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Brain-computer interfaces (BCI) can provide real-time and continuous

assessments ofmental workload in di�erent scenarios, which can subsequently be

used to optimize human-computer interaction. However, assessment of mental

workload is complicated by the task-dependent nature of the underlying neural

signals. Thus, classifiers trained on data from one task do not generalize well to

other tasks. Previous attempts at classifying mental workload across di�erent

cognitive tasks have therefore only been partially successful. Here we introduce a

novel algorithm to extract frontal theta oscillations from electroencephalographic

(EEG) recordings of brain activity and show that it can be used to detect mental

workload across di�erent cognitive tasks. We use a published data set that

investigated subject dependent task transfer, based on Filter Bank Common

Spatial Patterns. After testing, our approach enables a binary classification of

mental workload with performances of 92.00 and 92.35%, respectively for either

low or high workload vs. an initial no workload condition, with significantly better

results than those of the previous approach. It, nevertheless, does not perform

beyond chance level when comparing high vs. low workload conditions. Also,

when an independent component analysis was done first with the data (and before

any additional preprocessing procedure), even though we achieved more stable

classification results above chance level across all tasks, it did not perform better

than the previous approach. These mixed results illustrate that while the proposed

algorithm cannot replace previous general-purpose classification methods, it

may outperform state-of-the-art algorithms in specific (workload) comparisons.

KEYWORDS

brain-computer interface, mental workload, passive BCI, classification of neural signals,

support vector machine, cognitive task, frontal midline theta, parietal alpha oscillations

1 Introduction

Passive brain-computer interfaces (pBCIs) based on electroencephalography (EEG) can

be leveraged to assess cognitive and affective states of the user in real-time, enabling flexible

human-computer interaction (Zander and Kothe, 2011; Mühl et al., 2014; Krol et al., 2018).

Ideally, such interaction takes place seamlessly, without the explicit instruction of the user,

enabling a form of neuroadaptive technology that does not place any additional burden of

control on the user (Zander et al., 2016). For instance, during operation of heavy machinery
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in a safety-critical environment, additional automation may be

required to avoid potentially fatal errors during periods of high

workload. A pBCI that can assess mental workload directly from

ongoing brain activity could be crucial to predict the occurrence of,

and avoid, such errors.

Despite decades of research, there is no consensus among

researchers regarding a clear definition of mental workload, and

a unified framework for it does not exist in the literature, but in

general, it refers to the cognitive effort an individual dedicates to

a task. Longo et al. (2022) mention this obvious pre-existence of

two interacting entities (a subject and a task) in any definition

of workload, but different theoretical assumptions, as well as

approaches to it always complicate a final agreement. Workload is

a highly complex and multifaceted concept, but a consistent theme

among various interpretations is its impact on performance and its

prediction. This also lies at the core of its importance in a variety

of fields. Both over- and underload negatively affect performance

and can lead to dangerous situations. Therefore, it is important

to be able to obtain an accurate measure of workload. Currently,

mental workload is assessed using psychological approaches such

as surveys, or peripheral physiological measures of arousal such

as heartrate variability (Fine et al., 2022). However, such indirect

measures do not provide the means to assess mental workload

in real time, as they are a delayed and indirect measure of

cognitive processes. While the different theoretical assumptions

related to the different interpretations of workload as a concept

bring complications, the use of brain activity can help provide

a data-driven measurement. BCIs on the other hand, can detect

changes in brain activity directly reflecting mental workload. One

such electrophysiological measure is frontal theta activity, which

can be assessed to detect increases in mental workload from EEG

signals (So et al., 2017). In this work we use this direct approach, by

using measurements of brain activity with a BCI.

Since BCIs need to be specifically calibrated to detect the

patterns of EEG activity related to a specific person performing to

a specific task, the application of BCIs to assess mental workload is

commonly restricted to one task at a time (Zhang et al., 2018). In

these cases, the classifier is trained and tested on data from the same

cognitive task. In contrast, it would be desirable to develop a system

which can detect increases inmental workload independently of the

task used for calibration (training). This transfer learning problem

is known to be challenging for EEG due to the covariate shift

(Li et al., 2010). For instance, in the application at hand, the

baseline level of frontal theta activity may not be same across tasks,

preventing successful generalization of the trained classifier.

Previous work has investigated the possibility of detecting the

level of mental workload from EEG signals across different tasks.

Krol et al. (2016) initially showed that a filter-bank common

spatial patterns classifier could reliably differentiate between high

and low workload in a multiplication (69 ± 13% accuracy) and

word recognition (76 ± 15% accuracy) task, when trained on a

subtraction task specifically designed to enable such transferability

(Zander and Krol, 2017). While these results indicated that transfer

learning of workload detection across tasks is feasible, the types of

tasks and the levels of workloads tested were limited. Therefore, a

subsequent study employed the same filter-bank common spatial

patterns algorithm to detect both low and high levels of workload

in a variety of tasks commonly used in workload research (Zhang

et al., 2018).While the transferability was confirmed for some tasks,

it was found that no meaningful performance above chance level

(Mueller-Putz et al., 2008) could be obtained in other tasks.

In the present study, we developed a novel classification

algorithm to detect mental workload based on frontal theta

oscillations. Using our algorithm on the dataset published in

Zhang et al. (2018), we show that a significant improvement in

classification performance can be obtained, providing a feasible

method of classifyingmental workload across tasks commonly used

in the field.

2 Methods

2.1 Experimental setup and
data acquisition

The data analyzed here was originally published in Zhang

et al. (2018). Details on data acquisition are reproduced here

for completeness. Fifteen participants (28.6 ± 4.1 years of age)

performed a series of tasks on a computer with a 27-inch screen

in front of them while 64-channel EEG (BrainAmp DC, Brain

Products GmbH, Gilching, Germany) was recorded. Participants

performed six tasks. A calibration task T0 was always presented

first, and consisted of a no workload condition, and a workload

condition. Each of the remaining five tasks T1-T5 consisted of

two workload conditions (high and low). Here we briefly outline

the tasks.

T0, the calibration task, presented an equation in the form of a

- b where in the workload condition participants were instructed to

keep on subtracting b from the previous result. In the no workload

condition, participants were shown a crosshair and instructed to

focus their thoughts inwards and relax. In each trial, regardless

of condition, there was a 50% chance that 10 visually distracting

“sparkles” floating slowly around the screen appeared. These served

to elicit and control for eye movement artifacts. Per condition, 20

trials were performed of 10 s each for a total of 200 s per class.

T1 was an N-Back task (Kirchner, 1958), that used a sequence

of numbers, where participants had to indicate by a button press

whether or not the current number was equal to the Nth previous

number. N was equal to 1 and 3 in the low and high load conditions,

respectively. Per workload condition, 12 trials were performed each

lasting 25 s. The order of the trials was randomized.

T2 was a backward span task, presenting a sequence of numbers

one digit at a time. Participants were instructed to memorize the

sequence and, at the end of each trial, reproduce it in reverse order.

The sequence length was 2 for the low and 6 for the high load

conditions. Per workload condition, 10 trials were performed each

lasting 30 s. The order of the trials was randomized.

T3 was an arithmetic addition task in which participants were

instructed to add two presented numbers, chosen such that the Q-

value (Thomas, 1963; Walter et al., 2017) of the resulting addition

was between 2 and 2.5 for the low, or between 4 and 5, for the high

load conditions. Per workload condition, 10 trials were performed

each lasting 30 s the order of the trials was randomized.

T4 was a word recovery task, in which participants were

instructed to identify a word whose characters had been mixed

in a different order before it was presented on the computer
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screen. German words from the SUBTLEX-DE corpus (Brysbaert

et al., 2011) were used: two-syllabled high-frequency words in low

load, and three-syllabled low-frequency words in high load. Per

workload condition, 10 trials were performed each lasting 30 s. The

order of the trials was randomized.

T5 was a mental rotation task (Shepard and Metzler, 1971), in

which participants were instructed to identify whether two figures

of rotated objects were the same shape, or mirrored versions of each

other. Following (So et al., 2017), the low load condition used two-

dimensional shapes consisting of connected squares while the high

load condition used three-dimensional shapes consisting of nine

connected cubes. Per workload condition, 10 trials were performed

each lasting 30 s. The order of the trials was randomized.

EEG data were acquired from 15 subjects using a 64 active

electrode EEG system (BrainAmp DC, Brain Products GmbH,

Gilching, Germany, using actiCAP electrode caps) organized

according to the extended 10- 20 system. Data was sampled at

500Hz. Due to technical difficulties, some data was missing from

three participants.

For the present study, we have considered the full data available

from 12 participants. Also, as task execution times were not fully

reached in some cases, for uniformity in the treatment along all

the subjects and tasks we cut-off with the following timeframe

durations (starting at the beginning of each task and workload

condition) in all our analyses: T0: 9 s, T1: 20 s, T2: 24 s, T3-T5: 30 s.

2.2 Preprocessing

Previous research has indicated that an increase in magnitude

of frontal theta oscillations relates to an increase in working

memory load levels (Gevins et al., 1997; Jensen and Tesche,

2002; Gerjets et al., 2014), and mental workload (So et al., 2017).

Missonnier et al. (2006) found a frontal theta event related

synchronization (ERS) of higher amplitude in a 1-back, a 2-

back, and a detection task as compared to a passive fixation task.

Therefore, we first bandpass-filtered EEG data into the theta (4–

7Hz) band using a 5th order Butterworth filter. Next, parameters

for trimming, scaling, and channel extraction were optimized on

the data.

We employed a trimming procedure to remove abnormally

large voltage values reflecting artifacts, similar to Delorme and

Makeig (2004). Samples exceeding a fixed threshold of standard

deviations below or above the mean across space and time

were removed. Because abnormal, extreme values in datasets -

often called “outliers”- pose a problem in statistical data analysis

(Barnett, 1979), and EEG signals “typically are contaminated by

measurement artifacts and noise from non-neurophysiological

sources” (Dornhege et al., 2007), researchers have proposed

solutions to identify these atypical values, neutralize or reduce

their effect, or eliminate regions of data containing them, as in

EEG channel suppression (e.g., Birch et al., 1993; Tax and Duin,

2002; Harmeling et al., 2006). According to Duda et al. (2001) the

trimmed mean of a distribution is less sensitive to the presence

of outliers than is the sample mean. We performed an external

(or inter-channel) trimming of samples whose voltage amplitude

was σEt = 57 standard deviations beyond the mean of each

specific dataset considered -which was equally done for all the data,

where each specific set consisted of the data of all the 64 EEG

channels for one subject, and task. This procedure was executed

once per each set. We performed an internal (or intra-channel)

trimming individually (or internally) for each channel in each

particular dataset (consisting of the data of one subject and task).

The internal trimming procedure was carried out iteratively while

samples remained whose voltage amplitude was σIt = 11 standard

deviations beyond the mean. In each internal trimming iteration,

the mean of the dataset was updated (as did the highest and

lowest amplitude values of the corresponding samples also change).

Figure 1 illustrates, among many trials available, the principle of

trimming with the EEG signal of a specific subject and task.

The trimming parameters were optimized and selected after an

exhaustive observation of all the data. It was noted -as in Figure 1-

that high aberrant values were concentrated in only a few channels

(out of the total 64) in some parts of the data. Our trimming

procedure was applied to treat all data equally and automatically,

after finding suitable trimming parameters that first, effectively

neutralize extreme abnormal values, and second are optimized and

chosen so that, at the same time, they do not affect original data that

should not change. We tested several combinations of candidate

values to control this requirement for each dataset (belonging to

one subject and task). After evaluation, once suitable parameters

for our dataset were found, trimming was applied equally to all the

data, but its application only affected an estimated 1.63% of the data

(a 98.37% of the data remained intact).

One of our guiding objectives (in this study and beyond) is

the implementation of universal classifiers of workload, that is, a

successful implementation of task, subject and session transfer. One

problem, according to the existing literature, are the differences

between the conditions of each recording session. As we implement

classifiers able to switch between subjects, tasks, and sessions,

models of data able to deal and compare the heterogeneity of trials

recorded in different measurements, from different subjects are

needed. For this, we use scaling which is a preprocessing procedure

consolidated in the literature of pattern recognition. For instance,

Rowley et al. (1998) implemented scaling in face detection -because

in original pictures faces to be recognized might have different

sizes, but automated classifiers need coherent parameters (i.e.,

concrete 20 by 20 pixels image windows)- together with specific

preprocessing techniques (such as light correction, and histogram

equalization of pixels of original images, before any classification

procedure could be used, because images in general are also

recorded from a variety of “measurements,” with different input

gains). As in this case, specific problems might require specific

approaches for a solution, and when the literature in a particular

area of knowledge reports the existence of a problem, and after a

while it continues reporting the same problem it is likely that the

existing methods are not able to bring satisfactory solutions. We

realized the importance of scaling for universal implementations of

classifiers of brain activity, but as existing approaches to EEG signal

preprocessing (such as standard min-max scaling) have not let the

research community hear about a solution it might be the right

time to try variations, new approaches, and/or complementary

techniques that might well contribute to it. We scaled the data

from different subjects and measurement sessions to a single

universal scaling factor each time, to unify and performmeaningful
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FIGURE 1

Illustration of the trimming procedure. (A) The first stage shows an original signal after filtering through the theta band contaminated with high

aberrant values (abnormal and not representative as to be considered to do meaningful comparisons and scaling, and whose e�ect should be

neutralized, reduced, or removed). The second stage shows the e�ects of inter-channel trimming (with σEt = 57), that already accomplishes its

purpose of neutralizing these amplitude values from the time series while preserving the rest of the signal. The third stage shows the e�ect of

intra-channel trimming (with σIt = 11), which is very fine and preserves the signal very well. (B) The same original EEG signal with sequential samples

organized per channel (along all the 64 EEG channels) in the horizontal axis, and the amplitude of samples in the vertical axis. High aberrant values

are not dispersed or “distributed” throughout the whole signal, but rather clustered or concentrated in isolated channels, a particularity corroborated

in our whole dataset after throughout scrutiny. Here, it is revealed that aberrant values going up to 165.8 standard deviations beyond the mean exist,

but they are concentrated in Ch 57 only. Amplitudes correspond to voltages in microvolts (µV).

comparisons. Universal scaling factors are arbitrary, external, and

independent from the data. Each subset that is scaled represents

the mental activity of one subject executing one of the tasks. In

addition our approach to scaling (in opposition to standard min-

max scaling) also takes the positive and negative components of

signals separately in consideration to previous studies (Jones, 2016)

which sustain that traditional preprocessing approaches, such as

band-pass filtering and detrending, fit signals and impose them

with the appearance of perfectly symmetric sinusoidal waves that

oscillate around a mean value, but this appearance -on which other

standard procedures such as min-max scaling depend upon- is not

always correct, because the underlying function of the involved

neural mechanisms could be related to other kind of waveforms

that should require different treatment, so that the development

of new methods that rather consider the characteristics of raw

signals (lost sometimes after several layers of traditional filtering

and averaging) to understand “rhythms” and their underlying

functions is encouraged. To standardize the data, we did scale each

of the EEG signals recorded to measure mental workload during

execution of a specific task, for each subject in the dataset, for the

theta frequency band, by means of universal scaling factors. We

used universal scaling factors f_theta_p, and f_theta_n for samples

with positive amplitudes, and negative amplitudes, respectively (as

reference maximum and minimum values for the whole data set,

to which local maximum and minimum values in each specific

subset will be mapped or scaled), where f_theta_p = - f_theta_n

(to reflect the symmetry between positive and negative amplitude

values in the data). We also found the maximum and minimum

values of amplitudes among all samples that belong (locally, or

internally) to each specific subset (consisting of the data of one

subject executing one of the tasks) and used these values as local

scaling factors: (1) the maximum value for samples with positive

amplitudes, and (2) the minimum value for samples with negative

amplitudes in the subset. Then we mapped all the values in these

samples from this local scale to the universal (MAX-MIN) scale.

Let N, R+, S = {S1, S2, . . . Ss}, and T = {T1,T2, . . .Tt} be

the sets of natural numbers, positive real numbers, subjects in

the dataset, and tasks in the dataset, respectively. Let Si,Tj =
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{

ek,Si ,Tj |1 ≤ k ≤ n(Si,Tj), kǫN
}

be the set of all trials of subject

Si executing task Tj, after filtering through the theta band, and

trimming, where each trial ek,Si ,Tj is a set of samples, and let n(S),

n(T), and n(Si,Tj) be the number of elements of sets S, T, and Si,Tj,

respectively, where ∀i, 1 ≤ i ≤ n(S) [n (Si,T6) = 40, n (Si,T1) =

24, n (Si,T2) = n (Si,T3) = n (Si,T4) = n (Si,T5) = 20] are

magnitudes known in the dataset after measurements. Let e+
k,Si ,Tj

⊆

ek,Si ,Tj
, and e−

k,Si ,Tj
⊆ ek,Si ,Tj

be the sets of samples from trial k,

having positive, and negative amplitude values, respectively.

To find the scaled version Si,Tj of subset Si,Tj we followed a

three-step procedure:

First, we used universal scaling factors, defined by:

f _theta_p = usf , f _theta_n = −usf (1)

where usf = 780 in the present report, an optimized value used to

set the universal MAX and MIN values to which the specific min

and max values (or local scaling factors) of each subset Si,Tj are

mapped. f_theta_p = - f_theta_n reflects the observed symmetry

between the maximum positive values and minimum negative

values in the datasets.

In this work we focus on subject dependent task transfer, but in

general, we work in the implementation of universal classifiers, and

also in the effect of scaling on classification results; therefore, in a

more general context, we used usf as an independent variable, with

usf taking any of 204 arbitrary values:

usf ∈ [1/1000, 980] ⊆ R
+ (2)

The value usf = 780 was chosen because in the current

data it already provides optimization in the classification results,

simultaneously in both the theta band (that we consider in the

present study), and the upper alpha band (that we also consider

here to address some issues; see Figure 3).

Second, we found local scaling factors local_f_theta_p, and

local_f_theta_n for subset Si,Tj :

We found first the maximum values among all samples having

positive voltage amplitudes, and the minimum values among

all samples having negative amplitudes from each trial k in

subset Si,Tj:

MaxSi ,Tj =

n(Si ,Tj)
⋃

k=1

max
(

e+
k,Si ,Tj

)

(3)

MinSi ,Tj =

n(Si ,Tj)
⋃

k=1

min
(

e−
k,Si ,Tj

)

(4)

From (3) and (4):

local_f _theta_p = max(MaxSi ,Tj ) (5)

local_f _theta_n = min(MinSi ,Tj ) (6)

Third, we scaled all positive and negative samples p of each trial

ek,Si ,Tj , using (1), and (2), together with (5), and (6) to define the set

ek,Si ,Tj with the following equation:

ek,Si ,Tj =











p|p =











p∗f _theta_n/local_f _theta_n, p ∈ e−
k,Si ,Tj

p∗f _theta_p/local_f _theta_p, p ∈ e+
k,Si ,Tj

0, p ∈ ek,Si ,Tj
, p = 0











(7)

From (7):

Si,Tj =

{

ek,Si ,Tj |1 ≤ k ≤ n(Si,Tj), kǫN
}

. (8)

To summarize, for each trial in each data subset that belongs

to a certain subject and task, our procedure maps all the positive

amplitudes of the signals, based on the quotient between an

arbitrarily set universal scaling factor (valid for all data subsets

of subject-tasks) and the local maximum among all trails having

positive amplitudes (local scaling factor) of the data subset at

hand. And a similar procedure is done separately with the

negative amplitudes. The effect of scaling according to the previous

equations is illustrated in Figure 2.

In previous research, Shalabi et al. (2006) have reported

that normalization of data through scaling is useful to improve

classification results, particularly min-max normalization. In our

case, which generalizes this approach, the rationale to adopt

arbitrary universal scaling factors with Equations 1, 2 was to set

these universal scaling factors as independent variables (with a total

of 204 such values for such variables within the indicated domain

in the presented data) in order to assess the impact of scaling

on classification performance, together with the implementation

of generalized classifiers of workload that are task and subject

independent in further studies, that we have already started with

promising results. Figure 3 shows the impact of different universal

scaling factors on classification performance.

2.3 Feature extraction

We next extracted the negative components of these theta-

filtered, trimmed, and scaled voltage values for further processing.

After preprocessing, feature extraction for each trial was performed

in two steps: First, for each trial (representing the execution of

one of the tasks by one of the subjects), we found an average per

EEG channel of all the sample components that have a negative

voltage amplitude in that channel. The average of each trial reflects

at the end an average over the duration of the task it represents: we

took all the samples present in the whole timeframes considered

for each of the tasks (T0: 9 s, T1: 20 s, T2: 24 s, T3-T5: 30 s). As

a result of these averages, each trial was represented by a feature

vector of dimension 64 × 1 (our signals consist of 64 channels).

Second, among these 64 channels we selected the six channels

that exhibited the largest change in theta negativity (the absolute

negative highest average voltages), according to a previous analysis

of the whole dataset (across all subjects), which resulted in a 6-

dimensional feature vector for each trial, reflecting frontal theta

negativity. These six channels were ch1, ch2, ch33, ch36, ch34, and

ch3, that according to the extended 10-20 system layout for the

actiCAP 64ch correspond to EEG electrodes FP1, FP2, AF7, AF8,

AF3, and F7, respectively, located on the brain prefrontal area. After

this, each trial was represented by a feature vector of dimension 6

× 1 (Figure 4).

To determine channels ch1, ch2, ch33, ch36, ch34, and ch3

as those to be considered for feature extraction we proceeded as

follows, for each of the tasks in our paradigm: First, we repeated

the previously explained first step for each of the trials of all the

subjects in the dataset for the current task. Second, we collected all
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FIGURE 2

E�ect of scaling. This procedure maps the amplitudes of the signals to scales determined by arbitrary universal scaling factors (usf). Here we illustrate

the principle of scaling with a signal representing the execution of task T1 by subject S12 in the data by mapping the amplitudes of the original signal

to two di�erent arbitrary universal scaling factors (here 1/500, and 5970). As shown here, a usf can obviously be as arbitrary as one might want, but

there are some practical limitations as to the number of them to be selected to run computer simulations. We ran 204 such simulations with positive

universal scaling factors in the range (1/1000, 980), as indicated in Equation 2, that were su�cient to notice a tendence (Figure 3).

the resulting averages for each of these trials in a “Theta Negative”

matrix TN (num_channels × num_trials) where num_trials is the

total number of trials from all subjects executing the current task

(Figure 5). Third, we computed a vectormean_tr (num_channels×

1), which is the mean of Matrix TN across columns (trials). Fourth,

we identified the channels containing the n_highest (n_highest =

6) highest absolute negative values in vector mean_tr.

The resulting channels containing the six highest absolute

negative values in the vectors mean_tr obtained after performing

the previous four steps for each of the six tasks in our data are

indicated in Figure 6 (table on the left) and depicted identified in

their corresponding electrode positions according to the actiCAP

64Ch layout in the same figure (right). Finally, we selected those

channels that characterize the activities of tasks the most times.

For instance, we see Figure 6, that channel ch1 repeats six times,

which means that ch1 was always one of the top six channels

containing the highest absolute negative alpha amplitude values in

the vectors mean_tr in all the six tasks. The selected EEG channels

are: ch1 (FP1), ch2 (FP2), ch33 (AF7), ch36 (AF8), ch34 (AF3), and

ch3 (F7).

We have included the data of all subjects to illustrate the feature

extraction procedure that we use but, in each iteration of task

transfer, from the data of all subjects we will subtract the data

of the current subject to determine the feature channels to be

used to process the data of this subject, to avoid any concerns

about data leakage. In this work we perform subject dependent

task transfer, from T0 to T1-T5, which means that for each subject

Si we will train a model of classification (with cross-validation)

on data from T0, and then test this model on the (unseen)

data from T1-T5 for the same subject Si, and then repeat the

procedure for the next subject (see also Figure 7). For each of

these iterations per current subject Si, the feature channels will

be determined by the procedure already described, considering

the data of all subjects with exemption of Si. In this way, we

also manage to keep a general tendency we are looking for in the

data (EEG channels related to mental workload, ideally stable) by

using the largest possible amount of data, but at the same time

we guarantee that in each iteration we use a model of features

with data unseen for a new subject that did not participate in

their determination.

Our feature extraction method relies on a general tendency

that only appears by averaging large amounts of data belonging,

ideally, to the largest possible number of subjects (and or tasks

according to the case) to train the data. The literature of EEG has

previously presented cases in which features are only observable

after using grand averages of data, such as in the case of event

related potentials (Hoehl and Wahl, 2012; Voigt-Antons et al.,

2012; Kuncheva and Rodríguez, 2013), also including specific
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FIGURE 3

Impact of scaling on classification performances for subject dependent task transfer. Two hundred four universal scaling factors between 1/1000 and

998 were used in Equation 7 to scale all the subsets in the dataset to di�erent sizes (signal amplitudes) after trimming, and before feature extraction

and classification. All models of classification were based on support vector machines with radial basis functions and 5-fold cross-validation. The

dotted black vertical line pinpoints total average performances of 92.35%, and 76.33%, corresponding to Support Vector Machine (SVM) classification

between High Workload vs. No Workload, based on Frontal Theta Negative and Parietal Upper Alpha Negative oscillations feature extraction,

respectively, for universal scaling factor f_theta_n = f_alpha_n = 780, common to both frequency bands.

FIGURE 4

Illustration of the feature extraction procedure for negative Frontal Theta. For each N trial (trN) containing the data (a sequence of samples within the

particular and whole timeframe of task execution, in all the 64 channels) corresponding to a specific subject and task, and that has already been

preprocessed (in this case filtered through the theta band, trimmed, and scaled), feature extraction is implemented in two steps: (1) For each channel

we average the negative components of all the samples of trial trN within the whole considered timeframe. As a result, we obtain a (64 × 1)

dimensional vector representation of trN. (2) From this last vector, we extract data from channels ch1, ch2, ch33, ch36, ch34, and ch3 to obtain a (6

× 1) dimensional vector representation of trN.

cognitive tasks such as n-back (Aksoy et al., 2021) and the readiness

potential (“Bereitschaftspotential”) (Blankertz et al., 2007; Nann

et al., 2019), where grand averages have a noise canceling effect in

the signals, and some of these event related potentials, occurring

at longer latencies after stimuli are more related to endogenous

brain states (Nunez, 2012; Sellers et al., 2012), like the ones we are
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FIGURE 5

Illustration of the “Theta Negative” Matrix TN (64 × 288), and vector mean_tr (64 × 1) corresponding to the total 288 trials of task T1. Collected from

all the twelve subjects considered for analysis from our dataset (each subject performed 24 trials of task T1), each trial (previously preprocessed,

filtered through the theta frequency band, trimmed and scaled) is represented by a vector (64 × 1), obtained after finding an average per EEG channel

of all the sample components that had a negative amplitude in that channel.

FIGURE 6

The most active EEG channels with data in the theta frequency band are in the pre-frontal and frontal region, related to mental workload. The most

active EEG channels during task execution, after an average analysis per task, considering the data of all subjects in the theta frequency band are

channels 1, 2, 33, 36, 34, and 3, located on FP1, FP2, AF7, AF8, AF3, and F7, respectively (actiCAP 64Ch layout). After an independent average over

each task these are the most active channels in all tasks. We use the information in these six channels in the second step of our feature extraction

method. Note that there are some channels out of the relevant topographic region (among the least common, except for ch35), but these are not

active beyond one single task. Between channels ch3 and ch28, we have selected ch3 because it is nearest to those in the most active (or populated)

region.

looking for. We have presented a simple classification method with

channel selection based on a general tendency in the data obtained

along the whole durations of trials which should relate mental

workload to a more permanent or endogenous characteristic of

mental activity.

The choice for negative over positive samples is essentially

arbitrary, and they both work very well, as we have shown

(see Section 4) with very high classification performances

and no significant difference between these two groups.

Also, having in mind that our first objective was to improve

classification performances previously obtained with other

disseminated methods, we considered that whatever the case

(either negative or positive samples) we needed a rather new

feature representative of the EEG brain activity, and that if we

used a single feature per EEG channel, we would already have

a 1 × 64 dimensional feature vector per trial, so we used a very

simple feature, namely the average of the amplitudes of the

signals in each channel, and then carried out dimensionality

and data reduction with feature extraction already described in

this section.

2.4 Classification

We classified the extracted 6-dimensional feature vectors with

a support vector machine (SVM) with radial basis functions,

trained with five-fold cross-validation. For each subject, the

classifier was trained on all trials from the calibration task

(T0). Then, the classifier was separately tested on all trials from

each other task (T1-T5). MATLAB was used to implement the

analyses, with its Statistics and Machine Learning Toolbox for

SVM classification.

Figure 7 illustrates the classification procedure for high

workload vs. no workload for subject dependent task transfer

from T0 to a task Tj (T1-T5). For T0, a five-fold cross-

validation was used to estimate the classification accuracy on
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FIGURE 7

Illustration of the generation of a model of classification, and classification in subject dependent task transfer from task T0 to a task Tj (with data of

subject S1). In negative Frontal Theta Subject Dependent Task Transfer, trials have been filtered through the theta frequency band, and obtained after

negative Frontal Theta feature extraction (section 2.3, in which a leave one out analysis for subject S1, information from EEG channels 1, 2, 33, 36, 34,

and 3 is retained). We use T0 as training dataset (which contains 20 trials of the no workload condition and 20 trials of a workload condition for

subject S1). For training, we use Support Vector Machines with radial basis functions and five-fold cross-validation (per condition we have five

training experiments, each reserving 16 trials for training and four trails for testing). Once a model of classification is obtained for T0 (subject S1), we

test this model to classify the trials of another task Tj, with data from the same subject S1 and one of the two workload conditions. Here, task Tj is

used as testing dataset, and contains k trials of the high workload condition, collected from the same subject S1. Finally, average performances per

task across all subjects are obtained (Tables 1, 2).

T0 itself and to generate a model of classification, tested on

T1-T5, respectively.

3 Results

We found that our approach outperformed the inconsistent

performance of Zhang et al. (2018) (Table 1, Figure 8A),

when comparing high (or low) mental workload with no

workload. Performance significantly deviated from chancel-level

(Wilcoxon signed-rank test, p < 0.05, Bonferroni corrected)

in each of T1-T5. Furthermore, the performance of our

approach was significantly higher than that of Zhang et al.

(2018) in T1 and T2 (Wilcoxon signed-rank test, p < 0.05,

Bonferroni corrected).

On the other hand, for classification between “high” vs. “low”

workload conditions our Support VectorMachine based on Frontal

Theta Oscillations reached only an average performance of 57.04%

for task transfer from the “calibration” task to all tasks, not beyond

chance level, and lower than the 59% performance of the previous

study (Figure 8B).

4 Discussion

We have introduced an approach allowing for classification of

mental workload from EEG signals across five tasks commonly

employed in the field. Our approach is based on the extraction of

theta negativity from frontal EEG sensors, which is then fed into

a SVM classifier, in contrast to the prior approach based on the

FB-CSP classifier.

While existing signal processing approaches usually assume

that brain oscillations are sinusoidal, this assumption has been

found to be false in numerous recent studies (Cole and Voytek,

2016). This may occur when the negative portion of an oscillation

exhibits behavior distinct from the positive portion. For this reason,

instantaneous voltage has been proposed as an alternative to power

and phase-based interpretation of oscillatory brain activity (Schalk

et al., 2017). In the spirit of this proposal, we consider only the

amplitude of the negative portion of oscillatory activity in the

theta band and show that it can lead to superior performance over

traditional power-based features in some comparisons.

Our trimming procedure treated all data equally and

automatically, with parameters that not only neutralize extreme
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TABLE 1 Support vector machine based on frontal theta oscillation features enables classification of mental workload across tasks.

Performances (%)

(Mean ± SD)∗
T1N-Back T2 Span T3 Add T4 Word T5Rotation T0 (calibration)

Subtraction

Average

Low vs. no workload

Zhang et al. (2018) 52± 6 56± 4 68± 10 69± 14 74± 13 76± 11 65.83

Frontal Theta SVM 90.56± 20 90.17± 19 90.83± 19 90.67± 20 91.50± 20 98.25± 4 92.00

High vs. no workload

Zhang et al. (2018) 58± 8 65± 7 79± 11 75± 13 78± 12 76± 11 71.83

Frontal Theta SVM 90.83± 20 91.83± 18 91.17± 20 90.83± 20 91.17± 20 98.25± 4 92.35

Across different tasks (T1-T5) used for testing the workload classifier trained on the calibration task (T0), the existing approach based on a filter-bank common spatial patterns algorithm failed

to achieve above chance-level performance. Our novel approach based on a support vector machine with features from frontal theta oscillations outperforms this classifier in T1 and T2, allowing

for robust across-task classification of workload. These results correspond to a common universal factor usf= 780 (Figure 3).
∗Across Subjects.

abnormal values that exceed a certain threshold of standard

deviations in each dataset per subject and task, but that also are

optimized so that they do not affect original data that should

not change. After the application of the trimming procedure an

estimated 98.37% of all samples in the whole dataset remained

intact. We verified that trimming had no noticeable effect on

classification performance, but we realized its importance to our

feature extraction procedure: it deemphasized the magnitude of

aberrant voltage values in contaminated channels that otherwise

would have wrongly been considered as the activated source of

involved brain activity. It would not have made sense either to scale

the data if we had not first removed these aberrant values.

The guiding objective behind the adoption of our general

scaling procedure is the implementation of universal (both task

and subject independent) classifiers of workload. In the previous

scaling equations, while local scaling factors are inherent to each

subset to be scaled -local max and min values-, universal scaling

factors f_theta_n, and f_alpha_n, determine the ranges between

unique and general maximum and minimum values to which all

subsets will be mapped before further meaningful comparisons

between data from different subjects and tasks -also originated from

different recordings- in the classification step are made.

And, as we have seen (Figure 3) scaling has an impact

on classification performance. The classification accuracies are

dependent on the absolute value of the universal scaling factors

because the radial basis function (RBF) kernel we use for the SVM is

non-linear. Here, scaling the feature space affects the kernel width

and this translates into different classification output. We verified

that the sensitivity is solely the effect of the kernel, and to double-

check we replaced the kernel with a linear one, and also tried other

linear options, and this does not make the classification output

dependent on the scaling, but it rather stabilizes into, or within,

clear constant linear tendencies.

As to the question of what would happen with classification

results if samples with positive amplitudes were used instead

of those with negative amplitudes, we conducted an analogous

procedure of preprocessing, feature extraction (with the same leave

one out analysis), and classification, but this time based on positive

values instead of negative values of signals in the theta-band, with

high classification performances: 80.22% for Frontal Theta SVM

based on positive values, vs. 90.64% based on negative values, with

no significant difference between these two groups (tested with the

Wilcoxon signed-rank test, p < 0.05, Bonferroni corrected in each

of T1-T5) in low vs. no workload; and 80.10% for Frontal Theta

SVM based on positive values, vs. 91.27% based on negative values,

also with no significant difference between these two groups (tested

with the Wilcoxon signed-rank test, p < 0.05, Bonferroni corrected

in each of T1-T5) in high vs. no workload, with the same universal

scaling factor 740 for all cases.

It could be said that Figure 6 presents channels where eye blinks

are recorded. At the same time, they are channels on locations

physiologically associated with mental workload activity in the

theta-band. This led us to investigate and check this question: if,

as an alternative, the same data were filtered in the upper alpha

band (10-13Hz) for instance, and an analogous procedure applied,

which brain regions will be activated if any mental workload

occurred? To be sure about this, we implemented such analogous

procedure with the same data filtered this time through the upper

alpha band, and our methods pinpoint the parietal and parietal-

occipital regions as the most active (Figure 9), corroborating

previous findings in the literature regarding this frequency band

and mental workload (Gevins et al., 1997; Stipacek et al., 2003;

Gerjets et al., 2014). In both frequency bands, our combination of

preprocessing and feature extraction methods applied to the data

finds regions associated to mental workload in these respective

bands. This analysis does not rule out any influence of eye activity

(see below for our analysis addressing eye blinks more directly with

independent component analysis ICA) but does point to the general

flexibility of this method in finding relevant electrode sites in line

with hypotheses.

We have determined (Figures 10, 11) that the most active EEG

electrodes during task execution are those in the frontal and pre-

frontal regions (FP1, FP2, AF7, AF8, AF3, and F7) for data in the

theta band, and in the parietal and parietal-occipital regions (PO7,

PO3, PO8, O1, POz, and PO4) for data in the upper alpha band.

This finding based on data from all subjects was consistent in all

tasks and we used information in these most active electrodes for

feature extraction. After computing our six “Theta Negative” (TN)

Matrices (Figure 5), for each of the six tasks of the paradigm, and

their mean values across columns [vector representations (1 × 64)

of trials collected from all the subjects in the dataset] we plotted a

topographic coloredmapwith thesemean values for each of the two
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FIGURE 8

(A) Support vector machine based on frontal theta oscillation features enables classification of high and low mental workload vs. no workload across

tasks. Across di�erent tasks (T1-T5) used for testing the workload classifier trained on the calibration task (T0), the existing approach based on a

filter-bank common spatial patterns algorithm failed to achieve above chance-level performance. Our novel approach based on a support vector

machine outperforms this classifier, allowing for robust across-task classification of workload in T1 and T2. Asterisks indicate where performance

was higher using our approach, compared to that of Zhang et al. (2018) (Wilcoxon signed-rank test, p < 0.05, Bonferroni corrected). (B) Results with

our methodology (with an average performance of 57.04% across tasks) did not go beyond chance level and remained below the performance of the

previous approach (59%) for task transfer classification between high vs. low workload from T0 to T1-T5.

workload conditions present in the data (Figure 10). Similarly, for

the upper alpha frequency band, we computed six “Alpha negative”

(AN) Matrices and their mean values across columns and plotted

a topographic colored map with these mean values for each of the

two workload conditions (Figure 11).

Evidence that we are dealing with mental workload is

highlighted after inspection of these topographic colored maps.

Figure 10 confirms an increase in theta absolute negative

amplitudes for EEG activity in the frontal and pre-frontal brain

regions, as workload increases (in T0, from the “no” workload

condition to the “workload” condition), and Figure 11 confirms a

decrease in alpha absolute negative amplitudes for EEG activity

in the parietal-occipital, and parietal brain regions as workload

increases, per task (from the “low” to the “high” workload

condition) in both T0 and T1, and for each of the two conditions, as

measurements continue from T0 to T1 (corroborated also through

T2, T3, T4, and T5, though visual data of these tasks are not shown

in the current figure).
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FIGURE 9

The most active EEG channels with data in the upper alpha frequency band during task execution are in the parietal, and parietal-occipital region,

related to mental workload. After filtering the same data through the upper alpha band (10–13Hz) and following an analogous procedure of

preprocessing and feature extraction (Sections 2.2. and 2.3), considering the data of all tasks and subjects, the most active channels are 60, 61, 64, 29,

62, and 63, located on PO7, PO3, PO8, O1, POz, and PO4, respectively (actiCAP 64Ch layout). All channels are in the neighborhood of the most

active region.

FIGURE 10

Theta Negative topographic colored maps over the 64-channel actiCAP layout of the means of vectors (1 × 64) of trials performed by all the 12

subjects, for each of the two workload conditions, for task T0. For each trial (preprocessed with theta band filtering, trimming and scaling with

Equations 1–8) we found an average per EEG channel of all the sample components of the trial that have a negative amplitude in that channel.

Afterwards, for each task, we computed an average of these mean values [vector representations (1 × 64) of trials] across all the subjects in the

dataset.

As a verification step we removed eye activity with independent

component analysis. To apply ICA cleaning, we followed (Klug

and Gramann, 2021) for preprocessing, where all data from one

participant was concatenated, subsampled to 250Hz, and high-

pass filtered using a Hamming windowed sinc FIR filter with a

passband edge at 1Hz (−6 dB cutoff at 0.5Hz) before applying

AMICA (Palmer et al., 2012) using the EEGLAB plugin (v1.7)

with automatic cleaning enabled (five rejections at three standard

deviations). Weights were then copied back to the original,

individual task datasets, and independent components (ICs) were

classified using ICLabel (v1.3) (Pion-Tonachini et al., 2019). Finally,

ICs for which the probability of “eye” was higher than any other

type were removed from the data. Afterwards, we took the data

through the pipeline consisting of preprocessing, feature extraction,

and classification, as previously described.

This leads us to one limitation: in spite of the fact that we

took care to remove artifacts with our trimming procedure in the

preprocessing phase, prior to feature extraction, classification, and

future analyses, that effectively removed such abnormal, out of

range values, while keeping an estimated 98.37% of the data intact,

and from the fact that 1.63% of the whole dataset was affected by

higher amplitude peaks, so that ocular artifacts must account up

to such percentage of the data at most and likely procedures to

remove such artifacts should not affect more than such 1.63% of the

data (thus have a big impact on classification performances), and

that additionally, as detailed above, after applying our procedures

to the same data in the upper alpha frequency band we found

once again the most activity in channels which according to the

literature are associated to mental workload, after conducting

the ICA to remove artifacts from the original data (before any
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FIGURE 11

Upper Alpha Negative topographic colored maps over the 64-channel actiCAP layout of the means of vectors (1 × 64) of trials performed by all the

12 subjects, for each of the two workload conditions, for tasks T0 (A) and T1 (B). For each trial (preprocessed with upper alpha band filtering,

trimming and scaling with Equations 1–8) we found an average per EEG channel of all the sample components of the trial that have a negative

amplitude in that channel. Afterwards, for each task, we computed an average of these mean values [vector representations (1 × 64) of trials] across

all the subjects in the dataset.

further procedures, including preprocessing), the classification

performances for subject dependent task transfer dropped as shown

in Table 2.

For future work it also remains the question of levels of

mental load due to execution of tasks themselves. One possibility

should be the introduction of a “no” workload (“rest”) condition

consistently between all the different blocks of task execution

(Figure 12), instead of only one block in T0 at the beginning,

as it is possible that current findings are at least in part due to

the effects of fatigue or other non-stationarities that inevitably

influence EEG activity over time. In the current scenario it remains

the question of whether subjects undergo a cumulative effect of

“mental load” as time elapses and further blocks of tasks are

continuously executed with no “rest” in between, that must be

contributing to the “mental load” strictly due to the tasks, with

an increasing effect in tasks executed at later points, furthermore

when no randomization in the order of task blocks exists. This

may help explain why in (Zhang et al., 2018) when comparing

a workload condition with rest, “notably n-back and backward

span tasks, appear to consistently elude reliable classification,” while

add, word, and rotation (executed later) had better classification

performances, whereas in the comparison between “high” vs.

“low” workload conditions such cumulative effect was absent in

that work.

Also, the introduction of a “no” workload condition in-between

tasks would be beneficial to generalize the analyses and results to

a more Universal Workload Classification. Due to the absence of

the “no” workload condition in all the tasks, except for T0, we only

analyzed task transfer with classification between “no” workload

and a workload condition, from T0 to T1-T5, but such inclusion

will enable analysis of task transfer from any task to other tasks,

with trials from all subjects.

Nevertheless, the current (or a similar) basic sequence,

consisting of a “rest” condition only for a task at the beginning,
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TABLE 2 Frontal theta oscillation features classification of mental workload across tasks after independent component analysis (ICA).

Performances (%) T1N-Back T2 Span T3 Add T4 Word T5Rotation T0 (calibration)

Subtraction

Average

Low vs. no workload

Zhang et al. (2018) 52 56 68 69 74 76 65.83

ICA Frontal Theta SVM 66.95 68.83 64.17 65.33 66.83 95.67 71.30

High vs. no workload

Zhang et al. (2018) 58 65 79 75 78 76 71.83

ICA Frontal Theta SVM 67.50 66.17 66 63.33 64.17 95.67 70.47

After initial treatment of the datasets with ICA, previous to our same described pipeline of preprocessing, feature extraction, and classification across different tasks (T1-T5) used for testing

the workload classifier trained on the calibration task (T0), our approach did not outperform the existing approach based on a filter-bank common spatial patterns algorithm, but nevertheless

achieved more stable and uniform performances above chance-level for all tasks. A common universal factor usf= 680 for both (the Upper Alpha and the Theta Band) was used in this case, for

data treated with ICA.
∗Across Subjects.

FIGURE 12

Alternate sequence of task execution for the current experimental paradigm. A consistent introduction of a “no” workload (“rest”) condition between

all task blocks will attenuate the e�ect of cumulative “mental load” for blocks of tasks executed later in time, enabling a more precise estimation of

workload strictly due to the tasks themselves.

followed by execution of several tasks should suit studies

where the investigated variable is “mental workload” per se,

increasing independently from task nature that in such case

will not be as relevant as the question that as time elapses so

must mental ‘load’ increase, allowing possibilities to measure

workload because at the end of every measurement we will

be at the end of a scale in comparison to the initial point

in time (the “rest” condition), and raising other questions:

which brain areas are the most active at the beginning

(minimum load), in transition, and at the end (maximum load)?

Are these most active regions independent from the selected

tasks, and therefore, does mental workload activate specific

regions consistently?

Another limitation is that our approach shows lower

performances than the previous approach when comparing high

vs. low workload conditions. This lack of success in contraposition

to the high performances to discriminate between a workload

condition (either “high” or “low”) vs. a rest condition, suggest

improvements not only to classification algorithms, but also to

methods that assign degrees of difficulty to paradigmatic tasks.

This however was beyond the reach of the present study.

The approach investigated here adds one more tool to

the myriad options to classify workload in various conditions;

specifically, a computationally lightweight method that can

be a better choice depending on the requirements of the

scenario, such as detection of mental workload. This can

serve several real-world applications, such as detecting fatigue

in safety-critical situations (Monteiro et al., 2019). After a

brief training session, a BCI could be employed to detect

changes in mental workload across a variety of tasks that

the user could engage in, without the need for retraining

the system.
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