile and their ability to camouflage symptoms,
diagnosis may be significantly delayed (Howlin et al., 2004; Huang
et al., 2021; Hume et al., 2021), thus impeding early intervention.
This underlines the demand for a better understanding of the
underlying pathophysiology as well as for reliable non-invasive
biomarkers for ASD.

Magnetic resonance imaging (MRI) offers a unique method
to study the human brain in vivo. In the most recent efforts
to investigate the brain’s connectome, i.e., as the sum of
interconnected neuronal populations (Sporns et al., 2005), MRI
offers different modalities to study both functional as well
as microstructural connectivity between cortical nodes (Sporns
et al., 2005; Finn et al., 2015). Functional MRI (fMRI) depicts
connectivity as the time-course correlation between energy
consumption rates of cortical nodes by leveraging the blood-
oxygen-level-dependent signal as a proxy for metabolic activity
(Logothetis et al., 2001; Gauthier and Fan, 2019). Microstructural
connectivity can be depicted via four-dimensional diffusion-
weighted imaging and the subsequent derivation of a diffusion
tensor model (diffusion tensor imaging, DTI) (Lenglet, 2015; Tae
et al., 2018). DTI enables the description of the microstructural

properties of white matter (WM) tracts by reflecting water molecule
mobility in their cellular components (Tae et al., 2018). Both
techniques image the connection between cortical nodes: fMRI
represent synaptic links between nodes (Raichle, 1998; Glover,
2011), while DTI reflects the WM fiber tracts responsible for signal
transmission (Lenglet, 2015) (Figure 1).

ASD-related functional connectivity alterations have been
identified, pointing toward a mosaic pattern of functional
underconnectivity in cortical networks as well as overconnectivity
between the cortex and subcortical nuclei (Assaf et al., 2010;
Müller et al., 2011; Benkarim et al., 2021). Similarly, microstructural
connectivity disruptions have been identified, mostly impacting
commissural tracts in the corpus callosum (Cheon et al., 2011;
Ameis and Catani, 2015; Weber et al., 2022). The existing evidence
of connectome alterations – both functional and microstructural –
prompt the effort for multimodal imaging in ASD, to understand
the underlying pathophysiological mechanisms and facilitate early
recognition (Müller et al., 2011; Li et al., 2017). These connectivity
changes show relation to age, specifically, there is evidence for
inter-network hyperconnectivity and local hypoconnectivity in
ASD children, whereas hypoconnectivity prevails among adults
(Uddin et al., 2013a,b; Haghighat et al., 2021). Evidence suggests
altered neurodevelopmental processes as potential biomolecular
substrates of ASD-associated connectivity changes, including
increased neuronal cell count (McFadden and Minshew, 2013;
Kana et al., 2014) and columnar density (Buxhoeveden et al.,
2006; Hutsler and Casanova, 2016) that impede cortical maturation
processes in infancy (Uddin et al., 2013b; Kana et al., 2014;
Haghighat et al., 2021). Typically, the first years of life are
characterized by rapid cortical maturation and WM development
(Deoni et al., 2012; Keehn et al., 2013; Sadeghi et al., 2013; Yu
et al., 2020), transitioning into a period of slower growth in early
childhood (Mukherjee et al., 2001; Lebel et al., 2008; Lebel and
Beaulieu, 2011), and subsequently reaching steady growth levels in
adolescence (Mukherjee et al., 2001; Westlye et al., 2010; Yu et al.,
2020). Developmental processes and potential atypical deviations
can be captured by different MRI modalities: Cortical connectivity
alterations are usually studied using functional imaging (Supekar
et al., 2013; Li et al., 2017; Morgan et al., 2019), whereas diffusion-
weighted or structural imaging is used to detect microstructural
changes (Ameis and Catani, 2015; Ismail et al., 2016; Li et al., 2017;
Weber et al., 2022). Since ASD-related connectome alterations
affect brain maturation differently throughout the lifespan (Ecker
et al., 2015; Haghighat et al., 2021), we suggest that ASD-associated
developmental abnormalities in certain age groups might benefit
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FIGURE 1

Simplified, conceptual depiction of microstructural and functional connectivity: For functional connectivity, cortical activity is approximated (e.g., as
BOLD signals in rs-fMRI) and connectivity is derived as the correlation of activity between nodes. Microstructural connectivity reflects on the
physical underpinnings of signal transmission (=WM tracts) by using water diffusivity in a tensor model as a proxy. The above, blue dotted
microstructural connection is a conceptual representation of a WM link and does not accurately reflect neuroanatomy. Image sources: Servier
Medical Art by Servier, licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/, neuron
and axon graph), MNI-152 standard brain template (axial slice) (Mazziotta et al., 2001), standard brain surface mesh plotted via brainspace
(https://github.com/MICA-MNI/brainspace/, surface in lower panel) (Fischl, 2012; Vos de Wael et al., 2020).

from multimodal imaging methods comprising both functional and
microstructural information.

In the past years, new methods of MRI processing have emerged
that seek to image connectome alterations in ASD, including
probabilistic tractography, a method to remodel fibers based on
DTI outcomes (Mazziotta et al., 2001; Behrens et al., 2007).
From tractography, edge density maps (ED) can be derived that
represent the number of WM microstructural connections (edges)
between nodes. Traditional DTI-derived metrics such as fractional
anisotropy and diffusivity measures reflect on water molecule
mobility in single voxels and are therefore restricted in their ability
to capture crossing fibers and full-length WM tracts (Seunarine
and Alexander, 2014; Tae et al., 2018). ED offers the opportunity
to remodel microstructural cortico-cortical connections, therefore
allowing to study WM tracts in their full continuity (Behrens et al.,
2003, 2007; Seunarine and Alexander, 2014; Owen et al., 2015).

Changes in probabilistic ED have been reported in sensory
processing and neurodevelopmental disorders, hinting toward
potential benefits of including ED in addition to traditional DTI
metrics in microstructural imaging studies (Payabvash et al.,
2019a,b; Weber et al., 2022).

In a previous study (Weber et al., 2022), we leveraged DTI
metrics and probabilistic ED to study the connectome alterations
associated with ASD and found changes in adolescents and
young adults; however, we were unable to find ASD-associated
disruptions in younger cohorts (Weber et al., 2022). In the prior
study, we used a generic anatomical atlas to define seed masks
in tractography. Based on the increasing evidence for functional
connectivity alterations in ASD, we here seek to integrate functional
and WM microstructural connectome in our previous approach
by using cortical nodes of ASD-related functional changes to
guide WM tractography and generate fMRI-informed ED maps
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TABLE 1 Demographic information about the four study cohorts investigated.

Age cohort Original study n Mean age (SD) ASD/TDC Male [n, (%)]

Infants Longitudinal MRI study of infants at
risk of autism

155 (27%) 6.68 (0.8) months 34/121 102 (65.8%)

Toddlers Biomarkers of autism at 12 months 102 (18%) 20.14 (8.33) months 57/45 75 (73.5%)

Adolescents Multimodal developmental
neurogenetics of females with autism

230 (39%) 12.53 (2.95) years 106/124 117 (50.9%)

Young adults Atypical late neurodevelopment in
autism

96 (16%) 19.79 (8.33) years 67/29 95 (99.0%)

ASD, autism spectrum disorder; SD, standard deviation; TDC, typically developing controls.

of the brain. We utilized multi-centric DTI datasets from four
different study cohorts that include different age groups from
infancy to adulthood. We employed probabilistic tractography that
is, contrary to the preceding study, not based on anatomical cortical
areas but rather representative of ASD symptom severity based on
prior fMRI studies. We investigated ASD-related changes across
different age cohorts using both voxel-wise analysis methods as well
as tract-based comparisons.

2 Materials and methods

2.1 Datasets

In this study, we utilized a dataset of DTI and T1-weighted
images from the national database of autism research (NDAR),
consisting of four different study cohorts that each reflect a
different age cohort: (i) Infants (A Longitudinal MRI Study of
Infants at Risk for Autism (Piven, 2008), median age at imaging:
6 months), (ii) Toddlers (Biomarkers of Autism at 12 months
(Courchesne, 2007), median age: 32 months), (iii) Adolescents
(Multimodal Developmental Neurogenetics of Females with ASD
(Pelphrey, 2012), median age: 13.1 years), (iv) Adults (Atypical
late neurodevelopment in autism: A Longitudinal MRI and DTI
study (Lainhart, 2007), median age: 19.1 years). For infants, ASD
assessment followed at 24 months of age, while all other cohorts
were evaluated at the time of imaging. Table 1 provides more
detailed demographic information for each cohort. We excluded
all subjects lacking ASD diagnosis status or any of the two
imaging modalities, as well as subjects with genetic and psychiatric
comorbidities. Furthermore, all images underwent visual quality
control, and all subjects with failed linear coregistration to a
standard brain template were excluded, resulting in a sample size
of n = 583. A workflow of this process is shown in Supplementary
Figure 1.

2.2 Image acquisition

The acquisition protocols of study cohorts included:

(i) In the infant cohort, T1-weighted imaging was conducted with
a repetition time (TR) of 2400 ms, time to echo (TE) of 3.16 ms,
field of view (FOV) of 256, matrix size 224 × 256, and slice
thickness 1 mm, diffusion weighted images were acquired in

26 variable b-values between 50 and 1000 s/mm2 increasing by
200 s/mm2 at each scan (25 gradient directions and one non-
weighted image with b = 0 s/mm2) image on 3T Siemens Tim
Trio, with TR = 12,800–13,300 ms, TE = 102 ms, FOV 190,
matrix size 190× 190, and slice thickness of 2 mm;

(ii) Toddlers’ T1-weighted imaging was acquired with
TR = 6500 ms, TE = 2.8 ms, FOV = 240, matrix size
96 × 96, slice thickness 1.2 mm, DTI included 51 images
with b = 1000 s/mm2 and one non-weighted b = 0 s/mm2
image acquired on 1.5 T GE Signa HDxt, TR = 13200 ms,
TE = 80.6 ms, FOV 240, matrix size 96 × 96, and slice
thickness 2.5 mm;

(iii) Adolescents’ T1-weighted imaging was acquired with
TR = 5300 ms, TE = 3.3 ms, FOV 350, matrix size 192 × 192,
slice thickness = 1 mm, DTI included 46 images with
b = 1000 s/mm2 and one non-weighted b = 0 s/mm2 image
acquired on 3T Siemens Magnetom TrioTim, TR = 13,000 ms,
TE = 93 ms, FOV 250, matrix size 192 × 192, and slice
thickness 2.5 mm;

(iv) Adults’ T1-weighted imaging was acquired with TR = 1800,
TE = 1.93, FOV 256, matrix size 256 × 240, slice
thickness 1 mm, DTI included 4 repetitions of 12 images
with b = 1000 s/mm2 and followed by an image with
b = 0 s/mm2 acquired on 3T Siemens Magnetom TrioTim,
with TR = 7000 ms, TE = 91 ms, FOV = 256, matrix size
128× 128, and slice thickness 2.5 mm.

2.3 Data preprocessing

DTI data and T1-weighted data were converted to Nifti
format and preprocessed using FSL brain extraction in the
FMRIB Software Library (FSL)1 (Smith, 2002; Smith et al., 2004;
Li et al., 2016), which included eddy current correction and brain
extraction. We then applied FSL’s diffusion tensor fitting tool
(DTIFIT) (Smith et al., 2004) on all DTI data to retrieve mean
(MD), axial (AD) and radial diffusivity (RD) as well as fractional
anisotropy (FA) maps. These metrics correspond to overall water
molecule diffusivity (MD), mobility along (AD) and perpendicular
(RD) to a WM tract as well as to directional dependency (FA)
and therefore can be appreciated as a proxy of WM integrity and
maturation (Lenglet, 2015; Tae et al., 2018). We then corrected

1 https://fsl.fmrib.ox.ac.uk
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FIGURE 2

(A) Workflow of ED computation for different threshold levels. Based on external data from Lake et al. (2019), which leveraged CPM to analyze brain
nodes correlating to ASD symptom severity, we determined functionally informed masks (B) to guide tractography. (C) Study cohort compositions
regarding case/control ratio and age distribution. ADOS, autism diagnostic observation schedule; ASD, autism spectrum disorder; CPM, connectome
predictive modeling; DTI, diffusion tensor imaging; ED, edge density.

for crossing fibers using Bayesian estimation of crossing fibers
(BEDPOSTX) in FSL (Behrens et al., 2007; Woolrich et al., 2009),
which employs a ball- and stick model to depict water mobility in
each voxel.

2.4 Seed identification and probabilistic
tractography

Subsequently, we linearly coregistered regions of interest
(ROIs) to each individual’s native FA space using FSL’s linear
transformation tool (Smith et al., 2004). In a previous approach
(Weber et al., 2022), we used the Harvard-Oxford subcortical
and cortical structural atlases (Mazziotta et al., 2001; Frazier
et al., 2005; Desikan et al., 2006; Makris et al., 2006; Goldstein
et al., 2007) for identification of cortical nodes. A full list of
all regions used is given in Supplementary Table 1. We used
these masks as seeds in probabilistic tractography using FSL
PROBTRACKX (Smith et al., 2004; Woolrich et al., 2009; Wu
et al., 2018) to build each individual’s edge density (ED) maps
(Figure 2A) (Owen et al., 2015; Payabvash et al., 2019a; Weber
et al., 2022). We built ED maps from cortical nodes defined
by functional imaging (CNFI). From previous work by Lake
et al. (2019), we then identified cortical regions that correlate to
ASD symptom severity as assessed using the Autism diagnostic
observation schedule (ADOS) (Lord et al., 2000). Briefly, this work

applied connectome-based predictive modeling (CPM) (Shen et al.,
2017), which leverages rs-fMRI derived functional connectivity
matrices to model individual connectomes in a leave-one-out
framework. Then, the number of edges between cortical parcels
were determined. These regions were outlined in the Shen atlas
(Lee et al., 2014) and subset for different sensitivity thresholds
(Figure 2B). In brief, composite networks, i.e., overarching
networks comprising sub-scale interactions, correlating to ADOS
scores have been identified using CPM, and thresholds are referring
to a node’s contribution to composite networks, where most lenient
thresholds include all edges appearing at least once in any network
and strictest thresholds comprise edges that appear on all sub-scales
(Shen et al., 2017; Lake et al., 2019). Here, we utilize four CNFI
ROI-masks: two threshold levels (3, 5) per positively and negatively
ADOS-correlated regions each. All four were transformed to each
subject’s space using linear coregistration. We then employed these
masks as seeds in four separate runs of probabilistic tractography,
retrieving four new ED maps per individual that are derived from
ASD-specific functional changes.

In the following, we will refer to each of these masks by their
seed masks of origin, more specifically by direction of correlation
to ADOS scores and threshold applied in CPM: ED+3 for positively
correlated nodes at a threshold of 3, ED+5 for positively correlated
nodes at a threshold of 5, and vice versa for negatively correlated
nodes at thresholds 3 and 5, ED−3, and ED−5. A full overview of all
processing steps is summarized in Figure 2A.
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2.5 Voxel-wise tract based spatial
statistics (TBSS)

For voxel-wise comparison, we applied the FSL’s tract based
spatial statistics (TBSS) protocol (Smith et al., 2006). We assessed
group level-difference after controlling for age and sex in a linear
model using non-parametric permutation-based testing in n = 5000
permutations and threshold-free cluster enhancement (Smith and
Nichols, 2009) to correct for multiple comparisons across brain
space. Each study cohort was analyzed separately to address the
confounding influence of differing image acquisition parameters
and age group-specific morphological characteristics.

2.6 Statistical analysis

We extracted mean values within each of the major WM
tracts specified in the John Hopkins University (JHU) atlas (van
Zijl et al., 2005), a full list of which is given in Supplementary
Table 1. We assessed group differences in tract-based mean ED
values using two-sided unpaired t-tests between diagnosis groups.
To ensure robustness of our results, we repeated all tract-wise
analysis after shuffling diagnosis labels in 5000 permutations.
In a confirmatory second approach, we determined Spearman’s
correlation between ED values in every tract and ASD diagnosis
status. Subsequently, we tested whether the threshold applied in
CPM correlates with higher group differences, i.e., if tractography
guided via stricter or less lenient defined functionally defined
nodes leads to higher sensitivity for ASD, using Pearson’s 1898
method of comparing correlation (Pearson and Filon, 1898;
Diedenhofen and Diedenhofen, 2016). Briefly, this method
compares correlation coefficient between two samples using
Fisher’s Z-scores. All p-values were corrected for multiple testing
using Benjamini and Hochberg’s false discovery rate (FDR)
correction (Benjamini and Hochberg, 1995). All statistical analysis
were conducted using Python v3.9.7 (van Rossum, 1995) and R
v4.3.1 (R Core Team, 2023).

3 Results

3.1 Study cohort characteristics

In total, we analyzed data from 583 individuals with an age
range from 6 months to 50 years, subset into four age-specific
cohorts: infants with a mean age of 7 months (median: 7 months),
toddlers with a mean age of 20 months (median: 32 months), as well
as adolescents and adults, who were on average 13 and 20 years old
respectively [median: 13 years (adolescents), 19 years (adults)]. The
case-to-control ratio varied between 0.28 and 2.31 (overall: 0.83)
and is depicted in Figure 2C along with age distributions across the
four study cohorts.

3.2 Tract-wise group differences

Group differences in tract-based comparison of ED+5 revealed
wide-spread ASD-related reductions in infants, that reached

statistical significance throughout the central and periventricular
WM tracts (Figure 3). Toddlers’ t-statistics showed a mosaic
pattern of negligible group differences, and adolescents leaned
toward widespread reductions that were not statistically significant.
Among adults, a mosaic pattern of both ASD-related increases
and decreases in t-values could be observed, with increases
being mainly localized in the left anterior tracts and decreases
focused on the right posterior areas. In ED−5, mosaic patterns
of slight increases and decreases could be found across all age-
group cohorts, with toddlers and adolescents exhibiting negative
t-statistics and patterns of positive group differences in central
WM tracts of infants and adults. Notably, these changes did not
reach statistical significance among infants and toddler cohorts
(pFDR = 0.143–0.48 in infants and pFDR = in toddlers, detailed
p-values for each tract are listed in Supplementary Tables 2A,B),
whereas in adolescents, lower ED−5 were associated with ASD
(t = −3.346, pFDR = 0.047) and in adults, ED−5 in the left
hippocampal aspect of the cingulum showed positive association
to ASD (t = 3.744, pFDR = 0.016) (Figure 3).

In ED based on more lenient thresholds (i.e., ED−3 and
ED+3), we observed a similar pattern, although most t-statistics
were leaning toward decreases in ASD, with widespread significant
reductions among the adolescent age-group (Supplementary
Figure 2). In permutation tests, results showed consistency
across shuffled labels (Supplementary Table 5). Confirmatory
analysis using Spearman’s rank correlation test showed similar,
but smaller effects. A full list of all statistics is given in
Supplementary Tables 2A–D. In comparison to our current
approach employing tractography based on functional defined
nodes, Supplementary Figure 3 and Supplementary Table 4 show
results from previous work where we used anatomical nodes to
guide tractography (Weber et al., 2022).

3.3 Differential impact of different
thresholds in seed masks

At a tract-level analysis, when we compared ED+3 and ED+5
in each group respectively, we found that higher threshold masks
(i.e., more selective masks derived from functional imaging) used
to guide tractography had stronger positive association with ASD
diagnosis in the infant cohort in central callosal and periventricular
WM tracts, as well as the brainstem (Figure 4). Similarly, when
comparing ED−3 and ED−5, higher thresholds were associated
with higher correlation to ASD diagnosis in infants (Figure 4).
There was no significant difference in correlation strength between
threshold levels in older age cohorts (Supplementary Tables 3A–
D).

3.4 Voxel-wise group differences

In voxel-wise analysis using a general linear model controlling
for age, we found ASD-related ED+5 reductions in adolescents
and toddlers. Changes were widespread in adolescents, but less
pronounced and more focused on posterior WM tracts in toddlers.
In ED−5, we found changes in adolescents and adults that both
revealed ubiquitous ED reductions (Figure 5). However, there were
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FIGURE 3

Tract-based results. The figure shows t-statistic in each of the tracts defined in the JHU atlas for each age cohort separately, overlayed on a sample
mean FA map. Right panel shows areas of significant group differences (pFDR < 0.05). ASD, autism spectrum disorder; ED, edge density; FA, fractional
anisotropy; FDR, false discovery rate; JHU, Johns Hopkins University.

no significant differences related to ASD diagnosis in any of the age
groups when using more lenient ED+3 and ED−3 thresholds.

4 Discussion

Connectome alterations have been established as a key
neuroimaging correlate of ASD. Both functional connectivity and
microstructural disruptions have been predominantly identified
among adolescent and adult ASD cohorts (Müller et al., 2011; Li
et al., 2017; Figueiredo et al., 2020). In a previous study leveraging
DTI-derived metrics, we could not find group differences in
younger cohorts, more specifically in infants and toddlers (Weber
et al., 2022). This raises the question if WM connectivity alterations
in ASD appear later in life, or if they are not detectable
in younger children. In this study, we advanced conventional
tractography analyses by integrating findings from functional
imaging studies and specifying regions that correlate to ADOS
symptom severity to guide tractography. Using this approach, we
found ASD-related reductions in edge density based on cortical
nodes defined by functional imaging. Notably, we were able to
identify changes in infants that were not detectable in our prior
study that employed conventional ED based on anatomical nodes.
These ED changes were appreciable in most central callosal and
periventricular WM tracts. Comparing correlation coefficients
between ED maps based on different thresholds, we found higher

correlation to ASD diagnosis status in stricter thresholds, i.e., when
guiding tractography through nodes with highest sensitivity for
ASD. In contrast, in adolescent and adult cohorts, changes were
appreciable in ED based on more lenient thresholds, consistent
with prior findings where changes were found in ED derived
from guiding tractography through generic anatomical nodes,
therefore having very low sensitivity for cortical changes in ASD.
While we were unable to reproduce infants’ group differences
in voxel-wise analysis, we were able to identify changes in
the toddler and adolescent cohort, revealing widespread ASD-
associated reductions.

Cortical nodes for tractography were derived from a study
employing CPM to find composite networks correlating with
ASD symptom severity (Lake et al., 2019). First, we used regions
correlating positively to ADOS scores, hence pointing out cortical
areas that exhibit connectivity changes with increasing symptom
severity. These nodes were localized in inferior temporal lobes
bilaterally, as well as the right frontal lobe. Additionally, we used
nodes that are inversely correlated to symptom severity, which
were situated primarily in bilateral frontal and occipital cortical
aspects. These nodes differ from our previous approach, where we
used a generic anatomic atlas enclosing most of the cortex and
subcortical nuclei, a full list of which is given in Supplementary
Table 1 (Desikan et al., 2006). More lenient thresholds applied
in CPM will result in inclusion of more cortical areas, hence, the
overlap between our seed mask at threshold 3 overlaps more with
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the anatomical nodes from our previous approach than at a stricter
threshold. Consequently, tractography will build more selective ED
maps between regions of interest that were derived at a threshold
of 5.

We found most changes when analyzing ED based on
functional nodes that correlate positively to ADOS symptom
severity scores, i.e., WM disruptions could be imaged by guiding

FIGURE 4

Tract-based comparison of correlation strength between ED based
on different threshold leniencies. The figure shows z- and pFDR

values in each of the tracts defined in the JHU atlas in the infant
cohort, overlayed on a sample mean FA map. Tract-based values
are given in Supplementary Table 3A. ASD, autism spectrum
disorder; ED, edge density; FA, fractional anisotropy; FDR, false
discovery rate; JHU, Johns Hopkins University.

tractography through cortical parcels that are associated with high
symptom severity. These ED maps capture connections between
cortical parcels that are functionally impacted by ASD, thus, ED
disruptions here suggest WM disconnectivity as a microstructural
underpinning of cortical changes. Of note, this effect is observed
in pediatric cohorts, whereas cortical nodes were derived from an
adolescent cohort (Di Martino et al., 2014; Martino et al., 2017;
Lake et al., 2019): we guided tractography in younger children
based on cortical alterations that were described later in life (Lake
et al., 2019). We were able to detect WM disruptions between these
parcels in infants, hence hinting toward shared network alterations
across age groups. These changes are apparent as WM disruptions
in infants, and potentially propagate to more wide-spread changes
in adolescents and adults, as these age groups reveal wide-spread
changes even in less selective tractography (Weber et al., 2022).
Contrarily, ED based on cortical nodes that are inversely correlated
to ADOS scores did not reveal significant changes in pediatric
cohorts, but in adolescents and adults. Given the similarity of these
results to previous findings from probabilistic tractography based
on anatomical nodes, i.e., cortical regions that were not specific to
ASD symptom severity, we suggest no further benefit of guiding
tractography through nodes that are inversely correlated to ADOS
scores.

ASD-related disruptions in adults and adolescents were
detectable in our previous study using fractional anisotropy as
a traditional DTI-derived metric, and ED based on anatomical
nodes, whereas we could not detect changes using functionally
guided ED. We hypothesize that ASD-associated microstructural

FIGURE 5

Voxel-wise findings. The image depicts statistically significant values (p < 0.05) as determined in permutation testing from TBSS on the standard FA
skeleton (blue) on a mean FA template. ASD, autism spectrum disorder; ED, edge density; FA, fractional anisotropy; FDR, false discovery rate; JHU,
Johns Hopkins University.ct-based comparison of correlation strength between ED based on different threshold leniencies. The figure shows z- and
pFDR values in each of the tracts defined in the JHU atlas in the infant cohort, overlayed on a sample mean FA map. Tract-based values are given in
Supplementary Table 3A. ASD, autism spectrum disorder; ED, edge density; FA, fractional anisotropy; FDR, false discovery rate; JHU, Johns Hopkins
University.
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disintegrity is higher in adolescents and adults, hence
detectable with less specific methodology (Travers et al., 2012;
Ameis and Catani, 2015). Potentially, these larger scale changes
camouflage alterations in more ASD-specific, functionally guided
tractography. Thus, connectivity alterations in adolescents and
older subjects appear more pronounced, whereas ASD alterations
in younger children are more likely to be masked by lenient, i.e.,
non-functionally guided tractography.

Our findings further underline the conceptual link between
functional imaging of cortical parcels, and microstructural,
diffusion-weighted imaging of the WM tracts connecting
those nodes. Consistent with previous evidence for functional
underconnectivity (Assaf et al., 2010; Müller et al., 2011), our
findings highlight shared WM disruptions in ASD that are
apparent in adolescents and adults, and can be appreciated
in infants when combining functional and diffusion-weighted
imaging.

While we found ASD-related ED decreases on a tract-based
level in infants, we could find effects in toddlers using voxel-
wise analysis, but not on a tract level. Infants’ and toddlers’
brains are in distinct developmental stages. Brains of infants and
young children differ largely from adolescents and adults, as they
are still in an earlier stage of development. These differences
include higher number of neurons and lower number of axonal
connections (Waller et al., 2017; Payabvash et al., 2019b; Yu et al.,
2020). Within the first years of life, WM matures, i.e., axonal
connections are formed and myelination increases (Barnea-Goraly
et al., 2005; Swanson and Hazlett, 2019; Changeux et al., 2021).
Altogether, these connections form the basis for fast and efficient
signal transmission across the cortex and to subcortical nuclei
(Oligschläger et al., 2017). In diffusion imaging, these processes
correlate to an increase in fractional anisotropy and axial diffusivity,
and a decrease in mean and radial diffusivity (Wakana et al.,
2007; Lenglet, 2015). There is converging evidence for abnormal
brain maturation in ASD, specifically impaired WM maturation
in ASD (Ameis and Catani, 2015; Aoki et al., 2017; Payabvash
et al., 2019b), as well as neocortical differentiation (Hutsler and
Casanova, 2016; Haghighat et al., 2021) and atypical axonal growth
(McFadden and Minshew, 2013; Zikopoulos and Barbas, 2013),
In this study, we identified reduced WM integrity in bilateral
central callosal and anterior periventricular fiber bundles on a tract-
based level in infants, suggesting reduced connectivity especially
between frontal lobes. These findings align with previous findings
showing abnormal connectivity involving the frontal cortical nodes
(Assaf et al., 2010; Kumar et al., 2010; Cheon et al., 2011; Poustka
et al., 2012; Li et al., 2020). Of note, we observed a different
pattern in toddlers, where significant reductions in posterior tracts
were observable in voxel-wise, but not in tract-based analysis.
Spatially, these changes overlap with findings from previous studies
where microstructural integrity in adolescents and adults were
identified in posterior callosal tracts (Noriuchi et al., 1362; Ouyang
et al., 2016). While both pediatric cohorts exhibit reductions, it
is remarkable that decreases are mostly localized in frontal tracts
in infants, whereas they are mostly detectable in posterior tracts
of toddlers. This discrepancy, combined with previous findings
about frontal connectivity abruptions in infancy and posterior
microstructural disintegrity in children and adults, suggests a
differential impact of ASD on axonal maturation across age
groups. Specifically, variable group differences between age groups

indicate that the location and overall susceptibility of white matter
development depends on a subject’s age.

Additionally, in infants and toddlers, we found changes at the
tract- and voxel-wise level respectively. Due to the rapidly adapting
brain maturation processes in early childhood, specifically, slower
maturation in toddlerhood as compared to infancy (Uddin et al.,
2013b; Yu et al., 2020; Haghighat et al., 2021), group differences
are potentially present at different levels, appearing across tracts in
infants, and being constricted to focal changes within the centers
of WM tracts in toddlers. Additionally, microscale maturation
processes, i.e., white-gray-matter boundary maturation, neuronal
migration and columnar differentiation might be distorting
imaging findings (Mukherjee et al., 2001; Lebel and Beaulieu,
2011; Hutsler and Casanova, 2016; Thompson et al., 2020).
Potentially, the study cohort composition comprising different
sample sizes might have influenced our findings, hence underlining
the importance of ensuring the reproducibility of our results upon
wider availability of pediatric imaging datasets.

The main strength of our study is the utilization of a large
multimodal imaging dataset from four different studies retrieved
from a data repository. We circumvented a site-related distortion
of our results by analyzing each cohort on its own. Since all studies
were acquired separately from each other, technical differences
hinder the comparability between studies. Additionally, the case-
to-control ratio varies between groups, with the lowest ratio
of 0.28 (34 ASD/121 TDC) in infants and 2.31 (67 ASD/29
TDC) in the adult cohort, which we accounted for using a
permutation analysis shuffling group labels and showing robustness
of our results. While we aimed to include as many as data
as available for this study, we acknowledge this limitation and
aim to test reproducibility of our findings upon availability of
respective imaging data. Similarly, functional nodes of ASD-
related changes were retrieved from another study that did not
incorporate pediatric subjects. These subjects were separate from
our study cohorts; hence, functional alterations are potentially
different between the groups. We seek to combine subject-specific
functional connectivity changes with DTI-based tractography upon
availability of such data on a larger scale. Additionally, we recognize
the low percentage of female participants in the adult cohort.
The clinical presentation of individuals on the autism spectrum
differs remarkably between males and females (Jacquemont et al.,
2014; Alaerts et al., 2016; Beggiato et al., 2017), and there is
evidence for differential genetic impact between the sexes. We
acknowledge that the generalizability of our results is limited for
the adult cohort due to the low number of females involved. Upon
availability of further, large-scale, high quality and balanced data
sets, the reproducibility of our findings ought to be validated. These
data can additionally be leveraged to build representative artificial
intelligence algorithms focusing on diagnosis and prognosis
prediction (Mofatteh, 2021).

5 Conclusion

In a large, multi-centric study involving individuals on the
autism spectrum and neurotypical controls, we identified changes
in ED that were detected by guiding probabilistic tractography
through functionally defined nodes. In a previous study using ED
based on anatomical nodes, no WM microstructural differences
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could be appreciated in pediatric cohorts. In infants, we
found widespread reductions in bilateral central callosal and
periventricular WM on a tract-based level, and toddlers showed
significant reductions in voxel-wise analysis that were widespread
across posterior tracts. Stricter thresholds for determining seeds
for tractography were associated with higher correlation to ASD
diagnosis status in infants. Our findings point toward common
axes of microstructural disruptions across age groups that are
present between cortical nodes correlating with ASD and can
be captured using DTI-based tractography. Our results highlight
the importance of multimodal imaging in investigating imaging
correlates of ASD. Both cross-sectional and longitudinal data sets
are required to ensure the generalizability of our results to a
broader collective.
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