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Central nervous system (CNS) disorders present a growing and costly global 
health challenge, accounting for over 11% of the diseases burden in high-income 
countries. Despite current treatments, patients often experience persistent 
symptoms that significantly affect their quality of life. Dietary polysaccharides 
have garnered attention for their potential as interventions for CNS disorders due 
to their diverse mechanisms of action, including antioxidant, anti-inflammatory, 
and neuroprotective effects. Through an analysis of research articles published 
between January 5, 2013 and August 30, 2023, encompassing the intervention 
effects of dietary polysaccharides on Alzheimer’s disease, Parkinson’s disease, 
depression, anxiety disorders, autism spectrum disorder, epilepsy, and stroke, 
we have conducted a comprehensive review with the aim of elucidating the role 
and mechanisms of dietary polysaccharides in various CNS diseases, spanning 
neurodegenerative, psychiatric, neurodevelopmental disorders, and neurological 
dysfunctions. At least four categories of mechanistic bases are included in 
the dietary polysaccharides’ intervention against CNS disease, which involves 
oxidative stress reduction, neuronal production, metabolic regulation, and gut 
barrier integrity. Notably, the ability of dietary polysaccharides to resist oxidation 
and modulate gut microbiota not only helps to curb the development of these 
diseases at an early stage, but also holds promise for the development of novel 
therapeutic agents for CNS diseases. In conclusion, this comprehensive review 
strives to advance therapeutic strategies for CNS disorders by elucidating the 
potential of dietary polysaccharides and advocating interdisciplinary collaboration 
to propel further research in this realm.
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1 Introduction

Central nervous system (CNS) disorders are a growing and costly 
global health problem. According to the World Health Organization 
(WHO), CNS disorders account for more than 11% of the overall 
disease burden in high-income countries (1). These diseases not only 
affect the life quality of patients but also have a major impact on 
families, society, and global healthcare resources.

Concerning the high incidence and sophisticated outcome of CNS 
disorders, pharmacological intervention, surgical resection, and brain 
stimulation therapy are currently commonly used (2, 3). Despite 
recent advances in these treatments, many patients continue to 
experience relevant symptoms that significantly impact their work, 
relationships, and self-care (4, 5). Hence, scientific researchers are still 
continuously seeking more effective therapeutic strategies to reduce 
the burden of these diseases. In recent years, natural components of 
plants have sparked extensive research interest as a compelling 
intervention (6). Among them, polysaccharides, as a complex and 
diverse class of biomolecules, have a significant potential for the 
intervention of neurological disorders, and their multiple mechanisms 
of action, such as antioxidant, anti-inflammatory, and neuroprotective, 
offer new perspectives on therapeutics (6, 7).

By retrieving research articles about the neuroprotective effects of 
dietary polysaccharides published from 2013 to 2023 on databases 
such as PubMed, Web of Science, and Google Scholar, it was found 
that researchers have widely focused on Alzheimer’s disease, 
Parkinson’s disease, depression, anxiety disorders, autism spectrum 
disorder, stroke, and epilepsy. Although these diseases cover multiple 
fields such as neurodegenerative diseases, psychiatric disorders, 
neurodevelopmental disorders, and neurological dysfunctions, there 
is a lack of systematic reviews exploring the protective effects and 
related mechanisms of dietary polysaccharides against CNS diseases.

In this sense, the present review aims to comprehensively elucidate 
the potential roles, intrinsic mechanisms, and future research 
directions of dietary polysaccharides in various CNS diseases. 
Through this review, we  hope to provide an in-depth and 
comprehensive research report for the nutritional disciplines to 
explore the prospect of dietary polysaccharides as potential 
therapeutic approaches for a wide range of CNS disorders. At the same 
time, we  encourage interdisciplinary collaborations to promote 
in-depth research in these areas and make greater contributions to 
improving patients’ life quality and advancing medical science.

2 Polysaccharides: structures, sources, 
and biological activities

Polysaccharides are vital macromolecules found abundantly in 
nature, and serve as fundamental components in the cell walls of 
plants, fungi, and bacteria, providing structural support and 
protection (8). In addition, polysaccharides act as an essential energy 
storage form in plants and animals, offering a sustained and readily 
available energy source (9, 10). Polysaccharides can be categorized 
based on their sources, including plants, animals, microorganisms, 
and edible fungi. Plant-derived polysaccharides originate from various 
plants, encompassing medicinal herbs, fruits, and vegetables, and can 
be extracted from roots, stems, leaves, and fruits, or may naturally 
exist in plants, such as gum and cellulose. Animal-derived 

polysaccharides, are sourced from animal tissues, for instance, 
chondroitin sulfate from squid cartilage. Microbial-derived 
polysaccharides are obtained from microorganisms, such as 
Lactobacillus polysaccharides and yeast β-glucans. Additionally, there 
are polysaccharides derived from edible fungi, such as mushrooms, 
black fungus, and Ganoderma lucidum.

Polysaccharides are typically composed of more than ten repeating 
units of monosaccharides, such as glucose, fructose, or mannose, 
linked together in various configurations (11). The specific 
arrangement of these sugar units, as well as the presence of side chains 
and branching, contribute to the unique physicochemical properties 
and biological activities exhibited by polysaccharides (12). In recent 
years, there has been a growing interest in the study of dietary 
polysaccharides derived from plants, animals, and microorganisms, 
which have long been recognized for their valuable contributions to 
human health and nutrition, as they are believed to exhibit a wide 
range of biological activities (12).

Dietary polysaccharides have been shown to possess a wide array 
of health-promoting effects, including immunomodulatory, 
antioxidant, antitumor, anti-inflammatory, and antimicrobial 
activities. These bioactivities make them potential candidates for the 
development of natural medicines, functional foods, and 
nutraceuticals. Moreover, their ability to regulate various physiological 
processes, such as oxidative stress, lipid regulation, and gut microbiota 
modulation, highlights their potential in the prevention and 
management of CNS disorders (11). The exploration and biological 
evaluation of dietary polysaccharides have gained significant 
momentum in recent years, driven by advancements in extraction and 
purification techniques, like functional factors from the traditional 
Chinese medicine, marine organisms, edible fungus, and others. The 
study of dietary polysaccharides represents a fascinating and 
promising area of research, offering numerous possibilities for the 
development of novel therapeutic agents and functional foods.

3 Dietary polysaccharides and the 
interventions for Parkinson’s disease

Parkinson’s disease (PD) is a prevalent neurodegenerative 
movement disorder that commonly affects middle-aged and elderly 
individuals, characterized by clinical manifestations such as resting 
tremor, motor retardation, myotonia, and postural gait abnormalities 
(13). The major pathological features include the degenerative loss of 
dopaminergic neurons in the nigrostriatal circuit and the formation 
of Lewy bodies in multiple brain regions (14). As of 2015, the 
prevalence of PD in individuals aged over 60 years in China was 1.37% 
(15), in 2019, worldwide data disclosed over 8.5 million individuals 
were living with PD, the surge in disability and fatality rates due to PD 
outpaces all other neurological diseases, imposing a substantial 
burden on families and society for treatment (16). Currently, there is 
no cure for PD. Drugs such as Levodopa, Pramipexole, and others are 
commonly used to increase the level of dopamine or imitate its effects 
to improve or alleviate symptoms, however, long-term use can result 
in significant adverse reactions or varying degrees of reduced efficacy 
(17, 18).

PD’s etiology and pathogenesis remain unclear, but oxidative 
stress caused by reactive oxygen species (ROS) imbalance in 
mitochondria is closely implicated in the selective degeneration of 
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dopaminergic neurons in the substantia nigra (19). It is known that 
dietary polysaccharides act as free radical scavengers, thus protecting 
mitochondria from oxidative damage and contributing to the normal 
function and health of the organism, which can be a practical strategy 
for preventing PD progression (20). Research has demonstrated that 
dietary polysaccharides (including Grifola frondosa extract (21), low 
molecular weight chitosan (22), inulin (23), fucoidan (24), astragalus 
polysaccharides (25), glycosaminoglycans (26), and polysaccharides 
from the starfish (27)) can significantly reduce ROS levels in animal 
or cell models of PD while preserving mitochondrial functionality, 
such as restoring mitochondrial membrane potential (ΔΨm), 
enhancing mitochondrial respiratory function, and increasing 
mitochondrial complex enzyme activity. Moreover, polymannuronic 
acid (28) can alleviate neuroinflammation caused by oxidative stress 
in PD mouse models. Notably, PD is pathologically based on the death 
of dopaminergic neurons leading to a reduction in dopamine levels 
(29). The intervention studies on dietary polysaccharides for PD focus 
on their direct effects on neural cells. It has been found that in rodent 
models of PD, polymannuronic acid administration prevented the loss 
of dopaminergic neurons in the substantia nigra pars compacta (28). 
Fucoidan mitigated the degeneration of dopaminergic neurons via the 
peroxisome proliferator-activated receptor gamma coactivator 1-alpha 
(PGC-1α) and nuclear transcription factor 2 (Nrf2) pathway (24). 
Astragalus polysaccharides and Ganoderma lucidum polysaccharides 
both enhanced the proportion of tyrosine hydroxylase-positive cells 
closely associated with dopaminergic neurons (25, 30).

In 2003, Braak first hypothesized that PD originated in the 
gastrointestinal tract, proposing that an unproven pathogen or toxin 
destroying the gastrointestinal mucosal barrier may cause α-synuclein 
to misfold and deposit in the enteric nerve plexus, and travel 
retrograde along the posterior intestinal neurons and vagus nerve into 
the CNS (31). Subsequently, a growing body of research has revealed 
the profound impact of abnormal microbiota and its metabolites on 
the pathogenesis and clinical manifestations of PD. Therefore, the 
regulation of gut microbiota represents another potential intervention 
method for PD. Polymannuronic acid from brown seaweed 
polysaccharide treatment caused changes in the gut microbial 
composition and dramatic changes in the digestion and metabolism 
of dietary protein and fat, leading to an increase in the content of 
short-chain fatty acids (SCFAs) in the feces of PD mice (28). Inulin 
intake, improved the abundance of Bifidobacterium and Lactobacillus, 
which are strongly positively associated with behavior in a model of 
gestational exposure to PD toxin (23).

Therefore, diverse dietary polysaccharides showed promise in 
reducing ROS and preserving mitochondria in PD models. 
Meanwhile, the effect of dietary polysaccharides on the gut microbiota 
may be a new avenue of intervention in PD. All these studies showed 
that dietary polysaccharides can be promising tools in the control of 
PD (Table 1).

4 Dietary polysaccharides and the 
interventions for Alzheimer’s disease

Alzheimer’s disease (AD) is a common neurodegenerative disease 
worldwide and one of the most prevalent forms of dementia in the 
elderly (32). As reported previously, the all-cause mortality rate for 
AD in individuals aged 70 years and older is 5.32% (32, 33). Currently, 

there are approximately 50 million reported cases of AD globally, 
which will be multiple times higher by 2050 as the population ages 
(32). The main symptoms of AD vary in severity and progression 
among individuals, while the most common symptoms include 
memory loss, cognitive decline, language and communication 
problems, behavioral and mood changes (33). Brain β-like amyloid 
(Aβ) deposition and neuronal fibrillary tangles (NFTs) formed by Tau 
hyperphosphorylation are considered important pathological 
indicators for AD (34).

Currently, there is no specific treatment for AD due to its unclear 
pathogenesis. In most cases, AD patients develop neurodegenerative 
disease as a result of genetics and environment, including apolipoprotein 
E genotype, metabolic syndrome, neuroinflammation, oxidative stress, 
and unhealthy diets (35). Oxidative stress, a common feature of 
neurodegenerative diseases, accelerates the progression of AD by 
causing mitochondrial dysfunction, neuron membrane damage, 
apoptosis, and neuroinflammation (36). Therefore, reducing oxidative 
stress with dietary polysaccharides is considered a prospective strategy 
to hinder AD pathology. Several studies have found Cistanche deserticola 
polysaccharides (37), poria cocos polysaccharides (38), non-saponin 
fraction with rich polysaccharides from Korean red ginseng (39), 
polysaccharides of Taxus chinensis var. mairei Cheng et L.K.Fu (40), 
astragalus polysaccharides (41, 42), Angelica sinensis polysaccharides 
(43), Schisandra chinensis (Turcz.) Baill. polysaccharide (44), Inonotus 
obliquus polysaccharide (45), Flammulina velutipes polysaccharides 
(46), Chondroitin sulfate E from squid cartilage (47), and low molecular 
weight chondroitin sulfate from shark cartilage (48) possessed the ability 
to inhibit oxidative stress and reduce neuroinflammation in animal 
models of AD. Additionally, Alpinia oxyphylla crude polysaccharides 
(49) and polysaccharides of Schisandra Chinensis Fructus (50) inhibited 
the inflammatory response in the AD mouse model and reduced the 
release of pro-inflammatory factors such as Interleukin-1 beta (IL-1β) 
and Tumor Necrosis Factor-alpha (TNF-α). Among them, Angelica 
sinensis polysaccharides (43), non-saponin fraction with rich 
polysaccharides from Korean red ginseng (39), polysaccharides from 
Lycium barbarum (51), poria cocos polysaccharides (38), Ganoderma 
lucidum polysaccharides (52) and Codonopsis pilosula polysaccharides 
(53) also reduced neuronal apoptosis, increased neuronal regeneration 
and restored synaptic dysfunction in some brain regions. Angelica 
sinensis polysaccharides stimulated the extracellular signal-regulated 
protein kinase (ERK) / cyclic AMP-responsive element-binding protein 
(CREB) signaling pathway, amplifying the expression of brain-derived 
neurotrophic factor (BDNF) and contributing to neuronal survival and 
regeneration (43).

Emerging evidence has suggested that metabolic dysregulations 
aggravate the occurrence and development of AD, around 80% of AD 
patients exhibit insulin resistance, which some scholars refer to as type 
III diabetes (54). In light of insulin-related signaling’s importance in 
energy homeostasis, neuronal survival, and memory processes, and 
the fact that insulin resistance is associated with memory impairment 
and other AD symptoms, substances that modulate insulin signaling 
should be  considered as potential AD treatments (55). Notably, 
administering okra polysaccharides (56), yeast β-glucan (57), and 
Astragalus membranaceus polysaccharides (42) had shown 
effectiveness in alleviating insulin resistance and reducing cognitive 
impairment in AD model mice. Additionally, disturbances in amino 
acid metabolism can cause neurotoxicity, affecting neurotransmitter 
function, cognition, and emotional regulation, worsening 
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neurodegeneration (58). Yet, treatment with Cistanche deserticola 
polysaccharides restored valine, L-methionine, uric acid and proline 
levels in serum, alleviated an amino acid imbalance, and enhanced 
cognitive function in D-galactose-induced AD mice (37). 
Furthermore, cholinergic metabolism, crucial for regulating 
neurotransmission, memory, and muscle movement, might also 
contribute to AD-related cognitive decline, possibly linked to 
abnormal cholinergic neuron count and function (59). Encouragingly, 
Angelica sinensis polysaccharides exhibited promise in reducing 
acetylcholinesterase (AChE) levels, elevating acetylcholine (ACh) and 

choline acetyltransferase (ChAT) levels, and improving memory 
impairment in AD rats through the BDNF/CREB pathway (43). 
Moreover, the hypothalamic–pituitary–adrenal (HPA) axis, also a key 
stress response component, significantly influences AD progression 
(60). These findings underscore the crucial roles of glucose and amino 
acid metabolism, cholinergic regulation, and HPA axis function in AD 
pathogenesis while highlighting the therapeutic potential of dietary 
polysaccharides in addressing AD-associated pathological processes.

Additionally, studies have found that the gut microbiota can 
influence the occurrence of AD through various pathways mediated 

TABLE 1 Recent studies on neuroprotective effects of dietary polysaccharides on PD model.

Type of dietary 
polysaccharides

Models/methods Protective effects Authors, 
references

Glycosaminoglycans (shark cartilage 

chondroitin 6-sulfate, porcine 

intestinal mucosa dermatan 4-sulfate, 

dermatan 2,6-disulfate from viscera of 

ascidian Phallusia nigra)

Murine neuroblastoma cell line neuro 2A / 

0.025, 0.05, 0.1, 0.2, and 0.4 μg/mL added to the 

culture medium

Glycosaminoglycans reduced apoptosis and improved 

ΔΨm in murine neuroblastoma cells challenged by 

rotenone, showing neurogenic and neuroprotective 

properties.

Medeiros et al. (26)

Grifola frondosa extract (66.7% 

β-glucan)

Male and female drosophila melanogaster /

diluted in the culture medium to 0.05% or 0.2% 

and supplemented lifelong

Grifola frondosa Extract Extended Lifespan in PD 

drosophila model.
Tripodi et al. (21)

Polymannuronic acid from brown 

seaweed polysaccharides

8-week-old male C57BL/6 J mice / 30 mg/kg 

oral gavage for 4 weeks

Polymannuronic acid from brown seaweed 

polysaccharides administration improved motor 

functions by preventing dopaminergic neuronal loss 

in PD mice model, alleviated inflammation in gut, 

brain and systematic circulation.

Dong et al. (28)

Low molecular weight chitosan exerts
Male drosophila melanogaster / 5, and 10 mg/

mL in basal media for 7 days

Administration of low molecular weight chitosan 

reversed the locomotor impairment and exploratory 

deficitsin, changed the biochemical parameters to 

normal level and increased the survival rate in PD 

drosophila model.

Pramod Kumar and 

Harish Prashanth (22)

Inulin
Pregnant Sprague–Dawley rats / 2 g/kg oral 

administration from gestation 0–19 days

Inulin supplementation during pregnancy 

significantly improved maternal exploratory behavior 

and counteracted gestational rotenone-induced 

oxidative stress, improved AchE activity and 

mitochondrial ATP production, and alleviated 

mitochondrial dysfunction, and neurochemical 

changes in maternal and fetal brains.

Krishna and 

Muralidhara (23)

Fucoidan
Male Sprague–Dawley rats / 35, 70, and 140 mg/

kg oral gavage for 38 days

Fucoidan reversed the loss of substantia nigra 

dopaminergic neurons and striatal dopaminergic 

fibers, substantia nigra mitochondrial respiratory 

function, decreased striatal dopamine level, ROS 

overformation, and behavioral defects in PD rat 

model.

Zhang et al. (24)

Astragalus polysaccharides
8-week-old male C57B/6 mice / 10 mg/kg oral 

gavage for 2 weeks

Astragalus polysaccharides attenuated motor 

dysfunction and high levels of ROS, and stabilized 

mitochondrial in PD mouse model.

Liu et al. (25)

Ganoderma lucidum polysaccharides

Primary mesencephalic dopaminergic cell from 

OF1/SPF mouse / 12.5, 25, 50 and 100 μg/mL 

added to the culture medium

Ganoderma lucidum polysaccharides inhibited cell 

apoptosis through suppressing oxidative stress in 

primary cell culture during dopaminergic neurons 

degeneration.

Guo et al. (30)

Polysaccharides from the starfish 

(glucan and sulfated mannoglucan)

Mouse dopaminergic neuronal cell lines MES 

23.5 / 1 and 0.1 mg/mL added to the culture 

medium

The polysaccharides from the starfish scavenged 

hydroxyl radical and superoxide radical in PD cell 

model, which exhibited neuroprotective activity.

Zhang et al. (27)
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by the gut-brain axis (61). Microbiota dysbiosis enhances immuno-
senescence, oxidative stress, cytokine secretion, and 
neuroinflammation, which are involved in the early disease stages of 
AD (62). Studies have shown that Anoectochilus roxburghii (Wall.) 
Lindl. polysaccharides (63), Cistanche deserticola polysaccharides (37), 
inulin (64), fructan (65), and yeast β-glucan (57) could mitigate 
cognitive deficits and mental disorders by enriching beneficial 
bacteria, decreasing pathogenic bacteria, restoring the intestinal 
epithelial barrier, and augmenting SCFAs.

These findings collectively highlight those dietary polysaccharides 
are expected to intervene in the development and progression of AD 
by alleviating oxidative stress, neuroinflammation, metabolic 
dysregulation, and gut microbiota disorders (Table 2), presenting a 
promising direction for future therapeutic strategies.

5 Dietary polysaccharides and the 
interventions for depression and 
anxiety disorder

As a common psychiatric disorder, depression is characterized by 
feelings of sadness, guilt, and lack of interest in and self-worth; 
tiredness; poor concentration; poor appetite, and disturbed sleep (66). 
In 2017, the WHO reported that approximately 4.4% of the global 
population suffers from depression, and depression has become the 
leading contributor to suicide attempts (66). Anxiety disorder, another 
most common psychiatric disorder, is characterized by symptoms such 
as nervousness, restlessness, and vegetative dysfunction without a 
specific trigger (67). Up to 33.7% of the population suffers from anxiety 
disorders during their lifetime, and anxiety disorders are prone to 
combine with other mental disorders (67). Although depression and 
anxiety are distinct emotional states, they often co-occur and are 
highly comorbidity (68). Data suggests that approximately 85% of 
patients with depression also experience significant anxiety, while 90% 
of individuals with anxiety disorders also have symptoms of depression. 
Recent evidence suggests genetic and neurobiological similarities 
between depressive and anxiety disorders (69).

Due to its comparatively high oxygen utilization and lipid-rich 
constitution, the brain is considered particularly vulnerable to oxidative 
damage (70). Together with the pathological changes associated with 
many psychiatric syndromes, this intrinsic oxidative vulnerability 
suggests that oxidative damage could be  a plausible pathogenic 
candidate for anxiety and depression (70). Oxidative stress-induced 
neuroinflammation not only affects individual neurons but also reaches 
synaptic connections, known as synapses (71). Abnormal structure and 
function of synapses, affect the communication between neurons and 
the balance of neurotransmitters, which contribute to the development 
and progression of depressive and anxious symptoms (72). However, 
dietary polysaccharides have demonstrated beneficial effects in 
improving depression and anxiety, with their antioxidative and anti-
inflammatory properties playing significant roles. Administration of 
acidic polysaccharides from poria (73), inulin (74, 75), Polygonatum 
sibiricum F. Delaroche polysaccharides (76), Ganoderma lucidum 
polysaccharides (77), polysaccharide from okra (Abelmoschus 
esculentus (L) Moench) (78), ameliorated anxiety disorders and 
depressive behaviors, regulated the levels of multiple factors related to 
oxidative stress, reduced proinflammatory cytokine levels. At the same 
time, all the dietary polysaccharides mentioned above provided 

protective effects on neurons, such as reducing synaptic damage, 
enhancing synaptic activity, and regulating the expression of synapse-
related proteins and genes. In addition, Lycium Barbarum 
polysaccharides (79) also alleviated the depression-like and social 
anxiety-like behavior by enhancing synaptic plasticity and maintaining 
the normal function of synapses.

The HPA axis is a crucial component of the neuroendocrine 
system. It becomes intensified in response to external stimuli, leading 
to the secretion of corticosterone by the adrenal glands, which helps 
the body adapt to the new environment (80). Hyperfunction of the 
HPA axis is considered an important factor in the development of 
depression and anxiety (81), although the regulation of other peptides 
or hormones within the HPA axis may differ between these two 
disorders (82). In addition, the intimate connection between the HPA 
axis and neurotransmitters also regulates the mood, cognition, and 
behavior in depression and anxiety patients (83, 84). Studies have 
shown that Polygonatum sibiricum F. Delaroche polysaccharides (76), 
inhibited the hyperfunctioning of the HPA axis. Moreover, partially 
hydrolyzed guar gum (85), acidic polysaccharides from poria (73), 
Polygonatum sibiricum F. Delaroche polysaccharides (76), total 
polysaccharides of Lilium lancifolium Thunberg (86), and 
polysaccharide from Ginkgo biloba leaves (87), regulated the 
neurotransmitter levels in multiple brain regions in rodent models of 
depression and anxiety.

There is increasing evidence that gut microbiota is associated with 
anxiety and depression. Although diversity findings were inconsistent, 
specific bacterial taxa were implicated according to clinical research 
findings: higher abundance of proinflammatory species (e.g., 
Enterobacteriaceae and Desulfovibrio), and lower SCFAs producing-
bacteria (e.g., Faecalibacterium) in patients with anxiety/depressive 
disorders (88). An analysis of the composition of gut microbiota 
suggested that polysaccharides from okra (Abelmoschus esculentus (L) 
Moench) decreased the relative proportions of Bacteroidetes and 
Actinobacteria, while increasing Firmicutes at the phylum level in 
chronic unpredictable mild stress (CUMS)-induced depression mice. 
Simultaneously, the generation of SCFAs were also found to contribute 
positively to the antidepressant-like effect (78). Administration of 
partially hydrolyzed guar gum (85), inulin (74, 75), polydextrose (89), 
polysaccharide from Ginkgo biloba leaves (87), 3’Sialyllactose and 
6’Sialyllactose (90) also had certain regulatory effects on the gut 
microbiota in rodent models of depression and anxiety.

The above studies demonstrate that polysaccharide compounds 
can improve and alleviate depression and anxiety disorders (Table 3). 
Nevertheless, the mechanisms by which dietary polysaccharides 
regulate the expression of synapse-associated proteins, reduce synaptic 
damage, and regulate the gut microbiota to prevent depression and 
anxiety need further research. In addition, the efficacy of dietary 
polysaccharides brought into the daily diet requires to be evaluated in 
further clinical trials.

6 Dietary polysaccharides and the 
interventions for autism spectrum 
disorder

Autism spectrum disorder (ASD) is a neurodevelopmental 
disorder believed to be caused by early brain changes and neuronal 
reorganization. Individuals with ASD exhibit a wide range of 

https://doi.org/10.3389/fnut.2023.1299117
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Guo et al. 10.3389/fnut.2023.1299117

Frontiers in Nutrition 06 frontiersin.org

TABLE 2 Recent studies on neuroprotective effects of dietary polysaccharides on AD model.

Type of dietary 
polysaccharides

Models/methods Protective effects Authors, 
references

Chondroitin sulfate E 

from squid cartilage

C. elegans strains / 0.25, 0.5, 1 mg/mL added in 

the Nematode growth media culture plates

Chondroitin sulfate E reduced oxidative stress and suppressed Aβ 

deposition, alleviated Aβ-induced worm paralysis and chemotaxis 

dysfunction in transgenic C. elegans.

Wang et al. (47)

Anoectochilus roxburghii 

(Wall.) Lindl. 

polysaccharides

6-week-old male C57BL/6 J mice / 1 g/kg and 

3 g/kg orally administered for 14 weeks

Anoectochilus roxburghii (Wall.) Lindl. polysaccharides ameliorated 

memory and cognitive impairment in obese mice by improving 

neuroinflammation. Anoectochilus roxburghii (Wall.) Lindl. 

polysaccharides treatment also restored the intestinal epithelial barrier 

by upregulating intestinal tight junction proteins.

Fu et al. (63)

Fructan
1,837 elderly people (≥65 years) / no additional 

additions

Higher fructan intake is associated with reduced risk of clinical AD 

among older adults.

Nishikawa et al. 

(65)

Low molecular weight 

chondroitin sulfate from 

shark cartilage

Male 5XFAD mice / 50, 150, 450 mg/kg orally 

administered for 3 months

Low molecular weight chondroitin sulfate administration ameliorated 

APP metabolism, neuroinflammation, ROS production and tau protein 

abnormality in the brains of 5XFAD mice, displaying the potential to 

improve the pathological changes of AD mouse brain.

Zhao et al. (48)

Cistanche deserticola 

polysaccharides

8-week-old male Kunming mice / 25, 50, 

100 mg/kg orally administered for 2 months

Cistanche deserticola polysaccharides treatment improved cognitive 

function, restored gut microbial homeostasis, thereby reducing 

oxidative stress and peripheral in D-galactose-treated mice

Gao et al. (37)

Inulin
3-month-old E3FAD and E4FAD mice / 8% 

inulin in the diet for 16 weeks

Early inulin interventions improved brain and systemic metabolism via 

enhancing the gut-brain axis, in both E3FAD and E4FAD mice.
Yanckello et al. (64)

Poria cocos 

polysaccharides

Male Wister rats /100, 200 and 300 mg/kg 

intragastric administration for 30 days

Poria cocos polysaccharides prevented cognitive decline, reduced 

neuronal apoptosis in hippocampus, alleviated oxidative stress, 

inflammation and inhibited the MAPK/NF-κB pathway in rats AD 

model.

Zhou et al. (38)

Non-saponin fraction 

with rich 

polysaccharides from 

Korean red ginseng

5.5-month-old male 5 × FAD male mice / 

150 mg/kg intragastric administration for 

8 weeks

Polysaccharides from Korean red ginseng treatment ameliorated Aβ-

induced cognitive impairment in 5 × FAD mice, alleviated Aβ 

deposition, neuroinflammation, neurodegeneration, mitochondrial 

dysfunction, and impairment of adult hippocampal neurogenesis both 

in vivo and in vitro.

Shin et al. (39)

Okra polysaccharides
12-week-old male Kunming mice / 300 mg/kg 

and 600 mg/kg oral administrated for 8 weeks

Okra polysaccharides treatment reversed the metabolic disorder 

induced by high-fat diet and cognitive function injury in AD model 

mice.

Yan et al. (56)

Yeast β-glucan
8-week-old male C57BL/6 J mice / 100 mg/kg 

oral administrated for 4 weeks

Yeast β-glucan ameliorated cognition deficits and pathological changes 

through gut-brain axis and alleviating brain inflammation in AD-like 

mice.

Xu et al. (57)

Polysaccharides of Taxus 

chinensis var. mairei 

Cheng et L.K.Fu

8-week-old male C57BL/6 mice / 0.4 g/kg 

intragastric administration for 14 days

Polysaccharides of Taxus chinensis var. mairei Cheng et L.K.Fu 

administration restored the impaired learning and cognitive function 

in mice AD model, inhibited Aβ deposition, apoptosis and oxidative 

stress in BV2 cells induced by D-gal.

Zhang et al. (40)

astragalus 

polysaccharidea

7-month-old male APP/PS1 mice / 200 mg/kg 

oral administrated for 2 months

Astragalus polysaccharides treatment increased the expression of 

Nrf2 in the nucleus, restored the expression levels of Keap1, SOD, 

glutathione peroxidase (GSH-Px) and MDA, improved the cognitive 

ability, reduced apoptosis and the accumulation of Aβ in APP/PS1 

mice.

Qin et al. (41)

Polysaccharides from 

Lycium barbarum

7-month-old male APP/PS1 mice / 50 mg/kg 

oral administrated for 3 months

Lycium barbarum polysaccharides treatment enhanced neurogenesis 

and restored synaptic dysfunction in hippocampus CA3-CA1 area, 

reduced Aβ level and improve the cognitive functions in APP/PS1 

mice.

Zhou et al. (51)

Alpinia oxyphylla crude 

polysaccharides

6-week-old male Kungming mice / 500 mg/kg 

oral administrated for 2 weeks

Alpinia oxyphylla crude polysaccharides treatment improved learning 

and memory ability in AD mice, restored normal levels of NO, IL-1β, 

PGE-2, and TNF-α in the serum of AD mice.

Shi et al. (49)

(Continued)
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symptoms, but they share a common set of disorders, including 
impairments in social communication and repetitive sensory-motor 
behaviors (91). The average prevalence of ASD in Asia, Europe, and 
North America is estimated to be approximately 1%, males are more 
affected by autism than females, and comorbidity is common (more 
than 70% of people with autism have concurrent conditions) (92).

To date, the exact underlying causes of ASD are not yet fully 
understood. Clinical studies have shown that gastrointestinal 
symptoms such as constipation, diarrhea and gut microbiota 
imbalance are common in ASD patients (93). Unfortunately, there are 
no effective treatments for the core symptoms of ASD (94). Statistics 
show that approximately 50–70% of ASD patients resort to bio-related 
therapies such as antibiotics, antifungal and antiviral drugs, 
gastrointestinal medications, nutritional supplement therapy, and 
restrictive or special diets. However, most of these interventions lack 
comprehensive safety and efficacy assessments (94). With the 

deepening research on the relationship between human microbiome 
and ASD, scientists have gradually realized the importance of gut 
microbiota in affecting neurodevelopment and brain function. 
Partially hydrolyzed guar gum, a form of prebiotic dietary water-
soluble fiber, has been shown to modulate the gut microbiota and 
stimulate the production of SCFAs in healthy adults. Moreover, the 
supplementation with partially hydrolyzed guar gum resulted in a 
trend toward decreased serum level of Interleukin-6 (IL-6) and 
TNF-α, which help improve behavioral irritability and constipation of 
children with ASD (95). Hence, polysaccharide intervention seems to 
help in the effective treatment of ASD. However, the mechanism of 
dietary polysaccharides to relieve constipation and gut microbiota 
dysbiosis caused by ASD also needs further study. Moreover, there are 
fewer dietary polysaccharides that can interfere with ASD, and it is the 
direction of our further research to find more dietary polysaccharides 
to treat children with ASD.

TABLE 2 (Continued)

Type of dietary 
polysaccharides

Models/methods Protective effects Authors, 
references

Codonopsis pilosula 

polysaccharides

5.5-month-old male APP/PS1 mice / 100 mg/

kg and 300 mg/kg oral administrated for 

1 months

Codonopsis pilosula polysaccharides ameliorated cognitive defects in 

APP/PS1 mice, and inhibited BACE1 activity in cultured cells.
Wan et al. (53)

Angelica sinensis 

polysaccharides

male SD rats / 50 mg/kg oral administrated for 

4 weeks

Angelica sinensis polysaccharides treatment ameliorated memory 

impairment, regulated the balance of neurotransmitters, free radical 

metabolism, and inflammation, activated the BDNF/TrkB/CREB 

pathway in Aβ25–35-induced AD rats.

Du et al. (43)

Schisandra 

polysaccharides

6-week-old male SD rats / 38.15 mg/kg oral 

administrated for 56 days

Schisandra polysaccharides significantly improved the memory 

acquisition ability and reversed the memory consolidation disorder of 

the AD rats inhibiting Aβ formation, tau protein phosphorylation and 

antioxidative damage.

Liu et al. (44)

Polysaccharides of 

Schisandra Chinensis 

Fructus

Male KM mice / 260 mg/kg oral administrated 

for 28 days

Polysaccharides of Schisandra Chinensis Fructus improved the 

cognition and histopathological changes, reduced the deposition of Aβ, 

downregulated the expression of pro-inflammatory cytokines and 

activated the NF-κB/MAPK pathway in AD mice.

Xu et al. (50)

Inonotus obliquus 

polysaccharides

8-month-old male APP mice / 25 and 50 mg/kg 

oral administrated for 8 weeks

Inonotus obliquus polysaccharides improved the pathological behaviors 

related to memory and cognition, reduced the deposition of β-amyloid 

peptides and neuronal fiber tangles in the brain, and modulated the 

levels of anti- and pro-oxidative stress enzymes, enhanced the 

expression levels of Nrf2 and its downstream proteins, including Heme 

Oxygenase-1 (HO-1) and SOD-1, in the brains of APP/PS1 mice.

Han et al. (45)

Flammulina velutipes 

polysaccharides

male Wistar AD rats / 200 or 400 mg/kg oral 

administrated for 30 days

Flammulina velutipes polysaccharides and ginsenosides treatment 

elevated cognitive ability, lowered the Bax/Bcl-2 ratio, processed the 

anti-oxidant and anti-apoptosis effects in AD rats.

Zhang et al. (46)

Astragalus 

membranaceus 

polysaccharides

APP/PS1 mice/ 500 mg/kg oral administrated 

for 7 weeks

Astragalus membranaceus polysaccharides administration reduced 

metabolic stress-induced increase of body weight, insulin and leptin 

level, insulin resistance, and hepatic triglyceride, ameliorated metabolic 

stress-exacerbated oral glucose intolerance, diminished metabolic 

stress-elicited astrogliosis and microglia activation in the vicinity of 

plaques in brain.

Huang et al. (42)

Ganoderma lucidum 

polysaccharides

6-month-old APP/PS1 mice / 30 mg/kg oral 

administrated for 14 days

Ganoderma lucidum polysaccharides promoted neural progenitor cell 

proliferation to enhance neurogenesis and alleviated cognitive deficits 

in transgenic AD mice, promoted self-renewal of neural progenitor 

cell, enhanced the activation of FGFR1 and its downstream ERK and 

AKT cascades in vitro.

Huang et al. (52)
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TABLE 3 Recent studies on neuroprotective effects of dietary polysaccharides on depression and anxiety disorder models.

Type of dietary 
polysaccharides

Models/methods Protective effects Authors, 
references

Partially hydrolyzed 

guar gum

5-week-old male C57BL/6 

mice / 600 mg/kg oral 

administration for 28 days

Partially hydrolyzed guar gum administration inhibited the loss of body weight, 

prevented CUMS-induced depressive-like behavior, improved the species richness and 

diversity of gut microbiota in depression model mice.

Chen et al. (85)

Acidic polysaccharides 

from poria

Male SD rats / 100, 300, and 

500 mg/kg oral 

administration

Treatment of acidic polysaccharides from poria improved the depression-like behavior, 

increased the number of neurons and the levels of neurotransmitters in the 

hippocampus, regulated NLRP3 inflammasome signaling pathway in depression model 

rats.

Chen et al. (73)

Inulin

6-week-old male C57BL/6 J 

mice / 2 g/kg oral 

administration for 6 weeks

Iulin administration ameliorated anxiety disorders and depressive behaviors, reduced 

neuroinflammation and neuronal damage, improved intestinal integrity and 

permeability, modulated the gut microbiota in schizophrenia model mice.

Guo et al. (75)

Polygonatum sibiricum 

F. Delaroche 

polysaccharides

3-month-old male C57BL/6 

mice / 100, 200, and 400 mg/

kg intragastric 

administration for 10 days

Polygonatum sibiricum F. Delaroche polysaccharides prevented depression-like 

behaviors, increased the serotonin level and ameliorated hippocampal synaptic and 

cellular injury, reduced the inflammatory response, and eliminated ROS and HPA axis 

hyperfunction in lipopolysaccharide (LPS)-treated and CUMS mice models.

Shen et al. (76)

Ganoderma lucidum 

polysaccharides

7-8-week-old male C57BL/6 

mice /1 mg/kg, 5 mg/kg, and 

12.5 mg/kg intraperitoneal 

administration for 5 days

Ganoderma lucidum polysaccharides treatment enhanced anti-inflammatory 

neuroimmune status and synaptic plasticity, led to antidepressant effects on chronic 

social defeat stress mice via modulation of Dectin-1.

Li et al. (77)

Polysaccharide from 

okra (Abelmoschus 

esculentus (L) Moench)

Male C57BL/6 mice / 

400 mg/kg oral 

administration for 2 weeks

Polysaccharide from okra treatment alleviated depressive and anxiety behavior in CUMS 

mice model, reduced the rising proinflammatory cytokines in the colon, serum, and 

hippocampus, regulated the gut microbiota profiles and composition, reversed Toll-like 

receptor 4 (TLR4)/ nuclear factor-kappa B (NF-κB) and mitogen-activated protein 

kinases (MAPKs) signaling in hippocampus.

Yan et al. (78)

Polydextrose
Healthy female / 12.5 g for 

4 weeks

Polydextrose supplementation improved cognitive flexibility, increased the abundance of 

Ruminiclostridium, although there was no change in microbial diversity, attenuated the 

expression of adhesion receptor CD62L receptor, a marker of acute stress responsiveness.

Berding et al. (89)

Total polysaccharides of 

Lilium lancifolium 

Thunberg

8-week-old female 

C57BL/6 N mice / 50, 100, 

and 200 mg/kg intragastric 

administration for 36 days

Total polysaccharides of lily bulb showed positive effects in reducing ovariectomized-

induced anxiety, depression, and cognitive impairment, triggered the specific Ras/Akt/

ERK/CREB signaling pathway, and modulated multiple proteins associated with 

mitochondrial oxidative stress. The potential mechanism was more closely associated 

with the predominant activation of estrogen receptors and regulation of brain regional 

neurotransmitters and neurotrophins with minor effects on the uterus.

Zhou et al. (86)

Polysaccharide from 

Ginkgo biloba leaves

3-4-week-old male BALB/c 

mice/ 300 mg/kg intragastric 

administration for 30 days

Polysaccharide from Ginkgo biloba leaves administration reduced the stress-induced 

depression, elevated serotonin and dopamine levels in multiple brain regions including 

the hippocampus, cerebral cortex and olfactory bulb, reversed gut dysbiosis and 

increased the richness of Lactobacillus species.

Chen et al. (87)

Lycium barbarum 

polysaccharides

7-8-week-old male SD rats / 

1 mg/kg intragastric 

administration for 14 days

Lycium barbarum polysaccharides alleviated the depression-like and social anxiety-like 

behaviors in rats and restored the hippocampal neurogenesis after the dextromethorphan 

treatment.

Po et al. (79)

Inulin from yacon

Male Kuming mice and SD 

rats / 25, 50, or 100 mg/kg 

intragastric administration 

for 5 days

Inulin extracted from yacon treatment reduced the immobility time in the mouse tail 

suspension test and the forced swimming test, reversed the escape deficits in learned 

helplessness rats.

An et al. (74)

3’Sialyllactose and 

6’Sialyllactose

6–8-week-old male C57/BL6 

mice / 5% of the diet by oral 

administration for 2 weeks

3′Sialyllactose or 6′Sialyllactose helped maintain normal behavior on tests of anxiety-like 

behavior and normal numbers of doublecortin+ immature neurons.
Tarr et al. (90)

7 Dietary polysaccharides and the 
interventions for epilepsy

Epilepsy is a chronic non-communicable neurological 
dysfunctions disorder. It is primarily characterized by seizures, 

repetition, stereotypy, and transience, which belong to an involuntary 
movement involving a portion or the whole body, sometimes 
combined with the loss of consciousness and control of bowel or 
bladder function (96). Epilepsy can affect individuals of all ages, 
genders, races, income groups, and geographical regions (97). 
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According to the WHO, approximately 5 million people worldwide 
are diagnosed with epilepsy each year. As of 2019, China alone had 
over 9 million people living with epilepsy, and the number of new 
cases continues to rise (98).

Seizures in epilepsy can be  triggered by various factors that 
disrupt normal neuron activity, including illnesses, brain damage, 
abnormal brain development, imbalances in neurotransmitters, 
changes in ion channels, or a combination of these and other factors 
(99). Mutations in genes related to ion channels have been strongly 
linked to seizures, especially calcium ion channels (100). The effects 
of Ca2+ are typically mediated through its interaction with calmodulin 
(CaM) (101), epileptogenic factors can downregulate CaM, leading to 
increased neuronal activity and the development of epilepsy. CaM 
may also indirectly contribute to the pathological process of epilepsy 
by modulating calcium/CaM-dependent protein kinases (CaMK) 
(102). Studies have shown that Ganoderma lucidum polysaccharides 
inhibited the Ca2+ accumulation in neurons and subsequent 
stimulation of CaMK II α expression, which indicates a beneficial role 
in the prevention or treatment of epilepsy (103).

Mitochondrial dysfunction and oxidative stress have also been 
considered potential causes of epileptic seizures. Seizures can trigger 
neuroinflammatory responses that further directly impact the 
electrical activity of neurons and glial cells, and exacerbate CNS 
damage, forming the pathological basis for refractory epilepsy (104). 
Dietary polysaccharides have shown potential in reducing 
inflammatory responses, inhibiting the expression of 
neurotransmission-related genes, and improving hippocampal tissue 
damage in epilepsy models. Due to the antioxidant and anti-
inflammatory properties of chondroitin sulfate, a significant reduction 
in seizure mice induced by pentylenetetrazole and pilocarpine was 
observed (105). Fructus corni polysaccharide treatment (106) 
decreased levels of ROS and malondialdehyde (MDA), increased 
superoxide dismutase (SOD) activity, and inhibited expressions of 
phosphorylated-Jun N-terminal Kinase (p-JNK), cytochrome C, and 
caspase-3 in an epileptic rat model. Angelica polysaccharide promoted 
cell proliferation, inhibited apoptosis, and suppressed IL-1β, TNF-α, 

and IL-6 production in epilepsy cell models (107). Thus, dietary 
polysaccharides intervention to improve epilepsy focuses on 
inflammatory response, oxidative stress, and ion channels and 
signaling pathways regulated by related genes (Table 4). In the future, 
combined with microbial studies, it is possible to explore whether 
dietary polysaccharides show their functional activities by regulating 
gut microbiota and intestinal microecology.

8 Dietary polysaccharides and the 
interventions for stroke

Stroke, an acute cerebrovascular disease, is another neurological 
disorder. About 80–85% of strokes are ischemic (the blockage of blood 
vessels preventing blood from flowing to the brain) (108), while about 
15–20% are hemorrhagic (the sudden rupture of blood vessels in the 
brain) (109). The clinical manifestations of stroke include sudden 
weakness on one side of the body, fainting, unconsciousness, 
confusion, difficulty speaking or understanding, vision problems, and 
loss of balance or coordination (110). Over the past 20 years, the 
global burden of stroke has increased significantly, with an increase of 
70.0% in incident strokes, 43.0% in deaths caused by stroke, 102.0% 
in prevalent strokes, and 143.0% in disability-adjusted life years (111). 
The prevalence of stroke in northern China in 2022 has nearly doubled 
compared to 2010 (112).

Stroke is a significant contributor to premature mortality, yet there 
is no effective treatment for stroke to improve blood circulation in the 
affected brain area and restore neurological function (113). Clinically, 
stroke symptoms are alleviated with medications targeting 
neuroprotection and cerebrovascular circulation enhancement. 
However, prolonged use of these drugs may adversely affect liver and 
kidney function, further impairing overall organ function (110). 
Consequently, dietary polysaccharides and their derivatives have been 
studied for their potential to alleviate the effects of stroke. Lycium 
barbarum polysaccharides exerted a neuroprotective effect against 
ischemic injury through dual actions of activating the 

TABLE 4 Recent studies on neuroprotective effects of dietary polysaccharides on epilepsy model.

Type of dietary 
polysaccharides

Models/methods Protective effects Authors, 
references

Chondroitin sulfate

Male Swiss albino mice / 100, 

200 mg/kg intragastric 

administration for 15 days

Administration of chondroitin sulfate concluded a significant and dose-dependent 

attenuation of pentylenetetrazole- and pilocarpine-induced seizures in mice. 

Additionally, chondroitin sulfate suppressed levels of caspase-3, showed its antioxidant 

and anti-inflammatory properties, indicating a neuroprotective treatment strategy in 

epilepsy.

Singh et al. (105)

Angelica polysaccharide

Mouse hippocampal neuronal 

HT22 cells / 0 to 100 μg/mL 

add io the culture medium

Angelica polysaccharide mitigated LPS-evoked inflammatory injury through 

repression of NF-κB and JAK2/STAT3 pathways by regulating miR-10a in HT22 cells. 

The discoveries offered a novel strategy for the clinical remedy of epilepsy.

Zhou et al. (107)

Fructus corni 

polysaccharide

6-8-week-old male SD rats / 

100, 200, 300 mg/kg 

intragastric administration for 

24 days

Fructus corni polysaccharide decreased the alteration in ΔΨm, cytochrome C leakage, 

and the activation of cleaved caspase-3 by reducing the activation of hippocampus 

ROS and the MAPK cascade pathway following epilepsy, thereby alleviating the 

apoptosis of neurons and having a neuroprotective effect on epilepsy.

Sun et al. (106)

Ganoderma lucidum 

polysaccharides

Primary hippocampal neurons 

from newborn Wistar rats / 

0.375 mg/mL add in the 

culture medium

Ganoderma lucidum polysaccharides inhibited the Ca2+ accumulation in neurons and 

subsequent stimulation of CaMK II α expression, which indicates a beneficial role in 

the prevention or treatment of epilepsy.

Wang et al. (103)
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N-methyl-D-aspartic acid receptor subunit 2A (NR2A) signaling 
pathway and inhibiting the N-methyl-D-aspartic acid receptor subunit 
2B (NR2B) signaling pathway. This effect reduced the death of CA1 
neurons after transient global cerebral ischemia and improved memory 
impairment in ischemic rats (114). Additionally, Momordica charantia 
polysaccharides provided neuroprotection against cerebral ischemia/
reperfusion injury by inhibiting lipid peroxidation and preserving 
antioxidant enzyme activity (115). Furthermore, the neuroprotective 
effect of Ginkgo biloba polysaccharide is achieved by suppressing 
oxidative stress and reducing the concentration of inflammatory 
factors. This action decreased the cerebral infarction area in rats and 
ameliorates neurofunctional deficits (116). Hence, dietary 
polysaccharides play a beneficial role in ischemic stroke mainly by 
alleviating oxidative stress, reducing inflammatory factors, and 
promoting neuronal cell repair. These effects of dietary polysaccharides 
also suggest that the gut microbiota might play a crucial role in stroke, 
however, the exact impact of gut microbiota on stroke remains to 
be  further studied. Table  5 provides examples of studies that have 
explored the use of dietary polysaccharides in improving cerebral stroke.

9 Remarks

In conclusion, the review sheds light on the role of dietary 
polysaccharides in neurodegenerative disorders, psychiatric disorders, 
neurodevelopmental disorders, and neurological dysfunctions. The 
potential mechanisms of dietary polysaccharides involved 
ameliorating oxidative stress, neuronal injury, metabolic 
abnormalities, and gut microbiota disorder (Figure 1). Multifaceted 
effects of dietary polysaccharides on these diseases are noteworthy, 
with a common thread being their antioxidant activity and gut 
microbiota regulation.

In models of neurodegenerative diseases, such as PD or AD, 
dietary polysaccharides have been shown to provide neuroprotective 
effects by decreasing oxidative stress and modulating the gut 
microbiota. Dietary polysaccharides are found to reduce oxidative 
stress and inflammation, regulate the HPA axis and neurotransmitter 

system, and maintain gut microbiota balance in psychiatric disorders, 
such as anxiety and depression. By regulating the gut microbiota, 
dietary polysaccharides may also influence neurodevelopmental 
disorders (like ASD). In addition, dietary polysaccharides exert 
antiepileptic effects by controlling ion channels, reducing oxidative 
stress and neuroinflammation, and restoring mitochondrial function. 
The neuroprotective properties of dietary polysaccharides in the 
context of stroke further highlight their role in protecting neurons by 
inhibiting oxidative stress and anti-inflammatory mechanisms. 
Together, these comprehensive findings emphasize the critical role of 
oxidative stress as a key factor in the development of CNS diseases. 
Dietary polysaccharides are potential therapeutic agents for alleviating 
these diseases due to their outstanding antioxidant and anti-
inflammatory properties. Notably, dietary polysaccharides can also 
exert beneficial effects by regulating the composition of gut microbiota 
and its metabolites, protecting the integrity of the intestinal mucosal 
barrier, and affecting gut-brain communication.

However, it is imperative to acknowledge that despite the range of 
diseases examined in this study, the full spectrum of CNS disorders 
susceptible to polysaccharide regulation remains incompletely 
explored, underscoring the need for further research initiatives. 
Additionally, this paper falls short of clarifying which specific 
components and structures in dietary polysaccharides work and how 
the metabolic fragments of dietary polysaccharides influence the 
organism. Moreover, it is crucial to recognize that a substantial 
portion of the studies reviewed are confined to in vitro or animal 
experimentation. Despite the intake of dietary polysaccharides from 
natural sources in the normal diet is generally recognized as safe 
(GRAS), a series of clinical trials is still imperative to determine the 
lowest effective dosage in human and to minimize the side effects. It 
is possible to convert the dosage between animals and human by body 
surface area or body weight, considering the appropriate dosage and 
safety of dietary polysaccharides in human beings (117). Thereby, 
advanced preclinical and clinical investigations are needed to 
substantiate the translational potential of dietary polysaccharides as 
intervention candidates for CNS disorders. Consequently, a more 
comprehensive understanding of dietary polysaccharides’ true 

TABLE 5 Recent studies on neuroprotective effects of dietary polysaccharides on stroke model.

Type of dietary 
polysaccharides

Models/
methods

Protective effects Authors, 
references

Lycium barbarum 

Polysaccharides

Adult male Wister rats 

/ 20 mg/kg intragastric 

administration for 

1–2 weeks

Lycium barbarum polysaccharides reduced CA1 neurons from death after transient global 

ischemia and ameliorated memory deficit in ischemic rats, activated the NR2A-mediated 

survival pathway and inhibited the NR2B-mediated apoptotic pathway in primary cultured 

cortical neurons, which suggests that Lycium barbarum Polysaccharides may be a superior 

therapeutic candidate for the treatment of ischemic stroke.

Shi et al. (114)

Momordica charantia 

polysaccharides

Adult male SD rats / 

50, 100, 200 mg/kg 

intraperitoneally at 

30 min prior or after 

cerebral ischemia

Momordica charantia polysaccharides dose-dependently attenuated apoptotic cell death in 

neural cells under oxygen glucose deprivation condition in vitro and reduced infarction 

volume in ischemic brains in vivo; inhibited lipid peroxidation, and inhibited the JNK3 

signaling cascades during cerebral ischemia/reperfusion injury.

Gong et al. (115)

Ginkgo biloba 

polysaccharide

Male SD rats / 100, 

200, 400 g/kg oral 

administration for 

7 days

Treatment of Ginkgo biloba polysaccharide before focal ischemia/reperfusion injury 

decreased cerebral infarct size and improved neurological deficits in rats, and the 

neuroprotective effects were mediated by suppression of NO production, decreased 

concentrations of TNF-α and IL-1β, increased concentration of IL-10, and inhibition of 

oxidative stress as evidenced by increased SOD activity and decreased MDA level.

Yang et al. (116)
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potential in promoting CNS health hinges on a broader repertoire of 
research endeavors, including more extensive preclinical evaluations 
and compelling clinical trials. These collective endeavors are poised to 
shed light on the genuine capabilities of dietary polysaccharides in 
CNS health and provide a robust platform for the development of 
novel therapeutic strategies.
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FIGURE 1

Mechanisms linking dietary polysaccharides and CNS diseases, Interventions by dietary polysaccharides in neurodegenerative diseases (Alzheimer’s 
disease, and Parkinson’s disease), mental disorders (depression and anxiety), neurodevelopmental disorders (autism spectrum disorders), and 
neurological dysfunctions (epilepsy and stroke) can be categorized into four mechanistic foundations, including the oxidative stress reduction, 
neuronal protection, metabolism regulation, and gut barrier integrity maintenance. Dietary polysaccharides reduce oxidative stress by enhancing 
antioxidant enzyme activity, restoring mitochondrial function, and reducing the production of inflammatory factors. Dietary polysaccharides restore 
the normal function of neurons by increasing neurogenesis, alleviating neuroinflammation, regulating ion channels, and enhancing synaptic plasticity. 
Dietary polysaccharides maintain metabolic balance and promote brain health by modulating carbohydrate metabolism, cholinergic metabolism, 
amino acid metabolism, HPA axis, and the neurotransmitter system. Furthermore, dietary polysaccharides exert neuroprotective effects by regulating 
gut microbiota and their metabolite composition, preserving gut mucosal barrier integrity, and influencing gut-brain communication.
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Glossary

Ach acetylcholine

AChE acetylcholinesterase

AD Alzheimer’s disease

ASD autism spectrum disorder

Aβ β-like amyloid

BDNF brain-derived neurotrophic factor

CaM calmodulin

CaMK CaM-dependent protein kinases

ChAT choline acetyltransferase

CNS central nervous system

CREB cyclic AMP-responsive element-binding protein

CUMS chronic unpredictable mild stress

ERK extracellular signal-regulated protein kinase

GSH-Px glutathione peroxidase

HPA hypothalamic–pituitary–adrenal

IL-1β Interleukin-1 beta

LPS lipopolysaccharide

MDA malondialdehyde

NFTs neuronal fibrillary tangles

NR2A N-methyl-D-aspartic acid receptor subunit 2A

NR2B N-methyl-D-aspartic acid receptor subunit 2B

Nrf2 nuclear transcription factor 2

PD Parkinson’s disease

PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1-alpha

p-JNK phosphorylated-Jun N-terminal Kinase

ROS reactive oxygen species

SCFAs short-chain fatty acids

SOD superoxide dismutase

TNF-α Tumor Necrosis Factor-alpha

WHO World Health Organization

ΔΨm mitochondrial membrane potential
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