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deep learning method
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Background: The number of patients undergoing proton therapy has increased

in recent years. Current treatment planning systems (TPS) calculate dose maps

using three-dimensional (3D) maps of relative stopping power (RSP) and mass

density. The patient-specific maps of RSP and mass density were obtained by

translating the CT number (HU) acquired using single-energy computed

tomography (SECT) with appropriate conversions and coefficients. The proton

dose calculation uncertainty of this approach is 2.5%-3.5% plus 1 mm margin.

SECT is the major clinical modality for proton therapy treatment planning. It

would be intriguing to enhance proton dose calculation accuracy using a deep

learning (DL) approach centered on SECT.

Objectives: The purpose of this work is to develop a deep learning method to

generate mass density and relative stopping power (RSP) maps based on clinical

single-energy CT (SECT) data for proton dose calculation in proton therapy

treatment.

Methods: Artificial neural networks (ANN), fully convolutional neural networks

(FCNN), and residual neural networks (ResNet) were used to learn the correlation

between voxel-specific mass density, RSP, and SECT CT number (HU). A

stoichiometric calibration method based on SECT data and an empirical model

based on dual-energy CT (DECT) images were chosen as reference models to

evaluate the performance of deep learning neural networks. SECT images of a

CIRS 062M electron density phantom were used as the training dataset for deep

learningmodels. CIRS anthropomorphic M701 andM702 phantoms were used to

test the performance of deep learning models.

Results: For M701, the mean absolute percentage errors (MAPE) of the mass

density map by FCNN are 0.39%, 0.92%, 0.68%, 0.92%, and 1.57% on the brain,

spinal cord, soft tissue, bone, and lung, respectively, whereas with the SECT

stoichiometric method, they are 0.99%, 2.34%, 1.87%, 2.90%, and 12.96%. For RSP
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maps, the MAPE of FCNN on M701 are 0.85%, 2.32%, 0.75%, 1.22%, and 1.25%,

whereas with the SECT reference model, they are 0.95%, 2.61%, 2.08%, 7.74%,

and 8.62%.

Conclusion: The results show that deep learning neural networks have the

potential to generate accurate voxel-specific material property information,

which can be used to improve the accuracy of proton dose calculation.

Advances in knowledge: Deep learning-based frameworks are proposed to

estimate material mass density and RSP from SECT with improved accuracy

compared with conventional methods.
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1 Introduction

The number of patients receiving proton therapy treatment is

rising each year. Current proton treatment planning systems (TPS)

incorporate relevant proton energy deposition physics into the

process, determining the patient irradiation pattern. All patients

treated with radiotherapy (including protons) are simulated using

computed tomography (CT) typically acquired using a single energy

scanning protocol. This data is utilized for geometrical

implementation of the therapy and also to characterize the patient

from the point of view of the probability of charged particle

interactions. Therefore, proton dose calculation accuracy is

dependent on the capability of TPS to characterize patient tissues

based on CT imaging (1). This is done by correlating the CT number

of tissue substitute phantoms with known material composition with

mass density or relative stopping power (RSP) via the stoichiometric

calibration method (2). The accuracy of this approach relies on the

difference between patient tissue chemical composition and the tissue

substitute database used in the calibration (3–5). Since single-energy

computed tomography (SECT) can’t differentiate changes in CT

number as a result of differences in either mass density or material

chemical composition (6), the error in RSP calculation can become

significant. The accuracy of mass density estimation dominates the

uncertainty of RSP (7). Furthermore, tissue heterogeneity, CT image

noise, and artifacts can also contribute to the RSP calculation error.

The direct consequence of uncertainties associated with material

characterization (mass density) from SECT data is a loss of accuracy

in the prediction of energy deposition relative to the depth of proton

interaction, also called proton range uncertainty. To mitigate range

uncertainty, TPS have options to allow for the addition of margins in

the proton beam range, the standard being 2.5%-3.5% of the energy-

dependent range plus an additional 1mm-1.5mm (8).

To further increase the proton therapy therapeutic ratio

advantage, many efforts have been made to decrease the proton

range uncertainty. One approach is introducing Monte-Carlo dose
02
calculation algorithms to proton TPS (8–12), which can reduce the

margin down to 2.4% plus 1.2 mm (8, 13). Another proposed

avenue was to use dual-energy CT (DECT) to build calibration

curves between CT number and mass density (14). The

methodology allows for the acquisition of CT scans with different

X-ray spectra, which in turn can be used to determine relative

electron density and mean excitation energy (15). Furthermore,

DECT virtual monochromatic image reconstruction techniques can

reduce beam hardening artifacts and noise. Numerous algorithms

for DECT-based RSP estimation have been developed, and the

reported results indicate that the errors in RSP estimates can be

reduced to 1% (15–17).

As a robust implementation platform for DECT applications in

the area of RSP mapping, machine learning (ML) algorithms have

also been applied. Su et al. reported their approach for generating

parametric maps using ML, which produced accurate effective atomic

numbers, relative electron density, mean excitation energy, and RSP

from DECT data (18), and they concluded that artificial neural

network (ANN) outperformed other reported ML methods.

Building on the potential advantage of increased network depth

and compositionality (19, 20), deep learning (DL) is an extension

of machine learning, which consists of massive multilayered networks

or artificial neurons that can discover useful features in CT images

(21). DL methods were successfully applied to improve mass density

and RSP mapping from DECT datasets (22).

Despite all DECT-based ML and DL applications for improving

proton dose calculation, SECT is still the current standard in clinical

CT simulators for proton therapy. Therefore, an accurate and

efficient method to reduce range uncertainty based on SECT

images would benefit existing proton radiotherapy clinics and

workflows. DL networks have high degrees of freedom of

modeling, therefore offering the opportunity to improve the

accuracy of SECT-based RSP and mass density modeling, as has

been shown in DECT-based studies. In this study, we investigate the

feasibility of using DL models to correlate SECT-based CT numbers
frontiersin.org
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to voxel-specific mass density and RSP using two types of electron

density phantoms.
2 Materials and methods

2.1 Phantom SECT data sets

A CIRS 062M electron density phantom (Computerized

Imaging Reference Systems, Inc., Norfolk, VA, USA) was used to

generate the DL training dataset, while Gammex 467-1009 electron

density phantom, CIRS ATOM M701 (male) and M702 (female)

anthropomorphic phantoms were chosen to generate the DL

networks prediction datasets (Figure 1). Table 1 details the mass

density and RSP value for the phantoms used. All mass density

information was provided by the manufacturer except the bone

insert, for which measurements were utilized to produce a reference

value (11). All RSP values were calculated using a previously

reported method (22). Phantoms were imaged using a Siemens

SOMATOM Definition Edge CT scanner and clinical 120 kVp

single energy beam acquisition protocols. The electron density

phantom was scanned using a standard head-and-neck protocol.

A pelvis protocol was used for the Gammex electron density

phantom, while the M701 and M702 phantoms were scanned

using three different protocols: head-and-neck (HN), thorax, and

pelvis protocols. The manufacturer-reported CTDIvol is reported in

Table 2, as well as the reconstructed image resolution. All the
Frontiers in Oncology 03
reconstructed SECT images have a reconstructed field-of-view

diameter of 500 mm and a slice thickness of 0.5 mm.
2.2 Deep learning models

Three supervised DL models were implemented to demonstrate

the capability of artificial intelligence (AI) to improve proton range

calculation using SECT (21, 23–25). Figure 2A shows the artificial

neural network (ANN) workflow, and Figures 2B, C show the fully

convolutional neural network (FCNN) and residual neural network

(ResNet). 120 kVp spectra SECT images are used as DL input. The

same DL models are utilized to estimate both the mass density and

RSP relative to the input SECT CT number values. The DL models

were supervised by a loss function, defined as the difference between

the true value and predicted value at each voxel. All the DL models

were implemented in PyTorch (26). Su et al. reported that ANN with

30 hidden units outperforms traditional ML models in generating

quantitative parametric maps based on DECT images (18). Their

ANN design was adopted for SECT parametric mapping in this

study, with 30 hidden hyperbolic-tangent (tanh) layers and error

backpropagation (see Figure 2A). Convolutional neural networks

(CNNs) have gained widespread adoption in both regression and

classification tasks over the past decade. This popularity is primarily

due to their capability to autonomously learn deep, intricate features,

a significant advancement over the traditional machine learning

models that relied on manually extracted, handcrafted features (27).
FIGURE 1

Experiment set up, CIRS 062M electron density phantom (Computerized Imaging Reference Systems) (A1), Gammex 468 electron density phantom (A2)
CIRS M701 (A3), and CIRS M702 (Computerized Imaging Reference Systems) (A4) were scanning with Siemens SOMATOM Definition Edge scanner.
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A fully connected neural network (FCNN) is a type of CNN that has

fully connected hidden layers. A 1D FCNN model was previously

implemented to correlate the mass density and RSP map based on

DECT parametric maps (22). This 1D FCNN model was adapted to

the SECT images dataset input in this study, including seven hidden

layers (Figure 2B).

Due to the small size of the training set used in this study,

overfitting issues could be associated with trained DL model

outputs, which were also considered as vanishing gradient
Frontiers in Oncology 04
problems for our CNN models. A solution for the latter was

proposed: ResNet (25). The ResNet implementation in this study

includes a shortcut connection added between input and output

after a few weight layers: the residual block. Figure 2C shows the

ResNet workflow and Figure 2D shows the detail of the residual

block in the ResNet. In Figure 2C, the input is linked to a

convolutional layer, which is subsequently connected to four

distinct sequences of residual blocks. Each type of residual block

varies in terms of channel, kernel, stride, and padding. These details

are illustrated in Table 3.

All the networks were trained using an NVIDIA GeForce 3090

GPU with 24 GB of memory, utilizing a batch size of 100. We set the

learning rate for the Adam optimizer to 1e-5. During training, each

batch optimization consumed 0.5 GB of CPU memory and 2 GB of

GPU memory. All networks were implemented in PyTorch 2.1.
2.3 SECT stoichiometric method

A conventional physics-based SECT stoichiometric calibration

method was utilized (2) to provide a standard set of reference values

when comparing the DL models output for mass density and RSP.

The X-ray linear attenuation coefficient μ of a material can be

calculated using Equation (1):

m = r
NA

A
½ZKKN (E) + ZnKSCA(E) + ZmKPE(E)� (1)

where r is mass density, NA is Avogadro’s number, A is the

atomic weight, Z is the atomic number, KKN , KSCA, and KPE are

weighting constants for incoherent scattering, coherent scattering,

and photoelectric effect, respectively, as a function of the SECT

scanner X-ray spectrum (1). m and n are constants and were

assigned 4.62 and 2.86 (28) for the energies encountered in kV X-

ray imaging and the elements present in human tissue. Taking the

ratio of the attenuation coefficient of material of interest to the

attenuation coefficient of water, equation (2) can be derived:

HU
1000

+ 1 = r̂ e,w
½1 + Ẑ 1:86k1(E) + Ẑ 3:62k2(E)�

½1 + Ẑ w 
1:86k1(E) + Ẑ w 

3:62k2(E)�
(2)

where r̂ e,w is the electron density relative to water, Ẑ w is the

effective atomic number of waters, k1 =
KSCA

KKN , k2 =
KPE

KKN . k1 and k2
were calculated by nonlinear regression, while the CT number

values were taken as the mean value of each electron density

insert from the SECT scan. Finally, the RSP of each material of

interest was calculated using the Bethe equation (29):

RSP = r̂ e,w ln
2mec

2b2

Im(1 − b2)
− b2

� �
= ln

2mec
2b2

Iwater(1 − b2)
− b2

� �
(3)

where me is the electron rest mass, c is the speed of light in

vacuum, and b is the proton speed relative to the speed of light. Im
and Iwater are the mean excitation energies of the material of interest

and water. As recommended by ICRU49, Iwater was set to 75 eV (30).

Im can be calculated from the atomic components using the Bragg

additivity rule. Therefore, the stoichiometric calibration method can

establish a functional relationship between CT numbers from the

SECT datasets and RSP by Equation (2) and (3) (11).
TABLE 1 Phantom insert data: mass densities and RSP.

Tissue surrogate r (g/cm3) RSP

CIRS 062M

Lung (Inhale) 0.203 0.202

Lung (Exhale) 0.494 0.492

Adipose 0.965 0.977

Breast Tissue 0.996 1.003

Muscle 1.059 1.059

Liver 1.072 1.070

Bone 200 mg/cc 1.157 1.116

Bone 800 mg/cc 1.520 1.404

Bone 1250 mg/cc 1.830 1.647

Gammex 467-1009

LN450 Lung 0.450 0.448

Breast 0.980 0.969

Brain 1.050 1.061

Liver 1.090 1.090

B200 Bone Mineral 1.150 1.099

CB2-50%CaCO3 Bone 1.560 1.422

SB3 Cortical Bone 1.820 1.614

CIRS M701 & M702

Lung 0.202 0.201

Breast 0.991 0.982

Soft Tissue 1.055 1.041

Spinal Cord 1.065 1.035

Brain 1.069 1.049

Bone 1.5171 1.410
1The bone mass density was measured.
TABLE 2 CTDIvol and voxel grid spacing information at each site with
specified standard acquisition protocol.

CTDIvol (mGy)/Voxels

HN Thorax Pelvis

CIRS 062m 23.3/
512×512×495

Gammex 467 23.3/512×512×30

CIRS Atom
M701

23.6/
512×512×605

23.3/
512×512×609

23.3/
512×512×471

CIRS Atom
M702

23.6/
512×512×713

23.3/
512×512×881

23.3/
512×512×809
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A B

D

C

FIGURE 2

Deep learning framework for mass density and RSP map prediction based on SECT images. The red arrows illustrate the training workflows, while
the blue arrows depict the prediction workflow. The framework includes (A) ANN, (B) FCNN, (C) ResNet, and (D) the residual block of ResNet. During
the training phase (indicated by red arrows), the phantom SECT images are input into the three deep learning networks: ANN, FCNN, and ResNet.
For the prediction phase, the M701 and M702 phantoms are fed into the trained deep learning networks to predict mass density and RSP.
TABLE 3 Architecture of the 1D convolution components of ResNet (RN).

Network Layer Channel. Kernel Stride Pad

ConvA 64 7 2 3

Residual Block A1

Conv1_11 64 3 1 1

Conv1_12 64 3 1 1

Residual 64 1 2 0

Residual Block A2

Conv1_21 128 3 2 1

Conv1_22 128 3 1 1

Residual 128 1 2 0

Residual Block A3

Conv1_31 256 3 2 1

Conv1_32 256 3 1 1

Residual 256 1 2 0

Residual Block A4

Conv1_41 512 2 2 1

Conv2_42 512 2 1 1

Residual 512 1 2 0

Residual Block A5

Conv1_51 1024 3 2 1

Conv2_52 1024 3 2 1

Residual 1024 1 2 0
F
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2.4 Empirical model based on DECT
parametric mapping

In addition to the stoichiometric calibration standard, a second

set of reference values was obtained to compare the DL models

output in terms of mass density and RSP prediction based on

SECT images against the manufacturer-defined ground truth.

These were based on an empirical model for mass density and

RSP based on DECT parametric mapping (22), and corresponding

definitions are shown in Equation (4) and (5) (7, 31). Therein, r
denotes the mass density, and re and Zeff are relative electron

density and effective atomic number and were obtained from the

DECT scanner console (Siemens Healthineers, syngo.via, Malvern,

PA, USA). As used, the mass density model has a correction for the

inflated lung. The RSP model includes corrections for different

human tissues classified by various effective atomic numbers. The

same phantoms were used in both DECT and SECT scans, and all

tissue surrogate-defined contours were kept the same for reference

comparison. Detailed information on DECT scans is listed in a

previous publication (22).

r =
−0:1746 + 1:176re    

0:26                          

material   ≠   inflated   lung      

material   =   inflated   lung      

(
(4)

RSP =

re,                                            

(1:1114 − 0:0148Zeff )re
0:9905re,                                

(1:1117 − 0:0116Zeff )re,

    0 ≤ Zeff < 0:5

0:5 ≤ Zeff < 8:5

8:5 ≤ Zeff < 10

Zeff ≥ 10                

8>>>>><
>>>>>:

(5)
2.5 Evaluation metrics

The ground truth dataset included the reference mass density

and RSP values as shown in Table 1. The CIRS M701 and M702

phantom images were manually contoured in RayStation 9B

(RaySearch Laboratories, Stockholm, Sweden) for each of the

tissue surrogate inserts, and reference values were assigned to

each contour. Absolute percentage error (APE) and mean

absolute percentage error (MAPE) were calculated as defined in

Equation (6) and (7), where i denotes the ith voxel, x is the mass

density or RSP at specific voxel, and N is the total number of voxels.

The spatial distribution of error was also generated for the
Frontiers in Oncology 06
computed APE and displayed in error visualization maps of the

whole phantom datasets.

APEi =
xi − xi,REF
xi,REF

����
����� 100% (6)

MAPE =
1
No

N
i=1APEi (7)
3 Results

3.1 Gammex electron density phantom
analysis using pelvis protocol

Table 4 presents results comparing MAPE of mass densities

between DL models and the SECT stoichiometric method over

seven Gammex electron density phantom tissue surrogates. As

emphasized by the bold values, the DL models perform better on

all tissue surrogates. For the lung tissue surrogates (LN300 &

LN450), the DL models outperform conventional methods, while

for higher density inserts, the FCNN and ResNet perform better

than the traditional method in select cases. As seen in Table 5, a

similar trend can be observed for the DL RSP predictions.
3.2 HN site analysis using HN protocol

The mass densities and RSP predictions from the empirical

model based on DECT parametric mapping, the SECT

stoichiometric method, and the DL model results analysis are

shown in Tables 6, 7. For all four tissues in M701, the DL

methods are more accurate than the DECT empirical and SECT

stoichiometric methods. The performance of FCNN and ResNet

was comparable because of the similarity in the network

fundamentals. For M702, the DECT empirical model outperforms

the DL models in bone tissue prediction, which proves the

advantage of DECT in bone tissue mass density estimation over

SECT methods (ResNet has a comparable performance). However,

this is not true for M701, the DL models based on SECT can achieve

better results with the DECT empirical method in bone and other

tissues. Table 7 summarizes the RSP MAPE comparison between

the DECT empirical model, the stoichiometric method, and the DL

models. For M701, DL methods outperform the traditional
TABLE 4 Mass Density – MAPE [SECT DL vs. SECT stoichiometry].

Gammex Tissue Surrogates LN450 Lung Breast Brain Liver B200
Bone
Mineral

CB2-
50%
CaCO3

Bone

SB3
Cortical
Bone

SECT Stoichiometric 12.57 ± 5.14 1.63 ± 1.36 2.23 ± 1.78 1.89 ± 1.03 1.18 ± 0.91 1.98 ± 1.12 2.32 ± 1.09

ANN 6.92 ± 4.81 1.95 ± 1.40 1.34 ± 1.04 1.18 ± 0.90 0.95 ± 0.74 6.22 ± 1.26 4.85 ± 1.28

FCNN 6.43 ± 0.16 1.18 ± 1.24 1.58 ± 1.18 1.69 ± 0.65 0.45 ± 0.27 1.36 ± 0.12 0.43 ± 0.30

ResNet 11.66 ± 0.27 1.17 ± 1.37 1.72 ± 1.11 1.66 ± 0.71 0.77 ± 0.23 0.85 ± 0.38 0.29 ± 0.09
Bold values mean best performance.
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methods, while for M702, the DECT empirical method outperforms

the DL methods in the spinal cord.
3.3 Chest site analysis using
thorax protocol

Table 8 summarizes the MAPE comparison of mass density

estimated by empirical and DL models on the chest site using 120

kVp thorax protocol. For the lung site, the DECT empirical model

doesn’t apply to the normal lung tissue (the empirical model assigns

the inflated lung as constant mass density), so the lung tissue mass

density prediction is not reported. Table 9 shows the MAPE

comparisons of RSP between the reference and DL models. All

three DL models outperform the two reference models. The DECT

empirical model and the stoichiometric method show better

performance than ANN on lung tissue RSP prediction.
3.4 Pelvis site analysis using pelvis protocol

Table 10 shows the MAPE values of five models’ mass density

predictions at the CIRS M701 and M702 phantom pelvis sites. DL

methods show better performance in all three tissues and can

reduce the error to<1% in the spinal cord and soft tissue.

Table 11 shows the MAPE values of three DL models and the
Frontiers in Oncology 07
two reference models’ RSP estimations at the CIRS M701 and M702

phantom pelvis sites. The DL methods have better performance in

soft tissue and bone, and all models have comparable results in the

spinal cord.
3.5 Whole phantom site analysis using HN,
thorax, and pelvis protocols

Table 12 shows the MAPE comparisons of mass densities

between DL models and the SECT stoichiometric method over

the entire phantom site. Table 13 summarizes the MAPE

comparisons of RSP between DL models and the SECT

stoichiometric method over the entire phantom site.

Figure 3 illustrates the APE maps of the mass density estimation

error. Figures 3A17–C1 shows the SECT images of CIRS M701

phantom at three sites, HN, thorax, and pelvis, using 120 kVp

corresponding scanning protocols. As presented using the APE

color maps, the SECT stoichiometric model results in considerable

uncertainty at lung and bone sites. Overall, the analysis for FCNN

indicates the lowest error in the mass density estimation compared

with other DL models. Figure 4 illustrates the APE maps for RSP

error estimation. As with mass density, the SECT stoichiometric

method shows considerable error in RSP estimation, especially in

bone and lung tissue. ANN improves the estimation accuracy for

bone and soft tissue, while FCNN predictions indicate
TABLE 6 Mass Density – MAPE [SECT DL vs. SECT stoichiometry vs. DECT model].

M701 Brain Spinal Cord Soft Tissue Bone

DECT empirical model 1.00 ± 0.80 1.40 ± 1.30 2.30 ± 2.20 2.50 ± 5.20

SECT Stoichiometric method 0.99 ± 0.66 1.53 ± 1.59 1.59 ± 1.72 4.79 ± 2.20

ANN 0.64 ± 0.50 0.96 ± 1.20 1.03 ± 1.08 1.95 ± 2.44

FCNN 0.39 ± 0.31 0.59 ± 0.64 0.62 ± 0.52 1.03 ± 1.30

ResNet 0.15 ± 0.20 0.74 ± 1.20 1.46 ± 1.03 0.66 ± 0.85

M702 Brain Spinal Cord Soft Tissue Bone

DECT Empirical model 1.30 ± 0.08 1.20 ± 1.00 2.20 ± 1.50 2.00 ± 1.90

SECT Stoichiometric method 1.10 ± 0.97 1.80 ± 2.01 1.64 ± 2.12 6.80 ± 4.76

ANN 0.86 ± 0.81 1.28 ± 1.68 1.07 ± 1.70 4.84 ± 7.00

FCNN 0.89 ± 0.57 0.95 ± 1.20 0.57 ± 1.15 3.74 ± 6.78

ResNet 0.19 ± 0.89 0.93 ± 2.18 1.38 ± 2.44 2.16 ± 5.18
Bold values mean best performance.
TABLE 5 RSP – MAPE [SECT DL vs. SECT stoichiometry].

Gammex Tissue Surrogates LN450 Lung Breast Brain Liver B200
Bone
Mineral

CB2-50%
CaCO3

Bone

SB3
Cortical
Bone

SECT Stoichiometric 3.71 ± 2.89 3.72 ± 2.09 4.50 ± 2.38 2.47 ± 1.67 1.64 ± 1.61 5.33 ± 1.10 7.99 ± 1.13

ANN 4.72 ± 3.54 3.33 ± 1.66 1.59 ± 1.12 1.50 ± 0.92 1.87 ± 0.73 4.81 ± 1.18 2.39 ± 1.10

FCNN 2.18 ± 0.15 2.47 ± 1.47 1.16 ± 1.53 1.78 ± 0.59 1.39 ± 0.16 1.08 ± 0.11 1.96 ± 0.03

ResNet 2.26 ± 0.24 2.55 ± 1.44 1.25 ± 1.46 1.73 ± 0.35 1.60 ± 0.18 1.66 ± 0.71 2.69 ± 0.14
Bold values mean best performance.
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improvements overall. ResNet shows smaller APE for bone,

specifically for the pelvis scan, even when compared with FCNN.
4 Discussions

External beam radiotherapy requires an accurate CT

characterization of the patient geometry and heterogeneities to

deliver accurate therapeutic patient doses. SECT imaging is the

current clinical paradigm for generating the necessary information

for clinical diagnosis and treatment planning in radiotherapy,

including protons. Su et al. demonstrated the capability of machine

learning methods to improve the prediction accuracy for mass

density and RSP based on DECT imaging (18). In order to

approach this methodology while using the more commonly

available SECT imaging, we proposed a framework that can
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accurately predict mass density and RSP parametric maps for

proton dose calculation while using SECT imaging as input. All

SECT DL methods for mass density and RSP estimation were

compared against the ground truth values defined in Table 1 and

compared to current standards for mass density and RSP

parametrization (DECT and stoichiometry). All parametrization

was done on phantom data since the DL network training requires

accurate ground truth definition, which excludes patient data. The

DECT model MAPE was consistently larger than that of the SECT

stoichiometric method for some of the tissues (specifically for the

spinal cord). This could be attributed to the fact that the DECT

empirical model depends on the relative electron density for mass

density prediction and effective atomic number for RSP, and it has

not been calibrated for the specific CT scanner used in this work. The

SECT DL models demonstrated good or better performance for

parametrization based on three different clinical scanning protocols
TABLE 8 Mass density – MAPE [SECT DL vs. SECT stoichiometry vs. DECT model].

M701 Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 3.40 ± 2.60 3.10 ± 2.50 3.40 ± 3.30 -1

SECT Stoichiometric method 1.53 ± 1.59 1.59 ± 1.72 3.68 ± 2.17 8.29 ± 7.34

ANN 0.96 ± 1.20 1.03 ± 1.08 3.64 ± 3.17 12.96 ± 7.09

FCNN 0.59 ± 0.64 0.64 ± 1.13 1.31 ± 2.36 1.57 ± 0.39

ResNet 0.58 ± 0.61 1.46 ± 1.56 1.28 ± 1.43 2.18 ± 0.73

M702 Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 2.50 ± 1.90 2.70 ± 2.20 4.00 ± 6.80 -1

SECT Stoichiometric method 1.72 ± 1.60 1.98 ± 4.10 5.77 ± 4.80 6.91 ± 6.35

ANN 1.32 ± 3.70 1.32 ± 3.70 4.55 ± 6.50 14.86 ± 7.37

FCNN 0.89 ± 0.71 0.81 ± 3.65 3.41 ± 6.54 1.52 ± 0.49

ResNet 0.64 ± 0.83 1.53 ± 3.87 1.69 ± 4.87 2.42 ± 1.97
1The DECT empirical model doesn’t apply to normal lung tissue.
Bold values mean best performance.
TABLE 7 RSP – MAPE [SECT DL vs. SECT stoichiometry vs. DECT model].

M701 Brain Spinal Cord Soft Tissue Bone

DECT Empirical model 1.20 ± 0.90 2.70 ± 1.90 2.90 ± 2.60 4.20 ± 4.90

SECT Stoichiometric method 0.95 ± 0.96 2.06 ± 1.53 2.96 ± 1.64 10.22 ± 3.00

ANN 1.15 ± 0.51 2.42 ± 0.85 1.11 ± 0.79 1.79 ± 1.68

FCNN 0.85 ± 0.37 2.11 ± 0.64 1.08 ± 0.51 0.67 ± 1.28

ResNet 1.85 ± 0.20 3.14 ± 0.83 2.24 ± 1.31 0.48 ± 1.18

M702 Brain Spinal Cord Soft Tissue Bone

DECT Empirical model 0.90 ± 0.80 1.60 ± 1.40 2.60 ± 2.40 3.90 ± 2.20

SECT Stoichiometric method 1.24 ± 1.32 2.19 ± 1.84 3.20 ± 2.03 10.65 ± 4.47

ANN 0.99 ± 0.69 2.39 ± 1.44 1.03 ± 1.49 4.35 ± 5.57

FCNN 0.45 ± 0.50 1.80 ± 1.22 0.74 ± 1.09 3.00 ± 5.67

ResNet 1.82 ± 0.62 3.20 ± 1.56 2.18 ± 1.22 1.67 ± 4.61
Bold values mean best performance.
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(HN, Chest, Pelvic). Note that DLmodels were trained with phantom

data, while the SECT stoichiometric method and DECT empirical

data were optimized for clinical use with both phantom and human

tissue, which might lead to worse performance on anthropomorphic

phantom mass density and RSP estimation.

Gomà et al. concluded that the Gammex phantom utilized in

this study contains tissue substitutes better representative of the

human body than the CIRS electron density phantom (17). As

shown in Tables 4, 5, we tested our DL models with Gammex 467

electron density phantom tissue surrogates, and the results indicate

that the DL models can improve the mass density and RSP

estimation relative to the stoichiometric method. Note that we

tested our DL models on Gammex 467-1009 electron density

phantom to evaluate the performance using different materials;
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then, we tested our DL models with CIRS M701&M702 phantoms

for different materials and patient body sizes.

As shown in Figures 3, 4, the SECT stoichiometric method yields

larger error in the lung, skull, pelvic bone, and soft tissue than DL

networks. Also, the mass density and RSP maps generated with the

SECT stoichiometric method have more noise than those generated by

DL models, which indicates that DL models can handle noise and

artifact suppression superiorly. It was reported that the uncertainty

associated with mass density estimation dominates the proton range

calculation uncertainty (7, 15, 32). In this work, DL models were

trained with SECT images of electron density phantom, and Table 12

shows that the mass density MAPE can be improved significantly

relative to the SECT stoichiometric method. The FCNN and ResNet

outperform the ANN and referencemodels, and theirMAPE values are
TABLE 10 Mass density – MAPE [SECT DL vs. SECT stoichiometry vs.
DECT model].

M701
Spinal
Cord

Soft
Tissue

Bone

DECT Empirical model 3.30 ± 2.70 2.50 ± 2.00 2.40 ± 1.80

SECT Stoichiometric
method

1.91 ± 1.62 2.07 ± 1.74 2.18 ± 2.00

ANN 1.05 ± 0.89 1.25 ± 1.03 3.15 ± 2.04

FCNN 0.73 ± 0.61 0.75 ± 0.60 0.73 ± 1.12

Resnet 0.51 ± 0.43 1.54 ± 1.05 1.19 ± 1.11

M702 Spinal Cord Soft Tissue Bone

DECT Empirical model 2.10 ± 1.80 2.30 ± 1.90 2.20 ± 1.70

SECT Stoichiometric
method

1.82 ± 1.47 1.92 ± 1.74 3.76 ± 4.60

ANN 1.03 ± 0.88 1.20 ± 1.06 4.57 ± 5.09

FCNN 0.67 ± 0.57 0.66 ± 0.54 2.61 ± 5.62

Resnet 0.53 ± 0.63 1.41 ± 1.03 1.79 ± 4.44
Bold values mean best performance.
TABLE 9 RSP – MAPE [SECT DL vs. SECT stoichiometry vs. DECT model].

M701 Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 2.70 ± 2.60 3.20 ± 2.50 5.20 ± 3.60 7.00 ± 5.80

SECT Stoichiometric method 2.93 ± 2.35 3.06 ± 1.87 6.56 ± 2.94 8.29 ± 7.34

ANN 2.86 ± 1.36 1.07 ± 1.03 3.85 ± 2.88 12.36 ± 6.99

FCNN 2.37 ± 0.95 1.04 ± 0.94 1.73 ± 2.07 1.57 ± 0.43

ResNet 3.20 ± 0.75 2.14 ± 1.22 0.72 ± 1.09 0.95 ± 0.72

M702 Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 3.30 ± 3.10 2.70 ± 2.20 4.70 ± 6.20 6.70 ± 5.50

SECT Stoichiometric method 2.53 ± 1.95 3.49 ± 3.86 9.23 ± 4.25 6.75 ± 6.35

ANN 2.03 ± 1.56 1.32 ± 3.70 4.31 ± 5.60 14.23 ± 7.37

FCNN 1.54 ± 1.30 0.89 ± 3.21 2.94 ± 5.56 1.30 ± 0.54

ResNet 2.90 ± 1.64 2.27 ± 3.31 1.36 ± 4.28 1.10 ± 0.70
Bold values mean best performance.
TABLE 11 RSP – MAPE [SECT DL vs. SECT stoichiometry vs. DECT
model].

M701
Spinal
Cord

Soft
Tissue

Bone

DECT Empirical model 2.80 ± 2.20 2.60 ± 2.10 3.50 ± 2.30

SECT Stoichiometric
method

1.93 ± 1.62 2.88 ± 1.64 6.56 ± 1.71

ANN 2.40 ± 1.45 1.25 ± 0.5 3.47 ± 1.91

FCNN 2.08 ± 1.18 1.13 ± 0.64 1.33 ± 1.12

Resnet 2.63 ± 1.31 2.22 ± 0.86 0.61 ± 0.81

M702 Spinal Cord Soft Tissue Bone

DECT Empirical model 2.50 ± 1.90 2.40 ± 1.90 3.40 ± 2.10

SECT Stoichiometric
method

1.90 ± 1.23 3.06 ± 2.80 7.21 ± 3.67

ANN 2.20 ± 1.27 1.05 ± 0.85 4.69 ± 4.63

FCNN 1.62 ± 0.92 0.74 ± 0.54 2.75 ± 4.75

Resnet 2.70 ± 1.14 2.08 ± 0.86 1.27 ± 3.77
Bold values mean best performance.
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close. A possible reason is that they share the same core network

feature, the convolutional layer. Considering the training cost, the

FCNN is recommended as the DL model for future dose calculation

study. The RSP uncertainty is considerably larger than that of mass

density, as demonstrated in Table 13, the DL models still exhibit the

potential to enhance the accuracy of RSP estimation. FCNN could

reduce the MAPE down to less than 2%, except in the spinal cord of

CIRS M701.

Figure 5 illustrates the mass density prediction map generated by

FCNN, ResNet, and the SECT stoichiometric method for two patients

using HN and pelvis scans. As shown in Figures 5A3, A4, B3, B4, the

DL models can reflect the patient’s anatomy qualitatively, compared

with the SECT images in Figure 5A1. Figures 6A–C shows the

comparison of CT number profile and density profile at the

position marked in Figures 5A1, B1. Figures 6A–C demonstrates
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that the mass density profile generated by FCNN and ResNet has a

strong agreement with the SECT number profile trend. As shown in

Figures 5A2–A4, B2–B4, the mass density maps predicted by DL

models have less noise than that predicted by the stoichiometric

method, especially in the scan of the soft tissue of the pelvis. This

implies that the DL models can suppress CT noises and artifacts, and

it is also shown in the mass density profile comparison in Figure 6

that the DL models’ mass density lines are smoother than that of the

stoichiometric method. The empirical model can provide better

contrast information between adipose and bone tissue than the DL

models; this might be because the DL models predict a higher density

(~0.96 g/cm3) for adipose compared to the stoichiometric method

(~0.88 g/cm3). The accurate density of the patient’s adipose tissue is

not known; DL models estimated it at 8% higher than the

stoichiometric method because the training dataset of the DL
TABLE 12 Mass density – MAPE [SECT DL vs. SECT stoichiometry vs. DECT model].

M701 Brain Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 1.00 ± 0.80 2.60 ± 2.40 2.70 ± 2.30 3.00 ± 3.80 -1

SECT Stoichiometric method 0.99 ± 0.66 2.34 ± 2.14 1.87 ± 1.86 3.17 ± 2.26 8.29 ± 7.34

ANN 0.64 ± 0.52 1.46 ± 1.64 1.29 ± 1.19 2.90 ± 2.36 12.96 ± 7.09

FCNN 0.39 ± 0.31 0.92 ± 0.88 0.68 ± 0.86 0.92 ± 1.65 1.57 ± 0.39

ResNet 0.13 ± 0.20 0.97 ± 1.54 1.42 ± 1.29 1.04 ± 1.45 2.18 ± 0.73

M702 Brain Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 1.30 ± 0.90 1.90 ± 1.70 2.40 ± 2.00 2.50 ± 3.70 -1

SECT Stoichiometric method 1.10 ± 0.97 2.15 ± 1.52 1.92 ± 2.79 5.29 ± 4.89 6.91 ± 6.35

ANN 0.86 ± 0.81 1.53 ± 1.86 1.23 ± 2.35 4.65 ± 5.73 14.86 ± 7.37

FCNN 0.89 ± 0.57 1.09 ± 1.27 0.70 ± 2.16 3.19 ± 6.24 1.52 ± 0.49

ResNet 0.19 ± 0.89 1.08 ± 2.29 1.30 ± 2.48 1.87 ± 4.82 2.42 ± 1.97
1The DECT empirical model doesn’t apply to normal lung tissue.
Bold values mean best performance.
TABLE 13 RSP – MAPE [SECT DL vs. SECT stoichiometry vs. DECT model].

M701 Brain Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 1.20 ± 0.90 4.40 ± 3.50 2.09 ± 2.40 3.20 ± 3.70 -1

SECT Stoichiometric method 0.95 ± 0.96 2.61 ± 2.10 2.08 ± 1.90 7.74 ± 2.78 8.62 ± 7.43

ANN 1.15 ± 0.51 2.74 ± 1.22 1.21 ± 1.17 3.03 ± 2.07 12.52 ± 7.39

FCNN 0.85 ± 0.37 2.32 ± 0.87 0.75 ± 0.88 1.22 ± 1.34 1.25 ± 2.37

ResNet 1.85 ± 0.20 2.73 ± 0.83 1.57 ± 1.31 1.26 ± 1.02 1.01 ± 2.45

M702 Brain Spinal Cord Soft Tissue Bone Lung

DECT Empirical model 0.90 ± 0.80 3.60 ± 3.00 2.50 ± 2.10 2.70 ± 3.50 -1

SECT Stoichiometric method 1.24 ± 1.32 2.44 ± 2.05 2.13 ± 2.81 8.87 ± 3.76 6.75 ± 1.36

ANN 0.99 ± 0.69 2.28 ± 1.60 1.23 ± 2.32 4.47 ± 4.65 14.23 ± 7.28

FCNN 0.45 ± 0.50 1.71 ± 1.30 0.72 ± 2.16 2.88 ± 4.70 1.30 ± 0.54

ResNet 1.82 ± 0.62 2.07 ± 1.65 1.56 ± 2.40 1.42 ± 3.73 1.10 ± 0.70
1The DECT empirical model doesn’t apply to normal lung tissue.
Bold values mean best performance.
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models doesn’t cover the mass density range from 0.5 to 0.95 g/cm3,

while the clinically used SECT stoichiometric method CT curve has

been calibrated with over 30 materials on various mass densities. If

more tissue surrogates can be adapted into the training set of this

framework, the robustness of DL models will be significantly

improved. As shown in Figures 6A, C, FCNN has better

performance in reproducing minor structure information from

SECT images, such as the mass density difference in pelvic bone

and bone marrow. Because ResNet has a complex model structure,

including deep CNN layers, for example, when the dimension of data

is insufficient (only SECT image as input), the complex model does

not necessarily lead to a robust result (33).

In supervised machine learning, a prevalent challenge is that DL

models do not consistently generalize effectively from the training
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input data to new, unseen data (34). This overfitting phenomenon

allows DL models to perform exemplarily in controlled conditions

(similar or identical to the training conditions) while performing

poorly on the application set. Many reasons can lead to this

phenomenon, a lack of training dataset diversity being the

predominant one. Only SECT phantom images were adapted into

the training set; therefore, the DL networks’ infrastructure needed to

be designed carefully to avoid overfitting. As shown in Figures 5, 6,

the mass density profile estimated by DL models can basically follow

the trend of SECT CT number and overlap with the profile of the

SECT stoichiometric method. As shown in Table 14, DL models

predicted a patient tissue mass density similar to that predicted using

traditional methods. Integrating these findings, the design of the DL

network successfully addresses and mitigates the overfitting issue.
FIGURE 3

(A1, B1, C1) SECT images scan using different 120 kVp protocols. APE maps of mass densities between the reference and SECT parametric models at
(A2–A5) HN, (B2–B5) thoracic, and (C2–C5) pelvic sites using CIRS M701 phantom.
FIGURE 4

(A1, B1–C1) SECT images scan using different 120 kVp protocols. APE maps of RSP between the reference and SECT parametric models at (A2–A5)
HN, (B2–B5) thoracic, and (C2–C5) pelvic sites using CIRS M701 phantom.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1278180
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gao et al. 10.3389/fonc.2023.1278180
5 Conclusion

A DL framework was proposed to improve the mass density and

RSP parametrization for proton dose calculation based on the SECT
Frontiers in Oncology 12
images. All three DL models outperform the SECT stoichiometric

method in tissue substitute except the lung surrogate. FCNN and

ResNet improved the mass density and RSP estimation accuracy

based on SECT images, outperforming the SECT stoichiometric

method over the entire phantom, and outperforming the DECT

empirical model. DL models also demonstrate the ability to suppress

CT image noise. The proposed DL frameworks have the potential to

improve the clinical proton dose calculation based on SECT scans.
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FIGURE 5

Mass density maps of two patients generated by different SECT FCNN and ResNet models at A1–A4 and B1–B4 using HN and pelvis scan.
A B C

FIGURE 6

(A) the line profile from the blue line in Figure 5A1, (B) the line profile from green line in Figure 5B1, and (C) the line profile from the red line in
Figure 5B1.
TABLE 14 Average mass density of three tissues comparison among DL
models and the Stoichiometric model based on one patient SECT scan.

Patient
Brain

(g/cm3)
Bone

(g/cm3)
Lung

(g/cm3)

SECT Stoichiometric method 1.04 ± 0.04 1.69 ± 0.18 0.20 ± 0.05

ANN 1.04 ± 0.02 1.62 ± 0.17 0.17 ± 0.04

FCNN 1.05 ± 0.01 1.66 ± 0.17 0.20 ± 0.01

ResNet 1.05 ± 0.03 1.68 ± 0.15 0.21 ± 0.01
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