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Introduction: The accurate segmentation of retinal vessels is of utmost

importance in the diagnosis of retinal diseases. However, the complex vessel

structure often leads to poor segmentation performance, particularly in the case

of microvessels.

Methods: To address this issue, we propose a vessel segmentation method

composed of preprocessing and a multi-scale feature attention network (MFA-

UNet). The preprocessing stage involves the application of gamma correction

and contrast-limited adaptive histogram equalization to enhance image intensity

and vessel contrast. The MFA-UNet incorporates the Multi-scale Fusion Self-

Attention Module(MSAM) that adjusts multi-scale features and establishes global

dependencies, enabling the network to better preserve microvascular structures.

Furthermore, the multi-branch decoding module based on deep supervision

(MBDM) replaces the original output layer to achieve targeted segmentation of

macrovessels and microvessels. Additionally, a parallel attention mechanism is

embedded into the decoder to better exploit multi-scale features in skip paths.

Results: The proposed MFA-UNet yields competitive performance, with

dice scores of 82.79/83.51/84.17/78.60/81.75/84.04 and accuracies of

95.71/96.4/96.71/96.81/96.32/97.10 on the DRIVE, STARE, CHASEDB1, HRF,

IOSTAR and FIVES datasets, respectively.

Discussion: It is expected to provide reliable segmentation results in clinical

diagnosis.

KEYWORDS

vessel segmentation, fundus images, deep neural network, self-attention mechanism,

deep supervision

1 Introduction

Fundus diseases may cause vision loss, visual field defect, and serious cases may

lead to blindness. Common fundus diseases, such as macular degeneration, hypertensive

retinopathy, and diabetic retinopathy (Lin et al., 2021; Badawi et al., 2022; Saranya

et al., 2022), are characterized by morphological changes in the retinal vasculature during

advanced stages, including optic disc atrophy, vascular proliferation, and macular hole

formation. Currently, medical devices are being updated and replaced gradually. Fundus

cameras provide an intuitive and easy way to detect and observe the eyes, enabling timely

identification of certain fundus diseases that may not have been clearly characterized. They

serve as the primary diagnostic tool for ophthalmologists and are widely utilized. However,

the manual segmentation of retinal vessels in fundus images (Figure 1) by ophthalmologists

is time-consuming and susceptible to subjective errors due to the low contrast and complex

structure of the vessels (Liu et al., 2022a). The development of an automated algorithm for
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vessel segmentation shows great potential in enhancing the

capabilities of fundus cameras, reducing the diagnostic burden on

physicians, and improving diagnostic efficiency.

Advancements in artificial intelligence are propelling the

progress of medical care (Miotto et al., 2017; Mazlan et al.,

2021). This technology offers convenient solutions for medical

image analysis and disease diagnosis, benefitting both medical

professionals and patients (Monemian and Rabbani, 2021; Chen

et al., 2022; Liu et al., 2022b). Researchers can automate vessel

segmentation through the development of computer-aided medical

systems that utilize deep neural networks (Jiang et al., 2017), such

as fully convolutional neural networks (FCN) (Jiang et al., 2019,

2020), U-Net (Gegundez-Arias et al., 2021; Wang et al., 2021; Lin

et al., 2022; Pan et al., 2022) and generative adversarial networks

(Guo et al., 2020; Kamran et al., 2021).

Although existing methods have achieved excellent

segmentation performance and generalization ability, there

are still unresolved issues. For example, if vessels with a width

of less than three pixels are defined as microvessels and the

rest are defined as macrovessels, nearly 70% of the pixels in

the image can be classified as macrovessels (Yan et al., 2019).

Such class imbalance makes existing methods unable to segment

complete microvascular structures or even ignore the existence of

microvessels, while microvessel segmentation plays a crucial role

in the diagnosis of retinal diseases related to vascular proliferation.

Moreover, due to the limited availability of publicly available

data, deep neural networks may tend to overfit the training data,

resulting in poorer generalization ability (Su et al., 2022).

In this work, we propose a retinal vessel segmentation network

(MFA-UNet) based on multi-scale feature fusion and attention

mechanism. The primary goal is to improve the segmentation

performance of vessels under low contrast and preserve the

complete microvascular structure. To alleviate the performance

bottleneck caused by data scarcity, an image patch-based training

method is applied for data augmentation to expand the training

samples. MFA-UNet uses UNet as the backbone network and

proposes three modules to improve the accuracy and sensitivity

of vessel segmentation. First, the multi-scale fusion self-attention

module (MSAM) is used to fuse multi-scale features in the

skip path and build long-range dependency relationships of the

fused features through a self-attention mechanism targeting spatial

and channel dimensions, thus improving the ability to preserve

complete vascular structures. In addition, different branches in the

multi-scale decoding module achieve segmentation of blood vessels

with different widths through deep supervision, and integrate and

refine these different segmentation results. Finally, considering that

the features in the skip paths may cause information redundancy in

the decoder, we introduce a Parallel Attention Mechanism (PAM)

to filter redundant information in the decoder. The combination

of these three modules improves the generalization ability of MFA-

UNet and its ability to capture fine microvascular features.

The workflow of the proposed retinal vessel segmentation

system is illustrated in Figure 2. First, preprocessing techniques

are used to improve the visibility of the vessel structure in the

images. Subsequently, the training data volume is increased by

dividing the image into patches through cropping. These cropped

patches are used to train the model and generate the segmentation

mask. Finally, the segmented masks are merged to reconstruct the

complete retinal vessel segmentationmap. The contributions of this

paper are summarized as follows:

• In order to address the difficulty of retinal vessel

segmentation,we propose a U-Net network structure

based on a multi-branch decoder module (MBDM) and a

multi-scale feature fusion self-attention module (MSAM) to

enhance the effectiveness of retinal vessel segmentation.

• We design a novel channel self-attention mechanism and

combine it with a spatial self-attention mechanism to adapt

multi-scale features and efficiently learn the dependencies of

channel and spatial dimensions.

• We employ a deep-supervised multi-branch

decoding module to separate the segmentation of

macrovessels and microvessels, thereby achieving precise

microvessel segmentation.

• We employ image patching to expand the training dataset,

thereby mitigating the issue of overfitting resulting from

limited data volume.

• We thoroughly evaluate the proposed model on six

publicly available datasets (DRIVE, CHASEDB1, STARE,

HRF, IOSTAR, and FIVES) and compare it with other

state-of-the-art methods to demonstrate its robustness

and effectiveness.

The rest of the paper is structured as follows: Section 2 provides

an overview of related work. Section 3 outlines the structure of

the proposed MA-UNet model and the techniques used. Section 4

presents the experimental results, demonstrating the effectiveness

of the proposed PAM, MASM, and MBDM models. Section 5

provides a discussion and analysis of the experimental results.

Finally, in section 6, we draw our conclusions.

2 Related works

Retinal vessel segmentation algorithms include unsupervised

and supervised methods based on the learning approach,

but these methods often fail to achieve high accuracy in

microvessel segmentation. Many researchers have incorporated

deep supervision techniques and attention mechanisms into

supervised methods to improve segmentation results. This section

provides a comprehensive review of the relevant literature, covering

four aspects: (1) unsupervised methods, (2) supervised methods,

(3) attention mechanisms, and (4) deep supervision techniques.

2.1 Unsupervised methods

The automatic retinal vessel segmentation algorithm comprises

both supervised and unsupervised learning algorithms (Yan et al.,

2018). Unsupervisedmethods utilize inherent vessel characteristics,

such as curvature, width, color, etc., as supplementary information

for vessel segmentation. Kande et al. (2010) proposed a threshold-

based method for retinal vessel segmentation. They utilized

spatially weighted fuzzy C-mean clustering and enhanced

intensity using data from the green and red channels of the

image. Additionally, they improved the contrast between vessels
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FIGURE 1

Sampling process for fundus images. (A) A fundus camera; (B) an acquired sample image with various issues, including uneven illumination, low

contrast, and the presence of complex vessel structures.

FIGURE 2

Workflow of the proposed retinal vessel segmentation method. Initially, the fundus image undergoes preprocessing and is divided into multiple

image patches, which serve as inputs to MFA-UNet. The network then generates segmentation masks and computes the segmentation loss by

comparing them with the ground truth, facilitating network optimization.

and the background through matched filtering. Zhang et al.

(2016) proposed a retinal vessel segmentation method based

on the locally adaptive derivative filter, which enhances the

segmentation accuracy of macrovessels. Garg et al. (2007)

performed vessel segmentation using the global maximum

inter-class variance threshold and the ISODATA local threshold.

They also improved image contrast and vessel features through

pre-processing methods, including adaptive histogram averaging,

filtering, and the Hessian matrix. Mahapatra et al. (2022)

conducted image enhancement using the Frangi vascular function,

achieving superior segmentation results by employing an adaptive

weighted spatial fuzzy c-means clustering technique for vessel

segmentation. Although these methods are straightforward,

efficient, and easily interpretable, they still exhibit limitations in

segmentation accuracy.

2.2 Supervised methods

Supervised learning methods, including support vector

machines, Gaussian models, logistic regression, and artificial

neural networks, utilize manually labeled segmentation masks as

the optimization target, leading to superior accuracy compared

to traditional methods (Li et al., 2016). Ricci and Perfetti (2007)

employed image vectorization based on pixel grayscale values to

train a Support Vector Machine, resulting in improved accuracy in
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automatic vessel segmentation. Palanivel et al. (2020) introduced

a retinal segmentation method that utilizes the Holder index and

Gaussian mixture model classifier. Initially, the Holder index

was employed to quantify vessel features, followed by vessel

segmentation using the Gaussian mixture model. These methods

heavily rely on manually extracted features to achieve exceptional

performance but often exhibit insensitivity toward microvessels.

Deep learning-based methods have demonstrated superior

accuracy in vessel segmentation compared to machine learning

approaches. For instance, Skip FCN (Liu et al., 2019) enhances

the segmentation accuracy of microvessels by incorporating skip

connections. Samuel and Veeramalai (2021) introduced a vessel

segmentation method based on VGG16 Simonyan and Zisserman

(2014) utilizing the VSC module to extract and transfer features

from the region of interest (ROI). However, the continuous down-

sampling operations employed in these methods can lead to the loss

of image details and pose a bottleneck to segmentation accuracy.

Kar et al. (2023) employed an adversarial generative network for

vessel segmentation. The generator synthesizes the vessel mask,

while the discriminator distinguishes between the synthesized and

real masks, thereby optimizing the segmentation performance of

the generator.

Moreover, some researchers have focused on the utilization of

multiscale features in the segmentation process to recover the vessel

structure. For example, CcNet Feng et al. (2020) had introduced

cross-connections to allow the decoder for learning with multi-

scale features in the decoding process, thus improving the accuracy

of microvessel segmentation. Zhao et al. (2021) proposed a multi-

scale upsampling attention module and incorporated it into the

U-Net model for cross-scale information transfer. Guo et al. (2019)

had designed a multi-scale deep supervision network BRS-DSN

with a short connection and enabled to utilize of multi-scale

features in the output layer. Deng and Ye (2022) substituted

the convolution kernel in the UNet structure with deformable

convolution, constructed several skip links, and introduced a

channel attention mechanism to extract the multi-angle feature

information of the image. Inspired by these works, we proposed a

module (MSAM) that integrates multi-scale features and constructs

the global correlation.

2.3 Attention mechanism

The neural network takes in an entire image as input and

learns semantic information through the convolutional kernel,

which consists of both relevant and redundant features (Pang

et al., 2021). However, redundant information can negatively

impact the performance of network in the given task. To

address this, the attention mechanism is introduced to selectively

emphasize crucial areas in images and filter out redundant

information. The attention mechanism can be categorized into

local attention and non-local attention. Local attention comprises

the channel attention mechanism, spatial attention mechanism,

and other mechanisms that facilitate feature selection based on

local information. For instance, Guo et al. (2020) introduced

the SA-Unet model, which incorporates a spatial attention

mechanism to enhance the preservation of microvessel structures

and achieve higher accuracy. Non-local attention generally refers

to an attention mechanism that captures dependencies between

distant features through global information statistics, with the

self-attention mechanism being particularly notable. The self-

attention mechanism explores correlations within an image to

effectively preserve the structure of vessel branches and the

vessel tree. Several studies have demonstrated this, including

Pang et al. (2021), who employed the self-attention mechanism

to adjust multi-scale features and facilitate the restoration of

microvessel structures during the decoding process. Similarly, Shen

et al. (2022) substituted the convolutional layer with the self-

attentionmechanism inUNet, leading to outstanding segmentation

results and enhanced feature extraction efficiency. Liu et al.

(2023)introduced an attentional fusion block to enhance a skip

connection, thus improving multiscale feature representation

and enabling precise retinal vessel detection. Ouyang et al.

(2023) addressed the issue of losing fine-vessel features by

employing a local feature enhancement module and attention

block to expand the receptive field and optimize the capturing of

microvessel features.

In this paper, we introduce the self-attention mechanism

to construct correlation between vessel branches and vessel

trees. Considering the correlation between channel dimensions,

which is ignored in the above methods, we propose a channel

self-attention mechanism to capture non-local information of

channel dimensions. Additionally, we introduce a parallel attention

mechanism into the decoder to effectively utilize the features from

the skip path.

2.4 Deep supervision

Deep supervision (DS) technology (Lee et al., 2014; Szegedy

et al., 2015) was developed to address issues such as gradient

vanishing and slow convergence in neural network training. Its

fundamental concept involves incorporating auxiliary classifiers

into intermediate layers of the model to leverage shallow

features in downstream tasks and facilitate the seamless flow

of gradients into the deep layers of the network (Zhou et al.,

2022). The model generated by the auxiliary classifier can be

considered a sub-model of the original model. Through the

introduction of additional loss functions, each sub-model can be

optimized and specialized for different tasks, thereby enhancing

their performance and reducing bias in deep features related

to the task. DS techniques have also been utilized in methods

presented by Mo and Zhang (2017), He et al. (2021), and

Cao et al. (2023) to incorporate multi-scale information and

improve the performance and robustness of models in target

region segmentation tasks. However, the current application of

DS techniques primarily focuses on low-resolution boundary

segmentation of target regions, which can be influenced by features

in the skip path.

Inspired by these ideas, in order to improve the segmentation

accuracy of MFA-UNet on tiny vessels, we introduce MBDM at the

end of the decoder. This is done to prevent interference from other

features and perform three sub-tasks: macrovessel segmentation,

microvessel segmentation, and vessel structure segmentation. We
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gradually improve the complexity of sub-tasks and integrate sub-

targets with different focuses to ensure the integrity of vessel

structure in segmentation results.

3 Methodology

3.1 Overview

The proposedmodel utilizes U-Net as the backbonemodel. Due

to the limited number of pixels in microvessels, the segmentation of

vessel structure becomes inefficient. Additionally, the raw semantic

information in the images may not be readily available in the

deeper layers of the model. Therefore, a specialized model design

is required for the vessel segmentation task.

The structure of the MFA-UNet is depicted in Figure 3. The

network consists of an encoder and a decoder, where the encoder

learns from input image patches. The features at different scales

in the encoder are fused and sent to MSAM via skip paths.

MSAM applies a self-attention mechanism to establish long-

range dependencies and generates a weight matrix to adjust the

importance of pixels and channels in the fusion features. These

fusion features are then forwarded to the decoder for detailed

reconstruction of the segmentation mask. During this process, a

parallel attention mechanism is applied to filter out redundant

features. Finally, MBDM uses different branches to generate

macrovessels and microvessels masks from the output features of

the decoder, while the fusion branch synthesizes the macrovessel

and microvessel structures to obtain the final segmentation mask.

It is important to note that in MBDM, all branches are supervised

by the same ground truth.

3.2 Multi-scale fusion self-attention
module

In the microvessel segmentation task, it is common to use

features of different scales to restore the edges of the target

area and mitigate the information loss caused by downsampling.

However, direct fusion of multi-scale features without any

adjustment can introduce redundant feature information and

affect segmentation performance. To effectively utilize multi-scale

information, we propose a multi-scale feature fusion self-attention

module (MSAM), which consists of three components: Channel

Self-Attention (CSA), Spatial Self-Attention (SSA), and Multi-

Layer Perceptron (MLP). The structure of the MSAM is illustrated

in Figure 4.

Firstly, the three feature maps, denoted as F1, F2, F3, are

reshaped to the same size as F2 through upsampling or

downsampling. Since feature maps with a 64-channel structure

contain less semantic information, only feature maps with 128, 256,

and 512 channels are then considered for subsequent operations.

Subsequently, these feature maps are combined to yield the fusion

feature Fa. The fusion feature Fa is encoded into key and value

through a 1 × 1 convolution and linear layer. Furthermore, we

establish a set of trainable channel embeddings represented by ch,

which are encoded and transformed into queries using linear layer.

In the CSA layer, the correlations between the channel dimensions

of the fusion feature Fa are computed using the generated query

and key. This process activates the channel weight mapMc through

a softmax operation. Value are then element-wise multiplied with

Mc to obtain the adjusted feature map Fch. The operations within

the CSA layer are described by Equation 1.

K = zWK ,V = zWV ,Q = chWQ,

where Wk,WB,WQ ∈ RD×D

Fch = CA(Q,K,V) = ch+ softmax(
QKT

√
D

)V

(1)

Here, WK and WV denote the weights of the linear layers used to

encode the token feature z, whileWQ represents the weights of the

linear layer used to encode the channel embeddings, RD×D denoted

a matrix of size D× D.

The SSA layer consists of a self-attention mechanism that

performs linear operations by dot product to mine the information

in the image and generate a weight matrix of spatial dimensions,

adjusting the importance of each pixel. Finally, the MLP layers

enable the transfer of feature information across channels by

using combinations of information in channel dimensions. Self-

attention mechanisms can establish dependencies between the

vascular tree and the pixels of the vascular branches. MSAM

integrates feature information at different scales and applies self-

attention mechanisms in the spatial and channel dimensions

of feature maps to establish long-range correlations between

pixels, thereby improving the effect of vessel segmentation.

The specific operations performed in MSAM are shown in

the Algorithm 1.

Input: Feature map while down-sampling Fi (i∈ [1, 2, 3]),

the channel embedding ch

Output: Multi-scale fusion features Si (i∈ [1, 2, 3])

1: Sample F1 and F3 to become the same scale as F2;

2: Apply a 3 × 3 convolution on F1 and F3 to change the

number of channels to 256;

3: Obtain fusion feature Fa by perform the sum
∑3

i=1 Fi;

4: Apply 1× 1 convolution to reshape Fa into the token

feature z. Then, perform linear operations on of

the token feature z by dot product to generate key

and values;

5: Perform a dot product operation on key and channel

embedding ch as queries to obtain Wch;

6: Conduct matrix multiplication on Wch and values to

obtain Sch;

7: Perform a dot product operation on Sch to generate

vvalues, key and queries;

8: Perform a dot product operation between queries

and key to derive Wsp, and perform a dot product

operation between Wsp and values to derive Ssp;

9: Impose linear calculations on Ssp to obtain S;

10: Obtain Si for the sampling operation of S, where Si

is reshaped to be the same size as Fi (i∈ [1, 2, 3]);

Algorithm 1. Self-attention based multi-scale feature fusion algorithm.
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FIGURE 3

The proposed MFA-UNet model architecture.

FIGURE 4

The architecture of MSAM module. It samples and sums the three scales of features to obtain the fusion features, followed by CSA and SSA

processing to construct the long-range dependencies of the channel and spatial dimensions, finally integrates the features by using MLP to obtain

the refined features, and recovers it to the three scales of the input features by upsampling or downsampling and transfer them to the skip path.

3.3 Multi-branch decoder module

In fundus images, nearly 77% of the vessel pixels belong to

macrovessels, while only 23% belong to microvessels. This causes

an imbalance of vessel proportions in the images, which makes

the single network structure less accurate in the segmentation of

microvessels (Yan et al., 2019). To solve this imbalance problem,

we applied deep supervision technology to the decoder. By adding

multiple branches before the output layer, the vessel segmentation

is divided into three stages: macrovessel segmentation, microvessel

segmentation, and vessel fusion. We describe this structure as

a multi-branch decoder module, and the structure is shown in

Figure 5.

Branch 1 is optimized by the Binary Cross Entropy (BCE)

function for pixel-level loss. The function compares the predicted

map with the ground truth pixel by pixel, and the imbalance

in vessel proportion causes the function to penalize macrovessels

more, making this branch better for macrovessel segmentation. The

optimization of branch 2 is implemented by dice loss (Milletari

et al., 2016) for f class-level loss. The dice loss maximizes the

intersection of the segmentation result and the ground truth as the

optimization objective, which reduces the negative impact caused
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FIGURE 5

The architecture of MBDM and PAM. In MBDM, Branches 1 and 2 receive the feature maps from MFA-UNet as input and are supervised with di�erent

loss functions to achieve the segmentation of both macro- and micro-vessels. The fusion branch combines the outputs of branches 1 and 2 and

adjusts them to obtain the final prediction. In PAM, the input features are sent to CAM and SAM to adjust the weights of the channel and spatial

dimensions, respectively. This adjustment helps filter out redundant information. The resulting features are then added together to achieve mutual

complementation of feature information.

by the imbalance of vessel proportions and makes the branch better

for preserving the microvessel structure. In order to recover the

broken vascular structure, we aim to gather local information by

utilizing a convolutional kernel with a larger receptive field. To

achieve this, we introduce convolutional layers of 7 × 7 and 9 × 9

in branches 1 and 2. This allows for a broader scope of information

aggregation, aiding in the restoration of the vascular structure.

The module merges the outputs of branches 1 and 2 to obtain

a segmentation map that considers both macro and microvessel

segmentation. The segmentation map is then used as input to the

fusion branch, and convolutional layers with kernel sizes of 3 × 3

and 1 × 1 are applied to adjust the segmentation map. The 3 × 3

convolution kernel is used to adjust the fusion features and restore

them based on vessel locality, while the 1× 1 convolution kernel

is used to adjust individual pixel values. The fusion branch needs

to consider both macro and microvessel segmentation, so a mixed

loss function of BCE and Dice loss is used for training. The BCE

loss and the Dice loss are calculated as follows:

BCE Loss = −
1

N

C∑

c=1

N∑

n=1

yn,clogpn,c

Dice loss = 1−
1

N

C∑

c=1

N∑

n=1

2‖yn,cpn,c‖ + smooth

‖y2n,c + p2n,c‖ + smooth

pn,c ∈ P, yn,c ∈ Y

(2)

where pn,c and yn,c are the target label and prediction probability

of the cth category with the nth pixel in the batch, Y is the ground

truth, P is the prediction result, C is the number of categories, and

N is the total number of pixels in the dataset in the batch.

3.4 Parallel attention module

In the structure of U-Net, the input of the convolutional layer

of the decoder is the fusion feature after cascading the output of

the previous layer with the encoder feature, which contains many

useless information such as the optic disc feature. In this paper,

a parallel attention module (PAM) is included in the decoder to

adjust the spatial and channel dimensions of the feature maps

respectively, therefore reducing the redundant information and

allowing the network to focus on the segmentation of blood vessels.

In the Channel Attention Mechanism (CAM) (Woo et al.,

2018), both a max-pooling and average-pooling operation are

performed along the spatial dimension to extract different feature

information, and two feature maps with size 1 × 1 are cascaded

input to the MLP and sigmoid activation layer to obtain the

channel dimension weight matrix. This operation avoids the

influence of spatial dimensional information. The Spatial Attention

Mechanism (SAM) (Woo et al., 2018) also applies maximum

pooling and average pooling to the channel dimensions to avoid

the influence of spatial information, to extract different spatial

dimensions of information, and cascades the features through a 7×
7 convolutional layer to obtain the spatial dimension dependency,

and finally passes through a sigmoid activation layer to obtain the

spatial dimension weight matrix. We parallel the CAM and SAM

to complement the feature map with the different dimensions. The

architecture of the attention module used in this paper is shown in

Figure 5.

The formulas for the channel attention mechanism and the

spatial attention mechanism are as follows:

Mc(F) = σ (M(AvgPool(F))+M(MaxPool(F)))

= σ (W1(W0(F
c
avg))+W1(W0(F

c
max)))

(3)
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Ms(F) = σ (f 7×7([AvgPool(F);MaxPool(F)]))

= σ (f 7×7([Fsavg; F
s
max]))

(4)

where M denotes the operation performed by the MLP, F is the

input feature map, W denotes the weight of the fully connected

layer in the MLP, f 7×7 is the weight value of the convolution kernel

of 7 × 7, and σ as the sigmoid activation function. Mc(F) is the

weight matrix generated by channel attention, and Ms(F) is the

weight matrix generated by spatial attention.

Where M represents the operation performed by the MLP, F

denotes the input feature map, W signifies the weight of the fully

connected layer in the MLP, f 7×7 represents the weight value of

the 7× 7 convolution kernel, and σ denotes the sigmoid activation

function. Mc(F) denotes the weight matrix generated by channel

attention, while Ms(F) represents the weight matrix generated by

spatial attention.

4 Experiments

4.1 Datasets

In this paper, we evaluated the performance of the proposed

method, the baseline U-Net, and other segmentation methods

based on U-Net variants using six public datasets: DRIVE, STARE,

CHASE-DB1, HRF, IOSTAR, and FIVES. We trained and tested

MFA-UNet, U-Net, and other methods separately on four different

fundus image datasets. The DRIVE dataset consists of 40 fundus

images, with 20 images for training and 20 images for testing.

The STARE dataset (Hoover et al., 2000) contains 20 fundus

images, including some images with lesions. We randomly selected

10 images for training and 10 images for testing. The CHASE-

DB1 dataset (Owen et al., 2009) consists of 28 images, 20

of which are used for training and the rest for testing. The

HRF dataset (Odstrcilík et al., 2013) contains 15 normal fundus

images, 15 fundus images with diabetic retinopathy, and 15

fundus images with glaucoma, of which 35 images were used

for training and the remaining images for testing according to

Shen et al. (2022). The OSTAR dataset (Zhang et al., 2016)

comprises 30 retinal images, with 20 images for training and

10 images for testing. The FIVES dataset (Jin et al., 2022)

encompasses retinal images depicting various conditions, including

health, diabetic retinopathy, glaucoma, and age-related macular

degeneration. Moreover, corresponding vascular segmentation

masks are provided for each image. Each category contains a total of

200 images. The dataset is partitioned into 600 images for training

and 200 for testing. Each of the six publicly available datasets is

described in detail in Table 1.

4.2 Preprocessing

During the imaging process of fundus cameras, various factors

such as room lighting and physician expertise can lead to uneven

illumination and low contrast in fundus images, which can

hinder the segmentation of retinal vessels. Therefore, preprocessing

techniques are considered essential to improve the quality of fundus

images. First, the NTSC conversion method is used to convert the

TABLE 1 Descriptions of the DRIVE, STARE, CHASE-DB1, HRF, IOSTAR,

and FIVES datasets.

Dataset Quatity Resolution Train-test

DRIVE 40 565× 584 20–20

SRARE 20 700× 605 10–10

CHASE-DB1 28 999× 960 20–8

HRF 45 3, 504× 2, 336 35–10

IOSTAR 30 1, 024× 1, 024 20–10

FIVES 800 2, 048× 2, 048 600–200

RGB image to a grayscale image since the green channel contains

more significant information than the red and blue channels. The

formula for this conversion is as follows:

Gray = 0.299 ∗ R+ 0.587 ∗ G+ 0.114 ∗ B (5)

To address the problem of low contrast in the vessels, we apply

the Contrast-Limited Adaptive Histogram Equalization (CLAHE)

technique to the images. This method effectively enhances the

vessel features by equalizing the grayscale histogram of a specific

portion of the image. In addition, we use gamma correction to

brighten the image with a gamma value of 1.2, making the darker

areas of the image more visible. The raw and pre-processed images

are shown in Figure 6.

4.3 Data augmentation

Due to the high resolution of the images in each dataset, using

the entire image as input is likely to place a significant burden on the

hardware, and the availability of training data is limited. To solve

this problem, we extend the training data using the overlapmethod.

Briefly, we use a window with a size of 128 by 128 and a step size of

15 to perform patch cropping for each image and generate 25,000

patches with an overlap of 87.5% for adjoining image patches.

We then used random cropping, horizontal and vertical mirror

inversion, and random angle rotation for data enhancement to

improve sample diversity.

4.4 Implementation details

Our experiment is performed using the PyTorch framework.

All models are trained and tested on an NVIDIA RTX 3080 with

24G of memory. The MFA-UNet model is optimized using the

Adam optimizer with the parameters β1 = 0.9;β2 = 0.99.

During both the training and testing phases, the batch size is set

to 32, and the initial learning rate is set to 5 × 10−4. To facilitate

the training phase, a learning rate decay strategy is implemented

with a decay period of 50 epochs and a decay rate of 0.1. We

designate 10% of the training data as the validation set to evaluate

the performance of MFA-UNet. The models with the highest the

area under the ROC curve (AUC) in the validation set are saved for

model performance evaluation.

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1249331
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Cao et al. 10.3389/fnins.2023.1249331

FIGURE 6

The pre-processing process for retinal images. (A) Raw image; (B) cropped and grayscaled image; (C) Gamma-corrected image; (D) CLAHE

processed image.

4.5 Evaluation metrics

To binarize the segmentation probability map, we utilize a fixed

threshold, where pixel values exceeding this threshold are set to 255,

and while those below the threshold are set to 0. In the binarized

segmentation maps, pixels that are correctly classified as vessels are

denoted as true positive (TP), while the pixels that are incorrectly

classified as part of vessels are designated as false positive (FP).

Pixels that are accurately identified as non-vessel are marked as

true negative (TN), and the pixels that are wrongly assigned as non-

vessel are recorded as false negative (FN). To evaluate the proposed

model, we employ several widely used metrics, including Accuracy

(Acc), Dice Similarity Coefficient (DSC), Sensitivity (Sen), and

Specificity (Sp). The formulas for each metric are presented below:

Acc =
TP + TN

N
, DSC =

2TP

2TP + FP + FN

Se =
TP

TP + FN
, Sp =

TN

TN + FP

(6)

where N = TP + TN + FP + FN. The receiver operating

characteristic curve (ROC) is generated by constructing a

coordinate system using the true positive rate (Se) and false

positive rate (1-Sp). AUC is then calculated to evaluate the overall

classification ability of the model.

5 Results

In this section, we perform a comparative analysis of the

proposedmodel with other vessel segmentationmethods, including

U-Net, MS-NFN, CcNet, and NestU-Net, etc. to demonstrate the

superiority of our proposed method over other existing techniques.

The evaluation results of the proposedmodel and othermethods on

the DRIVE, STARE, CHASE DB1, and HRF datasets are presented

in Table 2, where mSen and mSp represent the mean values of the

sensitivity and specificity of the model on the binary classification

task. It is important to note that in each experiment, MFA-UNet

and U-Net are trained and tested separately on four different

fundus image datasets, while the results of other methods are

obtained from the cited references.

Among the employed evaluation metirics, mSen and DSC

represent the degree of overlap between the segmentation

prediction of the model and the ground truth label. Accuracy

and AUC, on the other hand, serve to evaluate the overall

performance of the model in pixel-level classification. Additionally,

mSp indicates the segmentation accuracy of the model for non-

vessel areas. The completeness of the vascular structure in the

segmentation mask is crucial in clinical analysis. Therefore,

in the performance comparison, we focus on the superiority

and inferiority of MFA-UNet and other methods in the three

comprehensive metrics of accuracy, DSC, and AUC.

The comparative results on the DRIVE dataset showcase

the superior performance of MFA-UNet over other state-of-

the-art algorithms in terms of accuracy, DSC, and AUC, with

improvements observed across all metrics when compared toUNet.

The DRIVE dataset, with its larger number of test samples, serves

as a more representative benchmark for evaluating segmentation

algorithms in real-world scenarios. It is worth noting that the

method proposed in Naveed et al. (2021) demonstrates higher

sensitivity compared to our approach, possibly due to the post-

processing effect of the block matching 3D (BM3D) speckle filter,

which specifically enhances sensitivity in microvessels. On the

other hand, the method proposed by Barkana et al. (2017) exhibits

excellent specificity. However, this approach combines predictions

from multiple algorithms for vessel segmentation, resulting in

the introduction of excessive model parameters and increased

inference time.

In the STARE dataset, Nest U-Net, as proposed in Wang

et al. (2021), outperforms MFA-UNet in terms of specificity

and segmentation accuracy. We believe that Nest U-Net

achieves this by utilizing high-resolution feature maps to

produce more refined vessel segmentation results. On the other

hand, the proposed MFA-UNet achieves higher sensitivity,

AUC, and DSC than other models, indicating that MFA-

UNet maintains the segmentation effect for macriovessels

while preventing the loss of microvessel structures due to

the MSAM.

In the CHASE-DB1 dataset, MFA-UNet demonstrates superior

performance in all metrics, except for sensitivity, when compared to

other current methods. The approach proposed in Lu et al. (2020)

outperforms other methods specifically in terms of sensitivity. This

method employs two models to separately segment macrovessels

and microvessels, and combines the resulting segmentation maps

to obtain the final results, allowing for a combined segmentation

effect on both macrovessels and microvessels. In contrast, MFA-

UNet utilizes the Multi-Branch and Dense Module (MBDM)

to target different vessel segmentations and combine the results

from multiple branches, resulting in more efficient memory usage
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TABLE 2 Comparison of the proposed method with other methods in terms of evaluation metrics including mSen, mSp, Acc, AUC, and DSC, using the

DRIVE, STARE, CHASE-DB1, HRF, IOSTAR, and FIVES datasets (unit:%).

Dataset Method Years mSen mSp Acc AUC DSC

DRIVE Ronneberger et al. (2015) 2016 79.66 97.80 95.49 97.72 81.72

Wang et al. (2019) 2019 76.48 98.17 95.41 – 80.93

Feng et al. (2020) 2020 76.25 98.09 95.28 96.78 –

Wang et al. (2021) 2021 80.60 92.83 95.12 97.48 78.63

Naveed et al. (2021) 2021 81.41 97.02 95.40 – –

Liu et al. (2023) 2023 79.85 97.91 95.61 – 82.29

Ouyang et al. (2023) 2023 79.83 97.93 95.63 – 82.30

Proposed 2023 81.23 97.81 95.71 98.09 82.79

STARE Ronneberger et al. (2015) 2016 83.24 97.96 96.38 98.54 83.22

Wang et al. (2019) 2019 75.30 98.85 96.40 – 81.25

Feng et al. (2020) 2020 77.09 98.48 96.33 97.00 –

Wang et al. (2021) 2021 82.30 99.45 96.41 96.20 79.47

Naveed et al. (2021) 2021 82.88 96.53 95.41 – –

Deng and Ye (2022) 2022 82.72 98.47 96.43 – –

Mahapatra et al. (2022) 2022 68.46 98.02 96.01 – –

Liu et al. (2023) 2023 80.39 98.36 96.35 – 83.15

Proposed 2023 85.39 97.69 96.40 98.77 83.51

CHASE-DB1 Ronneberger et al. (2015) 2016 77.21 98.82 96.61 98.75 83.42

Wu et al. (2018) 2018 75.44 98.47 96.37 98.25 -

Wang et al. (2019) 2019 77.30 97.92 96.03 – 75.91

Lu et al. (2020) 2020 81.35 97.62 96.17 97.82 –

Naveed et al. (2021) 2021 81.53 97.11 95.61 – –

Liu et al. (2023) 2023 80.20 97.94 96.70 – 82.36

Proposed 2023 79.32 98.86 96.71 98.86 84.17

HRF Ronneberger et al. (2015) 2016 76.79 98.30 96.61 98.21 79.46

Jin et al. (2019) 2019 74.67 98.74 96.51 98.31 –

Wang et al. (2020) 2020 79.67 95.40 94.88 97.85 –

Shen et al. (2022) 2021 83.13 98.03 96.80 98.62 80.95

Mahapatra et al. (2022) 2022 71.12 98.43 96.58 – –

Proposed 2023 77.33 98.45 96.82 98.31 78.60

IOSTAR Ronneberger et al. (2015) 2016 75.79 97.62 95.78 97.27 80.67

Zhang et al. (2016) 2016 75.45 97.40 95.14 96.15 –

Kar et al. (2023) 2023 78.07 97.88 96.10 97.67 –

Proposed 2023 80.33 98.15 96.32 98.21 81.75

FIVES Ronneberger et al. (2015) 2016 78.77 98.34 96.28 97.58 81.74

Yan et al. (2018) 2018 77.30 98.73 96.70 97.27 81.65

Proposed 2023 80.07 99.09 97.10 97.81 84.04

The bolded value is the maximum value in the comparison.

compared to an ensemble model. Similarly, the method presented

in Shen et al. (2022) surpasses other methods in sensitivity, AUC,

and DSC on the HRF dataset by replacing the convolutional layer

with a self-attention mechanism, enabling a global perceptual field.

However, it should be noted that this method requires significantly

higher memory resources compared to other approaches.

In the IOSTAR dataset, our model achieved the highest level

of performance in the comparative analysis. The dataset exhibits

relatively prominent blood vessels, and the MFA-UNet model

successfully segments the vascular structures comprehensively,

outperforming the UNet model by effectively restoring

interrupted vessels.
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In the FIVES dataset, our proposed model has also achieved

optimal performance across all metrics. The FIVES dataset

comprises images featuring various categories of fundus diseases,

where the presence of biomarkers like leptomeningeal fundus,

exudation, and hemorrhage can significantly influence vascular

segmentation performance. As a result, the sensitivity of MFA-

UNet only reaches 80.07%. However, it still excels in terms of DSC

and AUC, highlighting the remarkable robustness of MFA-UNet

when confronted with the diverse fundus images.

We observed a common issue among all segmentation models

evaluated on this dataset: square-shaped convolutional kernels

struggle to preserve the curvatures of blood vessels, particularly

those with smaller curvatures. We believe that during the encoding

process, the model’s perception of blood vessels with larger

curvatures is compromised due to their relatively low proportion

in the overall structure. Additionally, the local feature extraction

capabilities of the convolutional kernels fail to accurately segment

distributed and highly curved vessel structures.

Figure 7 displays the segmentation visualization results of

MFA-UNet on various datasets. The visual analysis demonstrates

the exceptional performance of our method in accurately

segmenting microvessel while maintaining their overall structural

integrity. Notably, MFA-UNet exhibits precise delineation of

macrovessels, highlighting its robust segmentation capability for

such structures. To emphasize challenging segmentation regions,

such as areas with significant width variations and low contrast

in blood vessels, we have zoomed in and positioned these vessels

adjacent to each image.

We have depicted the learning curve of MFA-UNet on the

DRIVE dataset in Figure 8, aiming to observe the performance

variations of MFA-UNet throughout the training process. The

learning curve tends to plateau after the 80th epoch, indicating

the gradual convergence of MFA-UNet on the training set.

Moreover, MFA-UNet did not exhibit significant overfitting during

the training process, as evidenced by the similarity between

the learning curves of the validation set and the training set.

This observation validates the effectiveness of patch-based data

augmentation techniques.

5.1 Ablative studies

Apart from conducting comparisons with aforementioned

methods, we have conducted two sets of ablative experiments to

analyze the influence of different combinations of modules and loss

functions on the segmentation performance of MFA-UNet. These

ablative experiments were exclusively carried out on the DRIVE

dataset due to computational resource limitations.

5.1.1 E�ect of various module combinations on
segmentation performance

In the proposed MFA-UNet, we have incorporated PAM,

MSAM, and MBDM to enhance the segmentation performance

of the model. To validate the effectiveness of these modules, we

conducted ablation experiments. The model that excludes all of the

aforementioned modules is referred to as the basebone.

Table 3 presents the performance of the models with the

addition of each module to the basebone. The backbone model,

which incorporates residual connections, large kernel convolution

downsampling layers, and adjustments to the number of channels,

reduces the number of parameters by 42.7% compared to U-

Net while maintaining similar performance. The introduction of

PAM into the backbone led to improvements in the sensitivity,

accuracy, and AUC of the model. This enhancement can be

attributed to improved feature extraction. The incorporation of

MSAM significantly improved the sensitivity, which represents

the accuracy of the model in blood vessel segmentation. This

improvement indicates that multi-scale features can greatly

enhance segmentation performance. However, accuracy does not

improve, suggesting that the model misclassifies background pixels

as blood vessels during pixel class discrimination. Finally, the

inclusion of MBDM in the model results in MFA-UNet achieving

the best performance in accuracy, AUC, and DSC. In the ablation

experiments, we observed significant improvements in certain

metrics with the addition of each module to the model. This

suggests that incremental enhancements in the model contribute

to the improvement of vessel segmentation performance (see

Figure 9). By incorporating MBDM into the model, it achieves

the highest values in comprehensive metrics and attains the best

balance across each metric.

5.1.2 E�ect of the choice of loss function on
segmentation performance

In this set of experiments, we removed the MBDM component

from MFA-UNet and trained the network with three different

loss functions to verify the effectiveness of MBDM in improving

segmentation performance. The visual segmentation results of

these networks are shown in Figure 9. When employing the BCE

loss function, the network can only segment the structure of

coarse vessels well, but causes structural discontinuity in fine

vessel segmentation. By employing the Dice loss function, the

network achieves a sensitivity of 83.93% and exhibits improved

segmentation of small vessels, albeit with some non-vessel areas

being erroneously segmented. We noticed that when using a mixed

loss function, the misclassification rate in some uncertain areas

of the network is significantly reduced, which is manifested as

an increase in specificity. Benefiting from the training method of

MBDM,MFA-UNet can better preserve the structure of fine vessels

and reduce the misclassification rate of non-vessel areas, achieving

the highest accuracy, specificity, and DSC in Table 3.

5.2 Cross-training experiments

To validate the generalization and robustness of the proposed

method, we conduct cross-training experiments. Specifically, we

evaluated the performance of a model trained and converged on

one dataset when applied to another dataset. Unlike the method of

retraining the neural network in Li et al. (2016), we utilize themodel

trained in Section 4.6 for cross-training without multiple training.

The outcomes of the cross-training experiments are presented in

Table 4. Notably, for the DRIVE dataset, our method achieves
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FIGURE 7

Retinal vessel segmentation results on DRIVE, STARE, Chase-DB1, HRF, IOSTAR, and FIVES datasets. The left and right columns present the

segmentation results of di�erent samples from the same dataset. In each column, from left to right, you will find the raw image, its local detail

images, ground truth, result of MFA-UNet, and result of UNet, respectively.

superior sensitivity, specificity, and accuracy compared to other

methods, albeit with a lower AUC. Conversely, on the STARE

dataset, the specificity and accuracy of our results are inferior

to other methods. We attribute this situation to the presence of

lesion images in the STARE dataset, which facilitate the learning

of sufficient features by the model, while the segmentation masks

in the DRIVE dataset exhibit greater detail compared to those in

the STARE dataset.
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FIGURE 8

Learning curves for MFA-UNet trained on the DRIVE dataset. (A) Learning curve illustrating the changes in Accuracy; (B) learning curve illustrating the

changes in dice score.

TABLE 3 The quantitative results of the ablative studies.

Ablation study Method Parameters mSen mSp Acc AUC DSC

Study 1 U-Net 3.45M 79.66 97.80 95.49 97.72 81.72

baseline 1.92M 77.94 98.01 95.46 97.70 81.38

+PAM 2.08M 80.61 97.78 95.60 97.88 82.34

+MSAM 2.34M 81.93 97.61 95.61 97.99 82.63

+MBDM 2.42M 81.23 97.81 95.71 98.09 82.79

Study 2 BCE Loss 2.34M 81.26 97.76 95.66 98.02 82.67

Dice Loss 2.34M 83.93 97.10 95.42 92.86 82.38

BCE Loss + Dice Loss 2.34M 83.34 97.43 95.64 98.07 82.66

Proposed 2.42M 81.23 97.81 95.71 98.09 82.79

Study 1: Effects of different module combinations on segmentation performance; Study 2: Comparison of segmentation performance for MFA-UNet with MBDM using different loss functions

and MFA-UNet without MBDM. The bolded value is the maximum value in the comparison.

5.3 Comparison of parameters, flops, and
speeds

We trained MFA-UNet and other methods separately on

image patches and whole images, subsequently evaluating them

to obtain various metrics for the performance comparison

of the mentioned methods. The metrics used encompass the

number of trainable parameters in the model, Floating Point

Operations PerSecond (FLOPs), inference time for a single

image, DSC, and AUC. Table 5 provides an overview of the

trainable parameters, FLOPs, and inference time for MFA-UNet

and other methods. To visually demonstrate the performance of

each model in terms of trainable parameters, DSC, and AUC,

we present a ball chart in Figure 10. According to Table 5,

UNet has approximately 3.45 million trainable parameters. After

incorporating all the proposed modules into UNet, MFA-UNet

achieves smaller trainable parameters while maintaining excellent

segmentation accuracy. In comparison, DUNet has 7.41 million

trainable parameters but exhibits weaker performance in terms of

DSC. Additionally, Attention U-Net and R2U-Net, as variants of

U-Net, have a similar number of parameters to UNet. Attention

U-Net, with the inclusion of the attention mechanism, achieves

high segmentation accuracy, validating the effectiveness of this

module. Our MFA-UNet outperforms other methods in terms

of DSC and AUC, while maintaining smaller model parameters

and complexity.

When we use whole images as training data, all compared

methods exhibit varying degrees of reduction in DSC and AUC,

with the exception of UNet and R2U-Net. We attribute this decline

to the fact that when using entire images as input, segmentation

models may not adequately focus on the smaller, finer blood

vessels, thereby resulting in incomplete vessel segmentation and

decreased performance. Inference time is reduced compared to

patch-based methods, as utilizing an overlapping patch strategy

increases the number of image samples significantly. Patch-based

methods require segmentation of more images, extending inference
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FIGURE 9

Visualization of segmentation results of MFA-UNet and its ablated versions on the DRIVE dataset. (A) Results of various combination of modules, (B)

results of di�erent loss functions.

TABLE 4 The results of cross-training experiments on the DRIVE and

STARE dataset.

Test
dataset

Method mSen mSp Acc AUC

DRIVE (trained

on STARE)

Yan et al. (2019) 74.43 98.14 95.09 97.20

Li et al. (2016) 72.73 98.10 94.86 96.77

Feng et al. (2020) 72.17 98.20 94.86 93.27

Jin et al. (2019) 70.77 99.14 94.81 95.68

Proposed 74.47 98.46 95.28 97.03

STARE (trained

on DRIVE)

Yan et al. (2019) 73.19 98.40 95.80 96.78

Li et al. (2016) 70.27 98.28 95.45 96.71

Feng et al. (2020) 74.99 97.98 95.63 96.21

Jin et al. (2019) 70.00 97.59 94.74 97.43

Proposed 85.53 96.56 95.36 98.07

The bolded value is the maximum value in the comparison.

time. Nevertheless, this approach enhances the segmentation

performance of different models and meets the high-precision

requirements of tasks like retinal vessel segmentation.

6 Discussion

Figure 9 shows that the incorporation of PAM into the decoder

restores the structure of some of the macrovessels, while the

addition of MSAM empowers MFA-UNet to accurately segment

the intricate branching patterns of microvessels. To adjust the

weight of the features within the skip path, we propose MSAM

based on the self-attention mechanism and introduce it into

the skip path of MFA-UNet. Unlike traditional convolutional

neural networks, where the convolutional layer integrates the local

feature information of the image through windowed convolution

operations, resulting in a network with a restricted perceptual

field, MSAM has a self-attention mechanism with a global

perceptual field. This empowers MFA-UNet to effectively capture

the interdependencies between vessel pixels and other pixels within

the image.

The effectiveness of the multi-objective segmentation strategy

is demonstrated by the improvement observed across all metrics in

Table 2. Since a single network is inadequate for segmenting both

macrovessels and microvessels, we established multiple branches

in the decoder, each with different optimization objectives.

This structure introduces deep supervision and enables the

segmentation of macrovessels and microvessels to be separate,

allowing us to adjust the optimization objectives ofMFA-UNet. The

primary structure of the model is utilized for feature extraction
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TABLE 5 Comparison of parameters (unit: M), FLOPs (unit: G), inference

time for models with patch segmentation and panoramic segmentation

on a single image (unit: s) among di�erent methods on the DRIVE dataset.

Method
Parameters
(M)

FLOPs
(G)

Inference time (s)

Patch Whole
image

U-Net

Ronneberger

et al. (2015)

3.45 0.05 0.211 0.218

R2U-Net Alom

et al. (2018)

3.91 0.12 0.506 0.332

AttU-Net

Oktay et al.

(2018)

3.49 0.06 0.311 0.227

Yan et al. (2019)

2.56 0.93 1.213 1.1

DUNet Jin et al.

(2019)

7.41 0.23 0.765 0.476

Proposed 2.39 0.12 0.399 0.332

FIGURE 10

Comparison of model Params and performance. Note that the size

of the circle indicates the number of model parameters. DSC, and

AUC are used to evaluate the performance of models. The red font

indicates that the method utilizes the whole image as input, while

the black font indicates that the method utilizes patches as input.

and recovery of the rough vessel structure. The feature maps

are subsequently used for the reconstruction of vessels with

different widths in MBDM and the merging of macrovessels and

microvessels, thereby preserving more vessel structures in the final

result. The visualization results in Figure 9 also prove our thinking.

It is notable that the time to train a single epoch of MFA-UNet

increases from 124 to 147 s after adding branch 1 and branch 2,

such a design improves the segmentation performance but without

increasing the complexity of the model.

In our study, we investigated the impact of the position of

the attention mechanism within the model. When the attention

mechanism is applied after the cascade of feature maps from

the decoder and skip path, we observed an improvement in

sensitivity but a decline in specificity. Conversely, when the

attention mechanism is applied after the cascade fusion of feature

maps and upsampling, we observed an increase in specificity but a

decrease in sensitivity. We hypothesize that adjusting the feature

map within the skip path can enhance the vessel features in the

feature map, but the model is prone to misclassify background

pixels as vessel pixels. On the other hand, adjusting the upsampled

feature maps will make the model focus on the classification of

background pixels. Considering the requirement for a balanced

performance across multiple metrics, we incorporate MSA into

the skip path to enable the decoder to utilize multi-scale features

for better segmentation. Additionally, we position the attention

mechanism after the convolutional layer of the decoder to mitigate

the misclassification rate of the model.

In comparison to the DRIVE, STARE, HRF, IOSTAR, and

FIVES datasets, the CHASE-DB1 dataset is specifically curated

from the eyes of children to mitigate the interference caused by

lesions associated with eye diseases. Figure 7 illustrates that during

the testing phase, the segmentation of the optic disc boundary by

MFA-UNet resulted in a low specificity improvement of the model.

We attribute this observation to the high contrast exhibited by the

optic disc in the fundus image of the CHASE-DB1 dataset, as well as

the similarity in shape between the optic disc boundary and blood

vessels. Consequently, the model tends to misclassify the optic disc

boundary as blood vessels.

In the IOSTAR dataset, We observed a common issue among

all segmentation models evaluated on this dataset: square-shaped

convolutional kernels struggle to preserve the curvatures of blood

vessels, particularly those with smaller curvatures. We believe that

during the encoding process, the perception of blood vessels of

model with larger curvatures is compromised due to their relatively

low proportion in the overall structure. Additionally, the local

feature extraction capabilities of the convolutional kernels fail to

accurately segment distributed and highly curved vessel structures.

In the FIVES dataset, our proposedmodel has achieved optimal

performance across all metrics. We visualized the segmentation

results of MFA-UNet and UNet on glaucoma and DR images

to demonstrate the influence of retinal image characteristics on

segmentation performance (Figure 7). The left column in Figure 7

shows the segmentation results on glaucoma images, while the

right column displays the results on DR images. We observed that

the low contrast and intensity in glaucoma images significantly

degraded the segmentation performance of UNet. However, MFA-

UNet partially restored the interrupted vessels using self-attention

mechanisms, although the segmentation results were still affected.

Furthermore, the leopard-like appearance present in glaucoma

images, resembling blood vessels, caused MFA-UNet to misclassify

background pixels as vessel pixels. In contrast, DR images exhibited

higher intensity and contrast, enabling MFA-UNet to accurately

segment most vessel structures. These observations are further

supported by the quantitative results presented in Table 2.

The proposed MFA-UNet has achieved competitive

performance on multiple public datasets, yet there are still

some limitations worth discussing. Convolutional neural

networks (CNNs) inherently involve downsampling to reduce

the dimensionality of image information, which can result in the

loss of fine image details. Consequently, CNN-based methods

may face challenges in accurately segmenting fine blood vessels,

even when incorporating multi-scale feature information during
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the decoding process. To address this limitation, we believe that

leveraging the information from the original image to refine

the segmentation mask can further enhance the sensitivity and

DSC of the segmentation framework. Recent studies have shown

promising results by employing post-processing techniques such as

dense conditional random fields (Lin et al., 2019), morphological

reconstruction (Soomro et al., 2019), and probability-regularized

random walks (Mou et al., 2020).

In addition, it is important to note that the proposed

approach includes preprocessing the input of MFA-UNet

to enhance the contrast of blood vessels, which contributes

to improved segmentation performance. Consequently, the

results may not be optimal when conducting segmentation

on unprocessed images. Furthermore, while our method has

been evaluated on datasets encompassing various categories of

ocular diseases, the performance of MFA-UNet has not been

specifically validated on a single ocular disease dataset that

exhibits varying severity levels. As a future direction, we are

considering the utilization of graph convolutional neural networks

to comprehensively analyze the vascular skeleton. This approach

would enable the establishment of dependencies between vascular

nodes and endpoints, facilitating the capture of contextual

information and ultimately leading to more accurate vascular

segmentation.

7 Conclusion

In this study, we present MFA-UNet, a novel neural

network architecture that leverages self-attention mechanisms

and multi-branch decoding modules to enhance the accuracy of

microvascular segmentation and preserve microvessel structure.

We also adopt preprocessing techniques to improve the quality

of fundus images obtained by the fundus camera and employ

patch-based data augmentation methods to mitigate overfitting

issues that may arise due to the limited number of training

samples. The MSAM performs the fusion of multi-scale features

and establishes inter-pixel dependencies to enable the model

with a global perceptual field and improve the segmentation

performance on microvessels. Additionally, the MBDM enables

the model to segment macrovessels and microvessels separately

and merge the segmentation results to obtain an excellent

segmentation mask, resulting in better performance in the

segmentation of both macrovessels and microvessels. The PAM

is included in the decoder to reduce the misclassification rate

of the model. The experimental results show that the MFA-

UNet has excellent performance in retinal vessel segmentation and

outperforms current state-of-the-art algorithms in several metrics

on the DRIVE, STARE, CHASEDB1, HRF, IOSTAR, and FIVES

datasets. Moreover, MFA-UNet has smaller model parameters

and complexity, requiring only 0.399 s to segment an image,

suggesting that the proposed method holds promise for being

transplanted into embedded software, thus further advancing

the intelligence level of fundus cameras in the realm of vessel

segmentation.
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