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Introduction: Apolipoprotein E (ApoE) has been shown to be necessary for proper
skeletal muscle regeneration. Consistent with this finding, single-cell RNA-
sequencing analyses of skeletal muscle stem cells (MuSCs) revealed that Apoe is a
top marker of quiescent MuSCs that is downregulated upon activation. The purpose
of this study was to determine if muscle regeneration is altered in mice which harbor
one of the three common human ApoE isoforms, referred to as ApoE2, E3 and E4.

Methods: Histomorphometric analyses were employed to assess muscle
regeneration in ApoE2, E3, and E4 mice after 14 days of recovery from barium
chloride-induced muscle damage in vivo, and primary MuSCs were isolated to
assess proliferation and differentiation of ApoE2, E3, and E4 MuSCs in vitro.

Results: There was no difference in the basal skeletal muscle phenotype of ApoE
isoforms as evaluated by section area, myofiber cross-sectional area (CSA), and
myonuclear andMuSC abundance per fiber. Although therewere no differences in
fiber-type frequency in the soleus, Type IIa relative frequency was significantly
lower in plantaris muscles of ApoE4 mice compared to ApoE3. Moreover, ApoE
isoform did not influence muscle regeneration as assessed by fiber frequency,
fiber CSA, and myonuclear and MuSC abundance. Finally, there were no
differences in the proliferative capacity or myogenic differentiation potential of
MuSCs between any ApoE isoform.

Discussion: Collectively, these data indicate nominal effects of ApoE isoform on the
ability of skeletalmuscle to regenerate following injury or the in vitroMuSCphenotype.
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Introduction

The human APOE gene encodes the glycoprotein
apolipoprotein E which functions as a high-affinity ligand
facilitating the clearance of diverse lipoproteins from systemic
circulation (Mahley, 1988; Wernette-Hammond et al., 1989). The
APOE gene is polymorphic, existing as three common isoforms -
ApoE2, ApoE3, and ApoE4. The APOE3 allele is the most
common genotype, with 80% of the population carrying this
allele. The less common E2 and E4 alleles are carried by 5%–10%
and 10%–15% of the population, respectively (Zannis et al., 1981;
Kim et al., 2009). The difference between the ApoE isoforms is a
single amino acid substitution that induces a structural change
within the protein which alters the capacity to bind the low-
density lipoprotein receptor and modifies lipid binding
preferences (Pitas et al., 1987; Huang, 2010). These alterations
cause divergent cellular metabolism and have substantial
implication in Alzheimer’s disease risk (Pitas et al., 1987;
Huang, 2010).

Prior studies have also investigated the impact of ApoE
knockout (ApoE−/−) on skeletal muscle, where ApoE has been
found to be concentrated at the neuromuscular junction
(Akaaboune et al., 1994). In mouse models of hindlimb
ischemia using ApoE−/− mice, ApoE was reported to be
necessary for mitochondrial function, macrophage infiltration,
and muscle healing (Kang et al., 2008; Crawford et al., 2013;
Lejay et al., 2019). Similarly, skeletal muscle regeneration is also
impaired in ApoE−/− mice following cardiotoxin injury (Barlow
et al., 2021).

In adult skeletal muscle, muscle stem cells (MuSCs) typically
reside in a quiescent state, but in response to a stimulus
(physiological or pathological), MuSCs exist quiescence and
become activated, proliferate, and differentiate into
multinucleated myofibers (Snijders et al., 2015). The role of
MuSCs in muscle fiber repair and remodeling in response to
exercise has been widely investigated (Bazgir et al., 2017). A
number of studies have reported an increase in MuSC content
during prolonged resistance type exercise training as well as
positive correlations between increases in muscle fiber size and
MuSC content (Petrella et al., 2006; Verdijk et al., 2010; Mackey
et al., 2011; Bellamy et al., 2014). Furthermore, evidence suggests
that MuSCs may play a role in non-hypertrophic skeletal muscle
remodeling in response to aerobic exercise training (Joanisse et al.,
2013; Joanisse et al., 2015). Notably, MuSCs from ApoE−/− mice
show delayed activation and differentiation on single muscle fibers
ex vivo and impaired proliferation and differentiation in vitro
(Barlow et al., 2021). This suggests that compromised MuSC
function in ApoE−/− mice may play a role in the impaired
muscle regeneration.

We previously reported that, relative to ApoE2, ApoE3 and
ApoE4 cells have higher glycolytic flux with increased and
decreased oxidative TCA activity, respectively (Williams et al.,
2020). Given the importance of central carbon metabolism to
MuSC function, we hypothesized that muscle regeneration will be
altered in ApoE4 mice compared to ApoE2 and ApoE3 mice. To
test this hypothesis, we assessed muscle regeneration of
‘humanized’ ApoE mice following muscle injury.

Materials and methods

Animals and experimental procedures

Six-month old C57BL/6 mice homozygous for either the human
E2, E3, or E4 APOE allele, as described previously, were used in this
study (Williams et al., 2020; Lee et al., 2023a; Lee et al., 2023b). Mice
were provided with sterilized food and acidified water ad libitum and
kept under barrier conditions in a dedicated room with constant
temperature and a 14:10 light cycle. ApoE2, E3, and E4 mice (n = 3 per
group) were used for basal skeletal muscle phenotype assessment via
immunohistochemistry (IHC). Further groups of E2, E3, and E4 mice
(n = four to five per group) were treated with BaCl2 unilaterally, as
described in further detail below, for assessment of skeletal muscle
regeneration. For in vitro experiments, myogenic progenitor cells
(MPCs) were isolated from 12-month old E2, E3, or E4 mice (n =
two to three per group). Prior to muscle collections, mice were
euthanized by cervical dislocation following isoflurane
anesthetization. All procedures were approved by the University of
Kentucky’s Institutional Animal Care and Use Committee.

Single-cell transcriptomic data analysis

Single-cell transcriptomic data of regenerating mouse muscle
tissue were acquired via Gene Expression Omnibus (GEO) under
accession numbers GSE159500 and GSE162172 (McKellar et al.,
2021). Briefly, all datasets for Days 0 and 5 post-muscle damage
were downloaded and integrated by Seurat Integration, with
integration feature anchors set at 3,000 features (Hao et al.,
2021). Unbiased clustering was performed using shared nearest
neighbor (SNN) clustering, and the resolution for cluster
determination (FindClusters function) was set at 1. Data was
visualized through Dimplot (UMAP), Featureplot (Pax7, Apoe,
Acta1), and VlnPlot (Pax7, Apoe, Acta1). Paired box 7 (Pax7), a
gene that is highly expressed in quiescence and is rapidly
downregulated upon activation, was used to identify the
“Quiescent” cluster of MuSCs. Mature myocytes were classified
based on expression of skeletal muscle actin alpha 1 (Acta1)
(Barruet et al., 2020). All newly developed code will be available
on Github upon publication.

Barium chloride injections

ApoE2, E3, and E4 mice were treated with BaCl2 as previously
described (Dungan et al., 2022). A power analysis based on this
previous study (Dungan et al., 2022) indicated that n = 4 mice per
group provides sufficient power (1-β = 0.8) to detect differences in
muscle regeneration outcome measures. Briefly, 10 μL of 1.2%
BaCl2 was unilaterally injected into 5 locations along the length of
the tibialis anterior (TA) muscle. The contralateral leg was injected
with phosphate-buffered saline (PBS) in the same manner, serving
as the control. Mice were euthanized 14 days post-injection. The
14-day time point was chosen to assess regeneration during later
tissue shaping stages of muscle injury following differentiation and
fusion of most MuSCs (Cutler et al., 2022).
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Immunohistochemistry

For immunohistochemical analyses, TA, soleus, and plantaris
muscles were carefully excised, weighed, pinned to an aluminum-
covered cork block at resting length, covered in Tissue-Tek optimal
cutting temperature (OCT) compound (Sakura Finetek, Torrance,
CA, United States), flash-frozen in liquid nitrogen-cooled isopentane,
and stored at −80°C. Fresh-frozen muscle tissue were later removed
from −80°C storage, placed into a cryostat (HM525 NX; Thermo
Fisher, Waltham, MA, United States) set at −24°C, and 7 μm sections
were cut and allowed to dry for at least 1 h before staining.

For soleus and plantaris fiber-type staining, procedures were carried
out as previous described (Murach et al., 2019). Briefly, unfixed sections
(7 µm) were incubated with antibodies against myosin heavy chain
(MHC) types I (BA.D5), IIA (SC.71), and IIB (BF.F3) (1:100;
Developmental Studies Hybridoma Bank, Iowa City, IA), as well as
rabbit anti-laminin IgG (1:100; L9393; Sigma-Aldrich, St. Louis, MO) at
room temperature for 90 min. In order to visualize MHC and laminin
expression, fluorescence-conjugated secondary antibodies were applied
to different mouse immunoglobulin subtypes for 1 h. MHC type IIX
expression was inferred from unstained fibers.

Pax7/laminin/4′,6-diamidino-2-phenylindole (DAPI) staining
was carried out as previously described (Murach et al., 2020). In
summary, sections were fixed in 4% paraformaldehyde (PFA) and
incubated in 3% H2O2 for 10 min, followed by epitope retrieval
using sodium citrate (10 mM, 6.5 pH) at 92°C for 20 min. Sections
were blocked (2% BSA plus Mouse on Mouse detection kit.; Vector
Labs, Newark, CA, United States) and incubated overnight with
antibodies against Pax7 (1:100; PAX7; Developmental Studies
Hybridoma Bank), as well as rabbit anti-laminin IgG (1:100;
L9393; Sigma-Aldrich). For visualization of Pax7 and laminin,
fluorescence-conjugated secondary antibodies were applied to
different mouse immunoglobulin subtypes for 90 min.

Muscle sections were imaged using a Zeiss upright microscope
(AxioImager M1, Zeiss, Oberkochen, Germany) at 20x
magnification and analyzed by MyoVision software (Wen et al.,
2018; Viggars et al., 2022).

Primary myogenic progenitor cell (MPC)
isolation

MPCs were isolated from the hindlimb musculature of ApoE2,
E3, and E4 mice. Tissue was homogenized using the gentleMACS
Octo Dissociator and Skeletal Muscle Dissociation Kit (Miltenyi
Biotec, Bergisch-Gladbach, Germany) according to manufacturer’s
instructions. The cell suspension was then centrifuged, resuspended
in MACS buffer (Miltenyi Biotec), and subsequently incubated with
Satellite Cell Isolation Kit (Miltenyi Biotec) for 15 min at 4°C. MPCs
(or satellite cells/myoblasts) were isolated using magnetic separation
with the autoMACS Pro Separator (Miltenyi Biotec) according to
manufacturer’s directions.

Cell culture

Primary MPCs were cultured on 10% Matrigel-coated Primaria
culture plates (Corning Inc., Corning, NY, United States) in growth

media consisting of Hams F-10 (#10-070-CV; Corning Inc.), 20%
fetal bovine serum (FBS) (35-070-C; Corning Inc.), 1% penicillin-
streptomycin (97063-708; VWR, Radnor, PA, United States), and
10 ng/mL basic fibroblast growth factor (354060; Corning Inc.).

In vitro MPC proliferation

To assess proliferation, cells were split via trypsinization (L0154-
0100; VWR) into 24-well plates (5,000 cells/well) and subsequently
incubated with 10 μM 5-ethynyl-2′-deoxyuridine (EdU) for 3 h.
After 3 h, cells were fixed with 4% PFA, permeabilized with 0.5%
Triton-X, and stained using a Click-iT EdU Assay (Thermo Fisher
Scientific), followed by DAPI staining for 15 min (1:1,000, D1306,
Thermo Fisher Scientific). Cells were imaged using an Axio
Observer 7 inverted microscope (Zeiss) at 20x magnification and
analyzed using Zen Blue Software (Zeiss). Proliferation was assessed
by measuring the ratio of EdU+/DAPI+ nuclei relative to the total
number of DAPI+ nuclei. Measurements were calculated based on
the average of 15 frames per sample.

In vitro MPC differentiation

For differentiation into myotubes, MPCs were plated on
CYTOOchips coverslips with micropatterns (Myogenesis FN,
CYTOO, Cambridge, MA) (50,000 cells/chip). Growth media was
exchanged for differentiation media consisting of DMEM (30-2006;
ATCC, Manassas, VA) supplemented with 2% horse serum (HS)
(35-030-CV; Corning), and cells were allowed to differentiate for
7 days before immunostaining. Cells were fixed with 4% PFA and
incubated in primary antibody against MHC (MF 20) (1:100,
Developmental Studies Hybridoma Bank) overnight at 4°C,
followed by incubation in fluorescent secondary antibody and
DAPI (1:1,000) for 1 h at room temperature. Cells were imaged
using an Axio Observer 7 inverted microscope (Zeiss) or an
Olympus BX61S Virtual Slide Microscope (Olympus NDT,
Waltham, MA) at 20x magnification and analyzed using Zen
Blue Software (Zeiss). Myotube diameter was calculated as the
average of 5 randomly chosen myotubes per sample, and the
fusion index was calculated as the number of nuclei incorporated
into myotubes expressed as a percentage of the total number of
nuclei in the image frame averaged based on 5 frames per sample.

Statistical analyses

One-way ANOVAs with post hoc Šídák corrections for multiple
comparisons were used to compare measures of skeletal muscle
phenotype in the soleus and plantaris of E2, E3 and E4 mice.
Differences in TA section area, cross-sectional area (CSA),
myonuclei, and satellite cells in PBS and BaCl2 treated limbs
between E2, E3, and E4 mice were analyzed using two-way
ANOVAs with Tukey corrections for multiple comparisons. A
two-way ANOVA controlled for false discovery rate using the
Benjimini, Krieger, and Yekutieli correction was used to compare
TA fiber type CSA distribution in E2, E3, and E4 mice. One-way
ANOVAs with Tukey corrections for multiple comparisons were
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used to assess differences in measures of proliferation and
differentiation between E2, E3, and E4 mice. All statistical
analyses were performed using GraphPad Prism version 9.5.1 for
Windows (GraphPad Software, La Jolla, CA).

Results

Apoe is highly expressed in quiescent MuSCs

APOE was identified by single-cell RNA-sequencing (scRNA-
seq) as one of the top expressed genes in quiescent MuSCs (Barruet
et al., 2020). Given this finding, we sought to assess the dynamics of
Apoe expression during muscle regeneration. ScRNA-seq analysis
of data generated from a study investigating skeletal muscle
regeneration in mice (McKellar et al., 2021) confirmed that
Apoe was one of the top expressed genes in quiescent MuSCs.
UMAP unsupervised clustering to visualize the scRNA-seq data
showed that clusters of myogenic cells characterized by high
expression of Pax7 (quiescent MuSCs) also expressed higher
levels of Apoe (Figures 1A–D). In contrast, Apoe expression was
substantially lower in mature myocytes with high Acta1 expression
(Figures 1E,F).

ApoE isoform has nominal effects on adult
skeletal muscle phenotype

To determine if the different human ApoE isoforms affected
skeletal muscle phenotype under resting conditions, IHC was used
to measure mean fiber CSA, fiber-type composition, and myonuclei
and satellite cell abundance of the soleus and plantaris muscles from
E2, E3, and E4 mice. There were no significant differences in mean
CSA, fiber-type specific CSA, and myonuclear or satellite cell
abundance per fiber between the E2, E3, and E4 groups for either
the soleus or plantaris muscles (Figures 2A–E). Although there were
no differences in fiber-type distribution in the soleus muscles
(Figure 2F), plantaris Type IIa fiber relative frequency was
significantly lower in ApoE4 mice compared to ApoE3 (p = 0.04)
(Figure 2G). These data indicate that differing ApoE isoforms may
induce only minimal changes in adult muscle phenotype under
resting conditions.

ApoE isoform does not affect skeletal
muscle regeneration

MuSCs undergo a metabolic shift towards glycolysis during
activation and fusion (Ryall, 2013; Ryall et al., 2015; Pala et al.,
2018; Yucel et al., 2019; Bhattacharya and Scime, 2020; Nalbandian
et al., 2020). Thus, we hypothesized muscle regeneration would be
enhanced in ApoE4 mice given that ApoE4-expressing cells have
been shown to have a higher glycolytic flux than ApoE2 and
ApoE3 cells (Farmer et al., 2021). After 14 days of muscle
regeneration, there were no significant differences in TA total
section area, mean fiber CSA, or the abundance of myonuclei or
satellite cells per fiber between any of the ApoE isoform groups
(Figures 3A–E). Fibers were grouped into 500 µm2 bins ranging

from 0 to 5000 µm2. Posthoc analyses revealed no significant
differences in fiber CSA distribution in any fiber CSA grouping
between E2, E3 and E4 mice (Figure 3F). Taken together, these data
demonstrate that ApoE isoform does not affect skeletal muscle
regeneration when assessed at 14 days post-injury.

ApoE isoform does not alter myogenic
progenitor cell proliferation or
differentiation in vitro

Next, we measured myogenic progenitor cell (MPC)
proliferation and differentiation capabilities of the different
ApoE isoforms. First, we isolated MPCs from ApoE2, E3, and
E4 mice and measured EdU incorporation in vitro. We did not
observe a significant difference in the percentage of EdU+ cells
between ApoE isoform groups (Figures 4A,B), indicating the rate
of MPC proliferation is similar between groups. We next assessed
the ability of MPCs to undergo myogenic differentiation. Based on
myotube diameter and the fusion index, we did not observe any
difference in differentiation between ApoE2, E3, and E4 mice
(Figures 4C–E).

Discussion

The present study aimed to investigate the effects of ApoE
isoforms in modulating MuSC behavior in response to muscle
damage in vivo. MuSCs have been shown to primarily utilize fatty
acid oxidation during quiescence, shifting their metabolism to
glycolysis upon activation (Ryall, 2013; Ryall et al., 2015).
Interestingly, ApoE4 microglia (Lee et al., 2023a) and
astrocytes (Williams et al., 2020; Farmer et al., 2021) have
increased glycolysis and reduced fatty acid metabolism. Thus,
it is plausible to speculate that ApoE4 mice may be primed for
rapid activation following muscle damage. However, following
BaCl2-induced damage, we found no differences between ApoE2,
ApoE3, or ApoE4 mice in muscle fiber CSA, myonuclear density,
or MuSC number.

To better isolate mechanistic differences of the different ApoE
isoforms onMuSC biology, we isolated primaryMuSCs from E2, E3,
and E4 mice. In vitro, there were no differences in the proliferative
capacity or myogenic differentiation potential between MuSCs
expressing any ApoE isoform. Thus, in contrast to microglia and
astrocytes, there may be no difference in MuSCmetabolism between
different ApoE isoforms. Furthermore, basal metabolism of MuSCs
may not play a major role in muscle regeneration since MuSCs
undergo extensive metabolic alterations during myogenesis (Joseph
and Doles, 2021). Differing ApoE isoforms may not impact the
MuSC metabolic switch to glycolysis that occurs upon activation,
especially considering the downregulation in ApoE that occurs
simultaneously in activated MuSCs. However, future studies
should assess the oxygen consumption and extracellular
acidification rates of ApoE2, ApoE3, and ApoE4 MuSCs to better
characterize metabolic properties associated with the different
isoforms.

As revealed by our analysis of scRNA-seq data, APOE
expression is highest in quiescent MuSCs, and APOE
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expression is downregulated in mature myocytes following
activation and differentiation. In light of these findings, future
research endeavors should focus on investigating ApoE isoform-
specific effects in the quiescent MuSC state when ApoE variant
disparities may be most prominent. Further studies should also

investigate ApoE isoform-specific differences in MuSC signaling
and response to signaling molecules. ApoE signaling, which can
involve both direct binding to ApoE receptors as well as
interactions with other receptors such as N-methyl-D-aspartate
receptors, may modulate MuSC quiescence, a state controlled by

FIGURE 1
Apoe is highly expressed in quiescent MuSCs. Single-cell RNA-sequencing analysis of datasets generated from studies investigating skeletal muscle
regeneration in mice. (A) Violin plot showing expression of Pax7 in quiescent muscle stem cells (MuSCs) and mature myocytes, (B) Unbiased clustering
and 2-dimensional uniform manifold approximation and projection (UMAP) representation of myogenic cells in muscle at days 0, 2, 5, and 7 following
injury. Color scale represents Pax7 expression level. (C–F) Violin plots and UMAP representation showing Apoe (C, D) and Acta1 (E, F) expression
levels.
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various cell adhesion molecules and signaling pathways
(Montarras et al., 2013; Lane-Donovan and Herz, 2017; Zhou
et al., 2021).

It is important to note that our sample size for some of the
analyses included was limited, which may have reduced the power to
identify significant differences between groups. However, for the

FIGURE 2
ApoE isoform inducesminimal effects on adult skeletal muscle phenotype. Immunohistochemical analyses of basal skeletal muscle phenotype in E2,
E3, and E4 mice. (A) Cross-sectional area (CSA), (B) number of myonuclei per fiber, and (C) number of satellite cells (MuSCs) per fiber in the soleus and
plantaris of E2, E3, and E4 mice. (D, E) Fiber type distribution (% of total fibers) in the (D) soleus and (E) plantaris of E2, E3, and E4 mice. (F, G) Fiber-type
specific CSA in the (F) soleus and (G) plantaris of E2, E3, and E4 mice.
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primary outcomes associated with the muscle regeneration study,
the experiment was sufficiently powered. It is worth acknowledging
that in the current study, we utilized adult mice. ApoE levels are
known to increase with age in several tissues, and ApoE is thought to
modify aging and homeostatic adaptive responses during aging

(Yassine and Finch, 2020; Zhao et al., 2022). Thus, we cannot
rule out the possibility that aged mice expressing the different
ApoE isoforms may demonstrate differing muscle regenerative
capacities. Furthermore, although we found no differences in
basal muscle characteristics between ApoE2, ApoE3, and

FIGURE 3
ApoE isoform does not affect skeletal muscle regeneration. Skeletal muscle regeneration in E2, E3, and E4 mice. (A) Total section area, (B) cross-
sectional area (CSA), (C)myonuclei per fiber, and (D) satellite cells per fiber of PBS and barium chloride (BaCl2) treated tibialis anterior (TA) from E2, E3, and
E4 mice. (E) Representative images of Pax7/laminin staining of BaCl2 treated TA cross-sections from E2, E3, and E4 mice. (F) Distribution of fiber CSA in
500 μm2 bins.
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ApoE4 young mice, life-long expression of the different ApoE
variants may result in differing skeletal muscle phenotypes in
aged mice.

Finally, chemical injury using barium chloride is a non-
physiological model of muscle regeneration. While this
experimental model can provide proof of principle for MuSC
biological phenomena, the mechanisms can be different from
physiological repair that occurs in response to exercise-induced

skeletal muscle adaptation, which results in a far more subtle
degree of muscle damage (Fukada et al., 2022). In fact, in response
to barium chloride, the MuSC population is almost entirely destroyed
along with the muscle fibers (Murach et al., 2021). Furthermore,
functions of MuSCs in the context of exercise adaptation that are
independent frommyonuclear addition have been proposed (Murach
et al., 2020). Thus, while we found that muscle regeneration was not
affected by ApoE isoform under extreme muscle damage, future

FIGURE 4
ApoE isoform does not alter myogenic progenitor cell proliferation or differentiation in vitro. Proliferation and differentiation of muscle stem cells
(MuSCs) of E2, E3, and E4 mice. (A) Representative images of DAPI and EdU stained primary MuSCs and (B) proliferative capacity, assessed as the
percentage of DAPI+/EdU+ cells relative to total DAPI+ cells from E2, E3, and E4 mice. (C) Representative images of differentiated myofibers plated on
CYTOOchips coverslips and stained for myosin heavy chain (MHC) and DAPI. (D)Myotube diameter and (E) the percentage of myotube-associated
nuclei relative to total nuclei (fusion index) after 7 days of differentiation of primary MuSCs isolated from E2, E3, and E4 mice.
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studies should also evaluate whether exercise-inducedmuscle damage
recovery or adaptation is influenced by ApoE isoform.
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