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Introduction: Observational studies have reported the association between gut 
microbiota and the risk of lower respiratory tract infections (LRTIs). However, 
whether the association reflects a causal relationship remains obscure.

Methods: A bidirectional twosample Mendelian randomization (MR) analysis 
was conducted by assessing genome-wide association study (GWAS) summary 
statistics for gut microbiota taxa and five common LRTIs. MR methods including 
inverse-variance-weighted (IVW), MR-Egger, weighted median, simple mode, and 
weighted mode were used to analyze the causality. Gene pleiotropy was tested 
using MR-Egger regression and MR-PRESSO methods. Cochran’s Q test was 
used to check for heterogeneity. Leave-one-out analysis was used to assess the 
stability of effect sizes. Detected significant associations were validated by using 
an independent LRTI GWAS summary statistics dataset. An optional MR method 
of causal analysis using summary effect estimates (CAUSE) was further performed 
as a validation to avoid potential false-positive results.

Results: According to the MR-Egger estimates in forward MR analysis, a causal 
effect of gut Blautia on increased odds of bronchiectasis and pneumonia was 
suggested. MR-Egger regression pleiotropy intercept methods detected no 
significant horizontal pleiotropy between the instrumental variables of these 
associations. MR-PRESSO global test examined no potential horizontal pleiotropy. 
Cochran’s Q test showed that no heterogeneity biased the results. The leave-
one-out sensitivity analyses suggested robust causality results. These associations 
with consistent effect direction were successfully replicated in IVW analysis by 
using the validation GWAS dataset. However, these evidence of causality did not 
survive after applying strict Bonferroni correction or CAUSE analysis. The reverse 
MR analysis failed to achieve consistent results in the effect of LRTIs on gut 
microbiota through comprehensive discovery and validation processes.

Discussion: This study established no strong causality between genetically 
predicted gut microbiome and the risk of lower respiratory tract infections. 
However, specific subtypes of microbial genera, such as Blautia, were identified as 
potential influencers and require further investigation, particularly at the species 
or strain levels.
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Introduction

Lower respiratory tract infections (LRTIs) remain a significant 
cause of morbidity and mortality worldwide, particularly affecting 
vulnerable populations such as the elderly, young children, and 
immunosuppressed individuals (Langelier et al., 2018). According to 
the Global Burden of Disease Study 2016, LRTIs were responsible for 
approximately 2,377,697 deaths globally in 2016, especially among 
people aged over 65 years (Collaborators, 2018). Despite substantial 
advances over the past decade, LRTIs still account for a fifth of all 
deaths worldwide, primarily in low- and middle-income countries. 
From an epidemiological point of view, definitions of LRTI mainly 
include bronchiectasis, pneumonia, influenza, acute bronchitis, and 
acute bronchiolitis (Collaborators, 2017). Treatment guidelines may 
vary among countries, but they generally focus on improving 
nutrition and hygiene, along with the distribution and usage of 
antimicrobial agents and vaccines (Kamata et al., 2022). Although 
early and appropriate antimicrobial treatment are available, many 
patients still succumb to LRTIs due to challenges such as drug 
resistance (Cazzola et al., 2017). Hence, there is a need for novel 
therapeutic strategies in addition to traditional antibiotics, making 
precision medicine for LRTIs an important approach.

In otherwise healthy individuals, the human gut is the most 
densely colonized organ, harboring an estimated 1014 bacteria from 
over 1,000 bacterial species (Bäckhed et al., 2005). Current studies 
have extensively explored the relationship between gastrointestinal 
microbiota and human diseases. Its importance in sustaining local 
and systemic tissue homeostasis has gained great recognition (Nenci 
et  al., 2007; Gensollen et  al., 2016). Furthermore, the metabolic 
by-products and ligands of gut commensal bacteria have the ability 
to modulate and fine-tune the development and function of the 
innate and adaptive immune system, which helps to protect against 
infections caused by diverse pathogens (Ichinohe et al., 2011; Abt 
et  al., 2012). Studies taking advantage of germ-free mice and 
antibiotic-driven depletion of gut bacterial species have contributed 
significantly to the understanding of gut-lung axis in mediating a 
range of respiratory infectious diseases. For example, the disruption 
of gut microbiome development in infancy plays a role in increased 
susceptibility to pulmonary viral infections (Ichinohe et al., 2011) 
and the development of lung diseases including asthma and chronic 
obstructive pulmonary disease (Abrahamsson et al., 2014; Zeissig and 
Blumberg, 2014; Qu et al., 2022). Mechanically, gut microbes initiate 
the activation of the innate antiviral immune response via the 
interactions with pattern recognition receptors (ie., Toll like receptor) 
(Samuelson et al., 2015), and also contribute to the regulation of 
macrophage response and restoration of lung CD4+ and CD8+ T cells, 
which are crucial for improved survival in respiratory viral infections 
(Abt et al., 2012). Besides, imbalances in gut microbiome result in an 
exacerbation of cytokine-induced inflammation (Verdam et  al., 
2013), potentially resulting in lung morbidity. It is partially attributed 
to the reduced production of anti-inflammatory metabolites like 
short-chain fatty acids (SCFAs) (Trompette et al., 2014) and increased 
production of pro-inflammatory metabolites such as secondary bile 
acids (Duboc et al., 2013) from intestinal flora, which transported via 

circulation to play a role in gut-lung communication, thereby 
impacting respiratory health and infections. Probiotics and prebiotics 
have demonstrated effects in reducing the incidence of cystic fibrosis 
pulmonary exacerbations (Weiss et  al., 2010), protecting against 
bacterial pneumonia (Vieira et al., 2016), and expediting recovery 
from respiratory viral infections (Kawahara et al., 2015; Samuelson 
et  al., 2015). Understanding the role of gut microbiome and its 
influence on respiratory infections can bring further refinement to 
the discovery of biomarker and precision medicine for these diseases.

However, so far, it remains unclear whether there is a causal 
relationship between gut microbiome and LRTIs because of the 
confounding factors and possible reverse causation. Mendelian 
randomization (MR) is an emerging genetic epidemiological method 
that utilizes summary data from genome-wide association studies 
(GWASs) as instrumental variables to infer causality in exposure-
outcome associations (Dan et al., 2021). It may help to identify specific 
causal microbe taxa to enhance the development of precision medicine 
in the treatment of LRTIs. Therefore, we  employed a bidirectional 
two-sample MR analysis to investigate the causal effects of gut 
microbiome on the risk of five common LRTI diseases and vice versa.

Materials and methods

The study methods were compliant with the STROBE-MR 
checklist (Skrivankova et  al., 2021). Our analysis used publicly 
available GWAS summary statistics. No new data were collected, and 
no additional ethical approval or informed consent was required. The 
flowchart of the study was shown in Figure 1.

Data sources

SNPs related to human 16S fecal microbiome composition were 
selected as instrumental variables from a large-scale multi-ethnic 
GWAS meta-analysis with 24 cohorts, comprising 18,340 individuals 
of different ethnicities and ages from the USA, Canada, Israel, South 
Korea, Germany, Denmark, the Netherlands, Belgium, Sweden, 
Finland, and the UK, most of whom had European ancestry 
(n = 13,266) (Kurilshikov et al., 2021). The microbial composition was 
profiled by targeting three distinct variable regions of the 16S rRNA 
gene, including V4 (10,413 samples, 13 cohorts), V3-V4 (4,211 
samples, 6 cohorts), and V1-V2 (3,716 samples, 5 cohorts).

The discovery summary-level data of SNPs associated with the 
five common LRTI subtypes were obtained from the data of FinnGen 
Release 8 (released to the public on December 1, 2022),1 including 
bronchiectasis, acute bronchiolitis, acute bronchitis, influenza, and 
pneumonia. Cases were defined as participants with at least one 
inpatient or outpatient ICD-9/10 code as a primary diagnosis for 
these LRTIs. We limited LRTI data to samples of European ancestry 
to avoid potential bias aroused by population stratification. This 

1 https://finngen.gitbook.io/documentation/
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GWAS consisted of 1,967 bronchiectasis cases (283,589 controls), 
1,754 acute bronchiolitis cases (323,785 controls), 13,832 acute 
bronchitis cases (323,785 controls), 52,021 pneumonia cases 
(290,478 controls), and 7,580 influenza cases (286,619 controls).

The validation summary statistics of SNPs associated to the five 
common LRTI diseases were obtained from the GWAS reports 
measured in European participants from the UK Biobank by 
searching the GWAS catalog2 (Jiang et al., 2021), which included a 
total of 583 bronchiectasis cases (455,765 controls) (accession 
number: GCST90044075), 172 acute bronchiolitis and bronchitis 
cases (456,176 controls) (accession number: GCST90044069), 2,842 

2 https://www.ebi.ac.uk/gwas/

pneumonia cases (453,506 controls) (accession number: 
GCST90044067), and 248 influenza cases (456,100 controls) 
(accession number: GCST90044068).

We also examined the possibility of reverse causality of LRTIs on 
gut microbiome, using the discovery datasets of GWASs related to gut 
microbiome and LRTIs.

Instrumental SNPs selection

The following selection criteria were used to choose the IVs: (1) 
SNPs associated with each genus were collected as potential IVs using 
a genome-wide significance threshold of p < 1 × 10−5 for their inclusion 
in the current study; (2) due to the presence of strong linkage 

FIGURE 1

Study design and workflow.
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disequilibrium (LD) among selected SNPs might bias the results, SNPs 
were clumped within study per bacterium genus using the PLINK 
(version 1.961) clumping procedure to eliminate the stringent LD 
between included IVs (R2 < 0.01, with reference to the 1,000 Genomes 
Phase 3 CEU Project Panel (Abecasis et al., 2012), clumping window 
size = 1,000 kb) within a five megabase window; (3) to guarantee that 
the impact of SNPs on exposure corresponds to the same allele as the 
impact on the outcome, palindromic SNPs with intermediate allele 
frequencies were excluded; (4) when the exposure-related SNPs were 
not available in the outcome dataset, the proxy SNPs significantly 
correlated with the variants of interest were used (R2 > 0.8); (5) selected 
SNPs with a minor allele frequency (MAF) ≤ 0.01 were excluded.

Statistical analysis

A bidirectional two-sample MR analysis was conducted to evaluate 
the causal relationship between the gut microbiome and common 
LRTI subtypes. When only a single SNP was available to construct the 
IV, the ratio of coefficients method was used to obtain MR estimates 
with first-order weights used to generate standard errors. Where more 
than one SNP was available to construct the IVs for a given genus, the 
random effect inverse variance weighted (IVW) MR approach was 
used as the principal analysis to acquire an overall estimate of the 
causal effect. In addition, complementary methods including 
MR-Egger regression, weighted median, weighted model, 
MR-pleiotropy residual sum and outlier (MR-PRESSO), and simple 
model were used to examine the causal association. The MR-Egger 
regression is used to assess the presence of pleiotropy, which occurs 
when a genetic variant affects multiple traits or outcomes, violating the 
instrumental variable assumption of MR. It provides a robust estimate 
of the causal effect by accounting for pleiotropy and can detect and 
quantify any directional pleiotropy bias (Bowden et al., 2016b). The 
weighted median estimator is a robust approach to estimate the causal 
effect when there is heterogeneity in the causal estimates from different 
genetic variants. It selects the median estimate as the overall causal 
effect, giving more weight to instruments with smaller variances and 
providing valid results as long as at least 50% of the weight comes from 
valid instruments (Bowden et  al., 2016a). Similar to the weighted 
median, the weighted mode estimator is also designed to handle 
heterogeneity. It selects the mode estimate as the causal effect, which is 
the most frequent estimate among valid instruments. This method is 
useful when there is more pronounced heterogeneity in the causal 
estimates (Hartwig et al., 2017). MR-PRESSO is a method used to 
identify and correct for outliers or genetic variants that violate the no 
pleiotropy assumption. It detects outliers and removes them from the 
analysis, allowing for a more accurate estimation of the causal effect. 
Additionally, MR-PRESSO provides an adjusted causal estimate after 
removing outliers (Verbanck et  al., 2018). To account for multiple 
testing, a conservative Bonferroni threshold for statistical significance 
was set to p < 0.05 / 119 = 4 × 10−4 for the forward MR analysis and 
p < 0.05 / 5 = 1 × 10−2 for the reverse MR analysis.

We also employed a Bayesian posterior probabilities-based MR 
method namely Causal Analysis Using Summary Effect Estimates 
(CAUSE) (Morrison et al., 2020), as a further validation analysis for 
the associations replicated in both discovery dataset and validation 
dataset. This approach demonstrates a reduced susceptibility to false 
positive associations resulting from correlated and uncorrelated 

horizontal pleiotropy by utilizing the maximum independent SNPs to 
increase detection power. To include a larger number of IVs, LD 
pruning was performed using a threshold of r2 < 0.1 and p < 1 × 10−3 via 
a built-in function in the CAUSE R package, which utilized 
precomputed LD estimates.

Sensitivity analysis

To ensure the reliability of the conclusion, sensitivity analyses were 
performed to verify whether heterogeneity and pleiotropy within the 
genetic variables could bias the MR results. First, the MR-Egger 
regression was applied to detect and adjust for the underlying 
horizontal pleiotropic effects among the selected IVs through the 
assessment of the intercept. Second, the MR-PRESSO global test of 
heterogeneity was conducted to identify the underlying horizontal 
pleiotropy. Third, the Cochran’ IVW Q statistics were used to quantify 
the heterogeneity across the selected IVs. With a consideration of 
possible significant heterogeneity between SNPs (p < 0.05), we applied 
a random-effect IVW model to perform the MR analysis. Fourth, the 
leave-one-out sensitivity analysis was implemented by omitting each 
instrumental SNP in turn to identify potential heterogeneous SNPs. 
Fifth, considering that various confounders including smoking, 
pulmonary comorbidities such as chronic obstructive pulmonary 
disease (COPD), asthma, lung fibrosis et al. were closely associated 
with the incidence of LRTIs, we conservatively queried each genus-
related SNP used as the instrument in the PhenoScanner V2 database 
to identify SNPs that were significantly associated with GWAS traits 
potentially confounding LRTI phenotypes or might introduce 
horizontal pleiotropy at risk of affecting the five LRTI subtypes 
independent of gut microbiome at the genome-wide significance level. 
Whenever the GWAS p-value of the SNP was lower than the threshold 
(p < 1 × 10−5), we considered it to be correlated with the confounders 
(Kamat et al., 2019). We assessed the effect of gut microbiome after 
removing those SNPs from the MR estimates to exclude potential 
pleiotropic effects. This MR analysis was performed based on three 
assumptions: (1) The IV is closely associated with the exposure. (2) The 
IV is not associated with any potential confounders. (3) The IV can 
only influence the outcome via the exposure, and not by any other 
ways. The CAUSE method was used to detect the false positive error 
due to correlated horizontal pleiotropy. The SNPs selection assumptions 
and MR statistical analysis workflow were shown in Figure 2.

The strength of IVs was assessed by calculating the F-statistic 
using the formula F = R2 × (N-1-K) / (1-R2) × K, where R2 represented 
the proportion of variance in the exposure explained by the genetic 
variants, N represented sample size, and K represented the number of 
instruments (Palmer et  al., 2012). R2 was calculated by using the 
formula R2 = 2 × MAF × (1–MAF) × beta2, where beta was the effect 
value of the genetic variant in the exposure, and MAF was the effect 
allele frequency of selected SNPs (Palmer et al., 2012; Burgess et al., 
2016). If the corresponding F-statistic was >10, it was considered no 
significant weak instrumental bias was used. The power of the MR 
estimates was calculated using the mRnd MR power calculator3 
(Burgess et al., 2017). MR analyses were performed using R (version 

3 https://cnsgenomics.com/shiny/mRnd/
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4.2.3), the TwoSampleMR package 0.5.6 (Hemani et  al., 2018), 
MR-PRESSO (version 1.0) (Verbanck et  al., 2018), and CAUSE 
(version 1.2.0) (Morrison et al., 2020).

Results

Forward MR analysis and sensitivity 
analyses

According to the selection criteria of IVs, a total of 1,517 SNPs 
associated with 119 bacterial genera were identified from the large-
scale GWAS (Supplementary Table S1). After exclusion due to potential 
association to outcomes or outcome-related traits, unavailablility in 
outcome dataset (Supplementary Table S2), or palindrome, a total of 
1,224 SNPs with four proxy SNPs were retained as IVs for the following 
forward MR analysis (Supplementary Table S3). The SNP number for 
bronchiectasis, acute bronchiolitis, acute bronchitis, influenza, and 
pneumonia in the discovery dataset was 1,220, 1,219, 1,221, 1,219, and 
1,222, respectively. The main information of SNPs including effect 
allele, other allele, beta, SE, and p value were collected systematically 
for further analysis. The number of IVs associated with each bacterial 
genus varies from 3 to 20. The sum of F statistics for SNPs of individual 
bacterial genera was greater than the conventional threshold of 10, 
indicating that there was no significant bias from weak instrument 
variables (Table 1; Supplementary Table S4).

According to the five MR methods, the genetically determined 
gut microbiome, as a whole, had no causal relationship with LRTIs. 
The results of Cochran’s IVW Q test showed no significant 
heterogeneity of these IVs. The discovery findings were confirmed in 
independent validation MR analysis (Table 1). Detailed information 
and strengths of IVs in validation dataset were presented in 
Supplementary Tables S5, S6.

However, the results of MR analyses for individual gut microbial 
genus in discovery datasets revealed that genetically predicted 
relative abundance of specific genera might be causally associated 

with an increased or decreased risk of LRTI (Supplementary Table S7). 
For example, based on the IVW estimates, Bifidobacterium was 
negatively associated to the risk of bronchiectasis [odds ratio (OR): 
0.688, 95% confidence interval (CI): 0.520–0.910, p = 0.009], but 
positively associated to the risk of influenza (OR: 1.225, 95% CI: 
1.061–1.415, p = 0.006). While according to the MR-Egger analysis, 
Blautia was consistently correlated with an increased risk of 
bronchiectasis (OR: 2.956, 95% CI: 1.143–7.648, p = 0.049), influenza 
(OR: 1.856, 95% CI: 1.140–3.022, p = 0.032), and pneumonia (OR: 
1.336, 95% CI: 1.036–1.724, p = 0.049). In addition, abundance of 
genera Erysipelatoclostridium acted as a risk factor for acute 
bronchiolitis (OR: 3.483, 95% CI: 1.266–9.583, p  = 0.031) and 
influenza (OR: 1.764, 95% CI: 1.089–2.860, p  = 0.038), while 
Oxalobacter acted as a protective factor for acute bronchiolitis (OR: 
0.799, 95% CI: 0.653–0.978, p = 0.030) and bronchitis (OR: 0.913, 
95% CI: 0.842–0.989, p  = 0.027) (Supplementary Table S8; 
Supplementary Figures S1, S2).

For these identified associations, the Cochran’s Q test suggested 
that there was no significant heterogeneity across all these selected 
genetic instruments (Supplementary Table S8). The horizontal 
pleiotropy was evaluated by MR-Egger regression, and the results 
indicated that there was evidence of potential horizontal pleiotropy to 
skew the influence of Anaerostipes on bronchiectasis (p  = 0.002), 
Erysipelatoclostridium on acute bronchiolitis (p = 0.030) and influenza 
(p = 0.041), Holdemania (p = 0.010) and Olsenellaon (p = 0.035) on 
acute bronchiolitis, Oscillospira on acute bronchitis (p = 0.038), and 
Ruminococcus_2 on pneumonia (p = 0.039) (Supplementary Table S8). 
The MR-Egger intercept test was sensitive to outliers and violations of 
INstrument Strength Independent of Direct Effect assumption, thus 
less efficient. Therefore, we also conducted MR-PRESSO global test, 
which was more robust to outliers. Nevertheless, no sign of horizontal 
pleiotropy was detected and no outliers were found by MR-PRESSO 
test (Supplementary Table S9). The leave-one-out analysis showed that 
no single SNP was driving these significant MR estimates, indicating 
that the results of the current MR analysis were robust 
(Supplementary Figure S3). However, after Bonferroni correction for 

FIGURE 2

The SNP selection assumptions and forward MR analyses flowchart.
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TABLE 1 MR results of causal effect of general gut microbiome on LRTI risk in forward analysis.

LRTIs Datasets Nsnp Methods F statistic Beta SE p OR
(95% CI)

Horizontal pleiotropy Heterogeneity

Intercept SE p Q p

Bronchiectasis Discovery 1,220 MR-Egger 65.815 0.061 0.032 0.059 1.062 (0.998, 1.131) −0.007 0.003 0.034 1215.693 0.624

Weighted median −0.005 0.019 0.786 0.995 (0.959, 1.032)

IVW −0.002 0.012 0.864 0.998 (0.974, 1.022)

Weighted mode −0.032 0.079 0.687 0.969 (0.829, 1.132)

Simple mode −0.044 0.069 0.529 0.957 (0.835, 1.097)

Validation 1,076 MR-Egger 58.529 0.007 0.064 0.911 1.007 (0.888, 1.143) 0.004 0.006 0.519 1085.538 0.405

Weighted median 0.081 0.038 0.031 1.084 (1.007, 1.167)

IVW 0.046 0.025 0.064 1.047 (0.997, 1.098)

Weighted mode 0.228 0.016 0.156 1.226 (0.917, 1.719)

Simple mode 0.228 0.136 0.093 1.226 (0.963, 1.638)

Acute 

bronchiolitis

Discovery 1,219 MR-Egger 65.710 0.029 0.035 0.404 1.030 (0.961, 1.104) −0.002 0.003 0.562 1268.436 0.236

Weighted median 0.030 0.022 0.163 1.031 (0.988, 1.076)

IVW 0.011 0.014 0.436 1.011 (0.984, 1.038)

Weighted mode 0.091 0.082 0.271 1.095 (0.932, 1.287)

Simple mode 0.081 0.072 0.259 1.084 (0.942, 1.248)

Acute 

bronchitis

1,221 MR-Egger 66.324 −0.020 0.013 0.105 0.980 (0.956, 1.004) 0.002 0.001 0.073 1288.878 0.131

Weighted median 0.001 0.007 0.864 1.001 (0.987, 1.016)

IVW 0.000 0.005 0.937 1.000 (0.991, 1.010)

Weighted mode 0.022 0.029 0.466 1.022 (0.964, 1.083)

Simple mode 0.014 0.023 0.543 1.014 (0.969, 1.062)

Acute 

bronchitis and 

bronchiolitis

Validation 1,233 MR-Egger 68.013 0.061 0.110 0.578 1.063 (0.857, 0.319) −0.002 0.011 0.886 1256.368 0.308

Weighted median 0.017 0.065 0.797 1.017 (0.895, 1.156)

IVW 0.047 0.042 0.270 1.048 (0.964, 1.138)

Weighted mode −0.148 0.286 0.606 0.863 (0.492, 1.511)

Simple mode −0.116 0.645 0.645 0.890 (0.544, 1.458)

(Continued)
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TABLE 1 (Continued)

LRTIs Datasets Nsnp Methods F statistic Beta SE p OR
(95% CI)

Horizontal pleiotropy Heterogeneity

Intercept SE p Q p

Influenza Discovery 1,219 MR-Egger 66.144 0.003 0.017 0.848 1.003 (0.971, 1.037) −0.001 0.002 0.446 1296.740 0.105

Weighted median −0.005 0.010 0.603 0.995 (0.977, 1.014)

IVW −0.009 0.007 0.186 0.991 (0.979, 1.004)

Weighted mode −0.027 0.040 0.499 0.973 (0.900, 1.052)

Simple mode −0.012 0.033 0.719 0.988 (0.926, 1.054)

Validation 1,233 MR-Egger 68.013 −0.024 0.091 0.788 0.976 (0.817, 1.165) 0.006 0.009 0.518 1180.687 0.850

Weighted median 0.027 0.052 0.602 1.027 (0.928, 1.137)

IVW 0.030 0.035 0.396 1.030 (0.962, 1.103)

Weighted mode 0.031 0.230 0.894 1.031 (0.657, 1.617)

Simple mode 0.056 0.194 0.775 1.057 (0.723, 1.546)

Pneumonia Discovery 1,222 MR-Egger 66.324 0.001 0.007 0.897 1.001 (0.987, 1.015) −0.000 0.001 0.754 1364.909 0.005

Weighted median −0.003 0.004 0.484 0.997 (0.989, 1.005)

IVW −0.001 0.003 0.681 0.999 (0.993, 1.004)

Weighted mode −0.005 0.015 0.733 0.995 (0.966, 1.025)

Simple mode −0.005 0.015 0.733 0.995 (0.966, 1.025)

Validation 1,233 MR-Egger 68.013 −0.023 0.027 0.400 0.977 (0.927, 1.031) 0.003 0.003 0.236 1176.692 0.735

Weighted median 0.007 0.015 0.664 1.007 (0.977, 1.037)

IVW 0.007 0.010 0.510 1.007 (0.987, 1.028)

Weighted mode 0.013 0.063 0.840 1.013 (0.895, 1.147)

Simple mode −0.001 0.056 0.982 0.999 (0.895, 1.115)

Nsnp is the number of SNPs used to estimate the causal effect size.

https://doi.org/10.3389/fmicb.2023.1276046
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fmicb.2023.1276046

Frontiers in Microbiology 08 frontiersin.org

multiple tests, none of the significant associations presented between 
genetically predicted gut microbiome with LRTIs.

Furthermore, to validate the causal relationship identified in the 
discovery sample set, summary statistics from independent LRTI 
GWASs were employed. The validation MR analysis solely confirmed 
the causal association with the same direction between genetically 
predicted enrichment of microbial genus Blautia with bronchiectasis 
(IVW, OR: 2.774, 95% CI: 1.413–5.445, p = 0.003) and pneumonia 
(IVW, OR: 1.386, 95% CI: 1.008–1.906, p = 0.044) (Table 2; Figure 3). 
Still, application of the Bonferroni correction did not yield any 
statistically significant differences in validation. To further confirm the 
validated casual links between Blautia and LRTIs, CAUSE analysis was 
then performed. However, it indicated that the sharing model was 
better than the causal model, without providing consistent significant 
causality (Supplementary Table S10).

Reverse MR analysis and sensitivity 
analyses

We further examined the causal effect of LRTI diseases on gut 
microbiome by reverse MR analyses. The detailed information and 
predictive power of selected IVs were presented in 
Supplementary Tables S11–S13. The conventional MR methods 
resulted in multiple causal relationships between LRTI and gut 
microbiome (Supplementary Table S14). Specifically, according to 
the results of bidirectional MR analyses based on the discovery 
dataset, we  found a bidirectional causal association between 
Escherichia_Shigella (Forward IVW, OR: 0.851, 95% CI: 0.737–0.982, 
p = 0.028; Reverse IVW, OR: 0.851, 95% CI: 0.763–0.950, p = 0.004) 
and acute bronchitis, as well as Eubacterium_fissicatena_group 
(Forward IVW, OR: 0.897, 95% CI: 0.816–0.987, p = 0.025; Reverse 
IVW, OR: 0.793, 95% CI: 0.647–0.971, p  = 0.025) and acute 
bronchitis (Supplementary Tables S8, S15).

The Bonferroni correction was also performed in reverse MR 
analysis to account for five exposures, where p < 0.01 (0.05/5) was 

defined as a statistically significant difference. The causal effect of 
Bronchiectasis on Corprobacter (Reverse MR IVW, p = 0.008) and 
Ruminiclostridium_6 (Reverse MR IVW, p = 0.007), acute bronchiolitis 
on Corprobacter (Reverse MR IVW, p = 0.006) and Eggerthella 
(Reverse MR IVW, p = 0.003), acute bronchitis on Escherichia_Shigella 
(Reverse MR IVW, p = 0.004), Oscillibacter (Reverse MR IVW, 
p = 0.002), and Veillonella (Reverse MR IVW, p = 0.001), as well as 
pneumonia on Haemophilus (Reverse MR IVW, p = 0.003) was still 
significant after Bonferroni correction. There was no evidence of 
heterogeneity between IV estimates with IVW methods from 
individual SNPs and no pleiotropy effect for these detected 
associations. No pleiotropic outliers were detected according to the 
MR-PRESSO tests (Supplementary Table S16). However, as there were 
not enough IVs used in the MR to undertake a sensitivity analysis for 
the causal effect of acute bronchiolitis on most microbial genera, the 
results should be interpreted with caution. To verify these causalities, 
we also conducted validation MR analysis by using independent LRTI 
GWAS data. Nevertheless, none of the associations were replicated in 
the validation dataset, indicating a poor causal effect of LRTIs on the 
gut microbiome.

Discussion

Colonization of the intestine with commensal bacteria is known 
to play a major role in the maintenance of the integrity of lung tissues 
against foreign infections. Intestinal flora has a powerful direct and 
indirect regulatory effect on the human immune system by increasing 
the number of immune cells, producing SCFAs and immunoglobulins, 
enhancing oral tolerance, and controlling inflammation (Samuelson 
et  al., 2015). Consequently, an altered gut microbiome is always 
associated with various ensuing diseases including respiratory 
diseases. In this study, using the summary statistics of gut microbiota 
from the largest GWAS report and the summary statistics of LRTIs 
from the FinnGen consortium R8 release data and UK Biobank, 
we performed a bidirectional two-sample MR analysis to refer the 

FIGURE 3

Validated casual links between specific gut microbial genus and LRTIs in forward MR analyses.
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TABLE 2 MR results of significant causal effect of gut microbiome on LRTI risk in forwad analysis (p  <  0.05).

Genus LRTI Dataset N
snp

Methods Beta SE p OR
(95% CI)

Horizontal pleiotropy Heterogeneity

Intercept SE p Q p

Blautia Bronchiectasis Discovery 12 MR-Egger 1.084 0.485 0.049 2.956 (1.143, 7.648) −0.062 0.034 0.095 8.785 0.498

Weighted median 0.017 0.254 0.947 1.017 (0.618, 1.673)

IVW 0.261 0.198 0.187 1.298 (0.881, 1.915) 12.175 0.351

Simple mode −0.181 0.469 0.707 0.834 (0.333, 2.091)

Weighted mode −0.136 0.409 0.746 0.873 (0.391, 1.947)

Validation 10 MR-Egger 1.141 0.805 0.195 3.128 (0.645, 15.169) −0.011 0.061 0.863 4.585 0.801

Weighted median 0.908 0.482 0.043 2.458 (0.965, 6.370)

IVW 1.020 0.344 0.003 2.774 (1.413, 5.445) 4.613 0.867

Simple mode 0.672 0.707 0.367 1.957 (0.489, 7.832)

Weighted mode 0.817 0.618 0.219 2.263 (0.674, 7.595)

Pneumonia Discovery 12 MR-Egger 0.290 0.130 0.049 1.336 (1.036, 1.724) −0.016 0.009 0.105 15.558 0.113

Weighted median 0.026 0.058 0.655 1.026 (0.916, 1.150)

IVW 0.076 0.055 0.168 1.079 (0.928, 1.203) 20.517 0.039

Simple mode 0.033 0.106 0.765 1.033 (0.839, 1.272)

Weighted mode 0.033 0.096 0.741 1.033 (0.856, 1.247)

Validation 10 MR-Egger 0.372 0.303 0.253 1.452 (0.802, 2.627) −0.004 0.022 0.860 1.265 0.996

Weighted median 0.314 0.206 0.127 1.369 (0.915, 2.049)

IVW 0.327 0.162 0.044 1.386 (1.008, 1.906) 1.298 0.998

Simple mode 0.429 0.257 0.130 1.535 (0.928, 2.540)

Weighted mode 0.382 0.244 0.151 1.466 (0.909, 2.362)

Nsnp is the number of SNPs used to estimate the causal effect size; Bold values denote statistical significance at the p < 0.05 level.
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causal association between gut microbiota and five common 
phenotypes of LRTI, which might be helpful to shed light on the 
impact of gut microbiota on airway immunity and the host’s ability to 
defend against respiratory infections. Additionally, our findings may 
inspire the development of precision medicine for treating 
these scenarios.

Through a comprehensive discovery and validation approach, this 
study suggested Blautia as a potential risk factor for an increased risk 
of bronchiectasis and pneumonia. Despite the causality did not surpass 
the strict Bonferroni correction threshold and was not confirmed in 
CAUSE analysis, it provided suggestive evidence of a potential causal 
effect between genus Blautia and LRTI frequency and might stimulate 
further specialized studies to gain insights into its impact on respiratory 
health. As a dominant genus of anaerobic bacteria in the feces and 
intestines of mammals, the probiotic characteristics of Blautia and its 
protective role in various host physiological dysfunctions have been 
reported, such as obesity, diabetes, cancer, and inflammatory bowel 
diseases. Blautia contributes to maintaining environmental balance in 
the intestine, preventing inflammation by upregulating intestinal 
regulatory T cells, and producing SCFAs (Kim et al., 2014). Its ability 
to produce bacteriocin, one of the common secondary metabolites that 
possess antibacterial activity against pathogenic microorganisms such 
as Listeria monocytogenes, Clostridium perfringens, and Escherichia coli 
(Martinez et al., 2013), also gives Blautia the potential to inhibit the 
colonization of pathogenic bacteria in the intestine (Liu et al., 2021). 
Our results did not align with previous findings regarding the 
protective effect of Blautia in human diseases. However, higher 
abundance of Blautia was also reported in the fecal microbiota of 
patients with irritable bowel syndrome, ulcerative colitis, functional 
gastrointestinal symptoms (Rajilić-Stojanović et  al., 2011; Nishino 
et  al., 2018; Ohlsson, 2022), and breast cancer (Luu et  al., 2017), 
suggested its association to the local or systemic inflammation. Indeed, 
Blautia, especially Blautia coccoides, activates the secretion of 
inflammatory cytokines such as tumor necrosis factor α (TNF-α) to an 
even greater extent than lipopolysaccharide (Tuovinen et al., 2013). 
TNF-α is a potent protective cytokine that contributing to anti-viral 
and anti-bacterial responses during the early phase of infection, 
however, excessive production causes heightened lung 
immunopathology and inflammation, particularly in the late phase of 
infection. Besides, in patients with rheumatoid arthritis, increased 
relative abundance of gut genus Blautia was related with lower levels of 
T cells, B cells, CD4+ T cells, and Tregs (Li et al., 2021). The findings 
suggest that Blautia species act as culprits in the pathogenesis of 
infectious diseases potentially due to their pro-inflammatory and anti-
immune properties. Mediterranean diet (MD) is plant-based and 
consistently considered to be benefit on human health (Barber et al., 
2023). Studies demonstrated that administration of MD reduced 
Blautia within gut microbiota (Merra et al., 2020; Zhu et al., 2020). 
Evidence for the effects of dietary fiber within MD showed a direct 
suppressive effect on Clostridium difficile infection. As previous study 
has indicated a positive association of Blautia with key inflammatory 
cytokines such as TNF-α, the authors hypothesized that MD improves 
the inflammatory milieu and infection through modulation of gut 
microbiota, at least in part (Merra et al., 2020; Zhu et al., 2020). The 
conflicting conclusions may be related to the genomic difference within 
the genus, as there are 12 independent Blautia species with a total of 
195 genome assemblies, nevertheless, most studies focused on the 
genus level and did not delve into investigations at species or even 

strain-levels (Liu et al., 2021). Therefore, drawing general conclusions 
at the genus level may lead to partial understandings and 
misinterpretations because different species of Blautia may exert 
different effects on human health. For example, Blautia coccoides was 
reported to be positively associated to the level of cytokines including 
TNF-α (Tuovinen et al., 2013), while Blautia luti and B. wexlerae in the 
gut microbiota of obese children was negatively related to those 
proinflammatory cytokines and chemokines (Benítez-Páez et al., 2020).

Although not consistently validated, our results implied that 
specific genera of gut commensal microbiota compositions might have 
protective effects against respiratory infections, highlighting their 
potential use as medications in the context of airway infections 
(Wolvers et al., 2010; Ozen et al., 2015). Based on the results from the 
discovery dataset, an increased abundance of Oxalobacter was 
consistently related to a lower risk of acute bronchiolitis and bronchitis, 
which are primarily caused by viral infections, particularly respiratory 
syncytial virus (RSV) (Kinkade and Long, 2016; Joseph and Edwards, 
2019). Oxalobacter is a Gram-negative bacterium that degrades oxalate 
in the gut to decrease urinary oxalate excretion. Its probiotics 
preparation has been commercially available as a biotherapeutic agent 
in the management of calcium oxalate renal stones (Hiremath and 
Viswanathan, 2022). Oxalobacter was identified to be associated with 
intestinal virus infection (Gozalbo-Rovira et al., 2021) and infectious 
urinary stone (Bruyere et al., 2008). Our analyses gave a new clue that 
use of Oxalobacter strains might show beneficial effects on the host 
immunity and/or against pathogens in respiratory system. 
Bifidobacterium is a genus of Gram-positive, anaerobic bacteria that are 
commonly found in the human gut microbiome. These bacteria are 
known for their immunomodulatory properties and have been shown 
to have a beneficial impact on human health (Hidalgo-Cantabrana 
et al., 2017). In our study, Bifidobacterium was suggested as a protective 
factor for the risk of bronchiectasis, which is associated to bacteria-
related recurrent respiratory tract infections (RRTIs) (Amati et al., 
2019). Studies have revealed that RRTI patients suffer from intestinal 
flora imbalance (Ozen et al., 2015; Li et al., 2019), manifested as a 
significant reduction in the number of Bifidobacteria (Peng et al., 2016; 
Li et  al., 2019). Restoring Bifidobacteria with oral Bifidobaeterium 
tetravaccine tablets (Live) effectively maintained the balance of 
intestinal micro-ecology and reduced average annual frequency of 
acute respiratory tract bacterial infection and use of antibiotics (Li 
et al., 2019). Thus, Bifidobacterium may be viewed as potential next-
generation probiotic candidates in the treatment of bacterial lung 
infections. Actually, studies evaluating the use of Bifidobacterium as 
probiotics have already demonstrated their effect in the control of 
respiratory viral infections, such as COVID-19 (Taufer and Rampelotto, 
2023) and H7N9 (Zhang et al., 2020). The potential mechanisms of 
action underlying the protective effects of Bifidobacterium, drawing 
from current knowledge, may involve the stimulation on immune 
system, reduction of inflammation, competitive advantage with 
pathogenic microbes, and maintenance of gut barrier function (Taufer 
and Rampelotto, 2023). A group of SCFAs-producing bacteria 
including Parabacteroides (Ahmed et al., 2019), Anaerotruncus (Yan 
et al., 2019), and Lachnospiraceae_NC2004_group (Egerton et al., 2022) 
were also implied to be protective in LRTIs by our results. SCFAs, 
mostly acetic acid, propionic acid, and butyric acid, are metabolites 
produced after gut microbial fermentation of dietary fiber. 
Accumulated evidence supported that SCFAs not only maintain local 
and systemic immune homeostasis but also boost host immunity to 
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pathogens in a range of airway inflammatory conditions (Antunes 
et al., 2023; Dang et al., 2023), through sophisticated modulations on 
the maturation, accumulation, and function of immune cells, activating 
the transmembrane G protein-coupled receptors, and inhibiting 
histone deacetylases, et al. (Tan et al., 2014).

Notably, the association between gut microbiome and LRTIs 
found in the observational studies may be  influenced by reverse 
causation. To address it, we  performed a reverse MR analysis to 
investigate the causation in the opposite direction. Although there 
were some initial indications of causal effects of LRTIs on the gut 
microbiome in the discovery sample set, no notable genetically 
predicted associations were observed in the validation dataset. This 
suggested that reverse causation is unlikely to explain the findings in 
forward MR analysis.

This study has several strengths. To the best of our knowledge, this 
is the first MR study to infer the causal relationship between the gut 
microbiota and LRTIs. Genetic variants used to represent the gut 
microbiota were sourced from the largest available GWAS analysis, 
ensuring the strength of instruments for MR approach. Horizontal 
pleiotropy was detected and excluded by using the MR-PRESSO and 
MR-Egger regression intercept term tests. Furthermore, we conducted 
a comprehensive validation process by using an independent sample 
data and the CAUSE method to facilitate robust causal inferences. Our 
study somehow deepens the understanding of the gut microbiome on 
human health and highlights the microbiome-related agents as 
potential precision therapeutics to ensure enhanced resistance toward 
respiratory infections.

There are several limitations that should be  considered while 
interpreting the results of this study. First, a standard MR method 
assumed a linear relationship between exposure and outcome, so the 
non-linear association and threshold effect between gut microbiota 
and LRTIs could not be detected. Second, we only explored the causal 
links between gut microbiota and LRTIs at the taxonomic level of 
genus, thus their associations at the species level could not be revealed. 
Third, although most participants in the GWAS meta-analysis for gut 
microbiota data were of European descent and the outcome GWAS 
data were restricted only from European subjects, the interference 
from population stratification might still exist. Moreover, the 
extrapolation of the current findings to other ethnic groups was 
limited. Future MR studies on this topic should be  considered in 
non-European populations to confirm the results. Fourth, although 
we measured LD among all selected SNPs using northern Europeans 
from Utah samples from the 1,000 Genomes Project, we could not 
exclude the possibility that our results might be  affected by 
unmeasured confounders. Fifth, by selecting representative diseases 
for LRTIs, we aimed to capture a range of lower respiratory tract 
infections of clinical importance. The ambiguous and broad phenotype 
definition for LRTIs might induce the risk of non-differential 
mismatch between specific genera and individual diseases because 
high heterogeneities in LRTIs due to varied etiologies, pathogens, 
disease stages, clinical and radiology features, and physiology/lung 
functions might significantly influence the results. For example, the 
inclusion of influenza with a blurred boundary between upper and 
lower respiratory tract effects potentially introduced a potential 
limitation in the causal inferences drawn from our analysis. Sixth, 
since the data sources did not include individual level data, we failed 
to report the number of individuals at each stage of the study and the 
reasons why individuals were excluded from further study. This 

limitation might influence the adjustment of validity and 
generalisability of results by readers. Finally, the genetic instruments 
used in the MR analyses still might have pleiotropic effects, which 
could produce spurious findings. To limit this risk, we conducted 
multiple sensitivity analyses to provide statistical evidence of bias from 
pleiotropy or genetic confounding. But still, since the results failed to 
meet the stringent threshold in Bonferroni correction and CAUSE 
method, it is important to interpret our findings with caution, 
particularly when making specific causal inferences related to 
individual diseases within the LRTI group.

Conclusion

In summary, this study does not provide robust evidence for a 
causal relationship between genetically predicted gut microbiome 
genera and common phenotypes of lower respiratory tract infections. 
However, specific genera of gut commensal microbiota, such as 
Blautia, Oxalobacter, Bifidobacterium, and several SCFA-producing 
bacteria, are suggested to be  potential indicators for respiratory 
infection susceptibility. Further specialized investigations, particularly 
studies focusing on the species or strain levels, are needed to gain 
more insights into their impact on lung health and to unlock the 
potential use of gut microbiota-based immune-regulatory therapies 
in respiratory infectious diseases.
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Glossary

AMPs Antimicrobial peptides

CAUSE Causal Analysis Using Summary Effect Estimates

COPD Chronic obstructive pulmonary disease

CI Confidence interval

GWAS Genome-wide association study

IV Instrumental variable

IVW Inverse variance weighted

LD Linkage disequilibrium

LRTIs Lower respiratory tract infections

MR Mendelian randomization

MD Mediterranean diet

OR Odds ratio

RRTIs Recurrent respiratory tract infections

RSV Respiratory syncytial virus

SCFAs Short-chain fatty acids

SNP Single nucleotide polymorphism

TNF-α Tumor necrosis factor α
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