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INTRODUCTION

Euonymus alatus, commonly identified as winged spindle or 
burning bush, is a deciduous tree species of flowering plant 
belonging to the Celastraceae family. It is disseminated mainly 
in China, Japan, and Korea. Because of its eye-catching fall 
color and bright pink or orange fruit, this plant is a favorite 
ornamental in gardens and parks (Qin et al., 2011; Ning 
et al., 2022). In traditional Chinese and Korean medicine, 
corky-winged stems are used. This plant can treat cancer, 
hyperglycemia, and complications from diabetes (Fan et al., 
2020; He et al., 2022). The following secondary metabolites i.e., 
flavonoids, terpenoids, steroids, lignans, cardenolides, phenolic 
acids, and alkaloids have been documented from this plant in 
different experiments (Zhai et al., 2016).

A class of long-lasting, non-biodegradable inorganic 
chemical substances known as heavy metals causes harm 

to both people and plants as well as animals. They are 
extremely harmful to plant tissue at greater doses (Lombardi 
& Sebastiani, 2005), which has a substantial impact on the 
plastoquinone, carotenoid level, electron transport system, 
and chloroplast (Kisa et al., 2016). Large tracts of land are 
contaminated with heavy metals, particularly by inorganic 
pollutants brought on by urbanization, industrial waste, and 
agriculture (Demirezen & Aksoy, 2006; Kisa et al., 2016). It 
is becoming more and more crucial to develop heavy metal-
tolerant plants, which can detoxify heavy metals, in order 
to solve this issue. Because it is inexpensive and simple to 
operate and maintain, plant-based phytoremediation of 
heavy metals is one of the most successful methods (Kivaisi, 
2001; Madera-Parra et al., 2015). Most plants accumulate 
secondary metabolites as a result of abiotic stressors (Zhao 
et al., 2005). Among such metabolites, the most significant 
and often studied metabolic pathway is the phenylpropanoid 
pathway (Biala & Jasinski, 2018).
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ABSTRACT
The productivity of the phenylpropanoid biosynthesis pathway in plants varies depending on the type of stress. 
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and 100 mM). We analyzed some of the individual phenolic chemicals by high-performance liquid chromatography 
(HPLC). In nearly all cases, rutin showed the largest concentration among the phenylpropanoid chemicals, followed 
by epicatechin, sinapic acid, p-coumaric acid, trans-cinnamic acid, ferulic acid, and caffeic acid. However, due to the 
change in the concentration of the heavy metals, the amount of phenylpropanoid changed. The highest accumulation 
of phenylpropanoid was documented in 0.1 mM CuCl2, whereas it was reduced in 1 mM HgCl2 exposed plants. These 
findings unequivocally demonstrate that the phenylpropanoid metabolic pathway took part in the heavy metal tolerance 
process, which shielded E. alatus from the oxidative damage brought on by heavy metals. Thus, under a variety of 
environmental stress situations, this species with a high tolerance to heavy metals may survive.
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Phenylpropanoids compounds have anti-allergenic, anti-
bacterial, anti-inflammatory, antioxidant, and anti-viral 
activities, which are beneficial to the health of humans 
(Cevallos-Casals & Cisneros-Zevallos, 2010; Korkina et al., 2011; 
Panda et al., 2011). Furthermore, these substances have anti-
diabetic and anti-cancer properties, aiding in the prevention 
of cardiovascular illnesses (Yang et al., 2001; Yao et al., 2004). 
Additionally, they are essential mediators for the interactions 
between plants and other creatures and play a critical role in 
responding to stressful circumstances like fluctuations in light 
intensity and mineral deficits (Clemens & Weber, 2016). Kisa 
et al. (2016) studied how heavy metals affect the metabolic 
profile of phenolic compounds in plants. Nevertheless, it is 
unknown how heavy metals affect E. alatus’s phenylpropanoid 
profile and how the phenylpropanoid pathway contributes 
to the species’ ability to survive in adverse environments. It 
is therefore likely that the phenylpropanoid accumulation is 
responsible for this tolerance capacity. Gaining insight into the 
process that allows heavy metals to be tolerated might improve 
the effectiveness of reducing heavy metals effect.

MATERIALS AND METHODS

Plant Materials

The studied plating material of Euonymus alatus (one-year-old) 
grown from a cutting was procured from Xplant (Seoul, Korea) 
and arranged into individual pots 11 cm× 11 cm in size. For 
five months, the one-year-old E. alatus trees were raised in a 
greenhouse at Chungnam National University’s experimental 
farm in Daejeon, South Korea. After reaching a height of 70 cm, 
the trees were treated with different concentrations of heavy 
metals.

Heavy Metal Stress Treatments

Different concentrations of CuCl2  (0.1, 0.5, and 1 mM), 
HgCl2 (0.1, 0.5, and 1 mM), and NiSO4 (10, 50, and 100 mM) 
were tested, in order to know the impact of Cu, Hg, and Ni 
toxicity on E. alatus. The standard stock solution was used to 
create all the working concentrations, whereas all of the heavy 
metals were acquired from a commercial source (Sigma, St. 
Louis, MO, USA). Three duplicates were carried out for each 
experimental dosage.

Analysis of Phenylpropanoid Content and High-
Performance Liquid Chromatography (HPLC)

The leaf samples of E. alatus were harvested weekly following 
heavy metal treatments. HPLC was used to determine the 
phenylpropanoid content of the samples after they were 
freeze-dried for 72 hours. A small modification was made to 
the previously described methodology of Kim et al. (2020) for 
the analysis of the soluble phenylpropanoid compounds. Using 
a mortar and pestle, the stored samples were taken and ground 
into a fine powder. Each sample was weighed out at 100 mg 
and put into 3 mL of 80% aqueous MeOH for HPLC analysis. 
After one minute of vortexing, the mixtures were immediately 

subjected to a vigorous 60-minute sonication at 35 °C. After 
centrifuging sonicated samples at 10,000 × g for 15 minutes, 
the supernatants were gathered, filtered, and sterilized using 
0.45 µm filters in preparation for HPLC analysis. Reversed-phase 
chromatography was used to perform HPLC separation on an 
Agilent 1260 Infinity Quaternary LC (Agilent Technologies, 
Inc., Germany) using a C18 column (250 × 4.6 mm, 5 µm, 
RStech, Daejeon, South Korea). The mobile phase, gradient 
programs, HPLC conditions, identification, and quantification 
of phenylpropanoid compounds were similar to the protocol 
described by Kim et al. (2022).

Statistical Analysis

The results were analyzed using IBM SPPS Statistics 24 software. 
Duncan Multiple Range Test with one-way ANOVA at the 5% 
significance level was used for the analyses. For each treatment, 
all experiments were done in triplicate.

RESULTS

Effect of CuCl2 on Phenylpropanoid Contents

Depending on the concentration of CuCl2, E. alatus exhibited 
a wide variety of responses related to phenylpropanoid 
biosynthesis. The total phenylpropanoid contents reached 2.16, 
2.05, and 2.07 mg/g dry weight at exposure to 0.1, 0.5, and 1 
mM CuCl2, respectively. At all the concentrations, the highest 
phenylpropanoid content (mg/g dry weight) was obtained for 
rutin followed by epicatechin, sinapic acid, p-coumaric acid, 
ferulic acid, trans-cinnamic acid, and caffeic acid. However, 
when compared to the control, trans-cinnamic acid showed 
a decreased accumulation at 0.1 mM CuCl2. Most of the 
phenylpropanoid contents were higher in the plant exposed 
to 0.5 mM CuCl2, except for caffeic acid and epicatechin 
(Figure 1).

Effect of HgCl2 on Phenylpropanoid Contents

T h e r e  w a s  a  m i n o r  i m p a c t  o f  H g C l 2 o n  t h e 
phenylpropanoids’ accumulation. The total phenylpropanoid 
production (mg/g dry weight) was slightly higher at control 
followed by 0.5, 0.1, and 1.0 mM of HgCl2. The phenylpropanoid 
level decreased at higher doses. In contrast, most of the 
phenylpropanoid contents showed slight or little accumulation 
in the plant exposed to HgCl2. From the overall dose, the highest 
phenylpropanoid contents (mg/g dry weight) were observed 
for rutin followed by epicatechin, sinapic acid, trans-cinnamic 
acid, p-coumaric acid, ferulic acid and caffeic acid (Figure 2).

Effect of NiSO4 on Phenylpropanoid Contents

The plant exposed to different concentrations of NiSO4 showed 
that overall phenylpropanoid concentration rose significantly. 
The plants  subjected to 100 mM NiSO4 exhibited greater 
accumulations than those exposed to 10 mM and 50 mM. 
The total phenylpropanoid accumulation increased with 
increasing the concentration of heavy metals. Rutin had the 
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Figure 1: Effect of different concentrations of CuCl2 on phenylpropanoid compounds in Euonymus alatus

highest concentration (mg/g dry weight), whereas epicatechin, 
sinapic acid, p-coumaric acid, trans-cinnamic acid, ferulic acid, 
and caffeic acid showed close concentrations as that of the rutin. 
On the other hand, the levels of trans-cinnamic acid and caffeic 
acid were considerably lower than in the control (Figure 3).

DISCUSSION

The way that plants react to stress  may be influenced 
by phenylpropanoid chemicals. The productivity of the 
phenylpropanoid biosynthesis pathway in plants varies 

depending on the type of stress. In this work, we examined 
the accumulation of several chemicals involved in the 
phenylpropanoid pathway following exposure to different heavy 
metals. Using varying doses of CuCl2, HgCl2, and NiSO4, the 
impact of Cu, Hg, and Ni toxicity on the phenylpropanoid 
biosynthesis of E. alatus was evaluated in this work.

According to our findings, the amount of phenylpropanoid 
compounds varied depending on the heavy metal employed. 
In this study, we examined some of the specific phenolic 
compounds. Among the phenylpropanoid compounds, the 
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highest accumulation was noticed for rutin followed by 
epicatechin, sinapic acid, p-coumaric acid, trans-cinnamic 
acid, ferulic acid, and caffeic acid in all the exposed heavy 
metals. However, their concentration varied due to the variation 
of heavy metals and their concentration. This result was 
consistent with the previous study that the exposure of Robinia 
pseudoacacia to various heavy metals, the result showed that 
the concentration of the phenylpropanoid varied depending 
on the concentration of the heavy metals (Kim et al., 2020). 
According to earlier research, the phenylpropanoid molecules 
mentioned above have potent antioxidant properties (Mehra 
et al., 2013; Enogieru et al., 2018; Grzesik et al., 2018; Shen 

et al., 2019; Xu et al., 2019), and exposure of plants to heavy 
metals boosted their accumulation. This indicates a relationship 
between the concentration of heavy metals in the plant’s organs 
and the accumulation of different phenylpropanoid chemicals 
(Kisa et al., 2016). It was noticed that comparatively the use 
of different concentrations of CuCl2 showed the maximum 
accumulation of total phenylpropanoid biosynthesis than 
HgCl2 and NiSO4. A similar result was obtained in the previous 
study that R. pseudoacacia was exposed to various heavy 
metals, the CuCl2 exposure showed the highest accumulation 
of phenylpropanoid compounds (Kim et al., 2020). In this 
study, the maximum amount of phenylpropanoid was found 

Figure 2: Effect of different concentrations of HgCl2 on phenylpropanoid compounds in Euonymus alatus
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in 0.1 mM CuCl2, however, when E. alatus was exposed to 1 
mM HgCl2, the amount of phenylpropanoid decreased. In fact, 
with the use of HgCl2, the accumulation of phenylpropanoid 
decreased compared to control. This finding suggests that 
a decline in important enzyme activity associated with the 
phenylpropanoid biosynthesis pathway may be the cause of the 
drop in phenylpropanoid concentrations (Chung et al., 2006; 
Kisa et al., 2016). This suggested that a significant amount of 
different phenylpropanoid compounds accumulated in E. alatus 
to shield them against a variety of heavy metal stressors.

CONCLUSION

The present investigation revealed that the plant’s total 
phenylpropanoid compound levels were progressively elevated in 
E. alatus upon exposure to heavy metals. In all the heavy metal 
exposure the highest individual phenylpropanoid content was 
achieved in rutin and epicatechin, which leads to the highest 
accumulation of total phenolic content. In light of this, the 
synthesis of phenylpropanoid chemicals may help to lessen 
the formation of ROS generated by stress brought on by heavy 

Figure 3: Effect of different concentrations of NiSO4 on phenylpropanoid biosynthesis in Euonymus alatus
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metals and let E. alatus thrive in heavily polluted environments. 
This partially elucidates why E. alatus is tolerant to various 
heavy metals, making it a useful species for the bioremediation 
of heavy metals from the environment. This helps to explain 
that E. alatus is a valuable species for the bioremediation of 
heavy metals from the environment due to its tolerance to 
different heavy metals.
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