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Post-translational modifications (PTMs) are crucial epigenetic mechanisms that
regulate various cellular biological processes. The use of mass spectrometry (MS)-
proteomics has led to the discovery of numerous novel types of protein PTMs,
such as acetylation, crotonylation, 2-hydroxyisobutyrylation, β-
hydroxybutyrylation, protein propionylation and butyrylation, succinylation,
malonylation, lactylation, and histone methylation. In this review, we
specifically highlight the molecular mechanisms and roles of various histone
and some non-histone PTMs in renal diseases, including diabetic kidney
disease. PTMs exhibit diverse effects on renal diseases, which can be either
protective or detrimental, depending on the specific type of protein PTMs and
their respective targets. Different PTMs activate various signaling pathways in
diverse renal pathological conditions, which could provide novel insights for
studying epigenetic mechanisms and developing potential therapeutic
strategies for renal diseases.
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Introduction

The kidney, an essential organ in the human body, plays a vital role in maintaining
physiological functions, such as the elimination of excess water via the urine, regulating ion
balance through filtration, reabsorption, and secretion, and serving as the site of degradation
for some endocrine hormones and the target organ of extrarenal hormones. These functions
are critical for maintaining the body’s internal environment and normal metabolism (Koye
et al., 2018). However, renal diseases are becoming increasingly a severe health issue, with
rising morbidity and mortality rates. Epidemiological analysis indicates that renal disease
currently affects more than 750 million people globally, making it the most significant public
health concern worldwide (Crews et al., 2019). Therefore, urgent attention and appropriate
preventive measures are crucial to combat this challenge (Arici, 2021).

Diabetic kidney disease (DKD), acute kidney injury (AKI), renal fibrosis, and polycystic
kidney disease (PKD), presents a significant threat to global public health. Of these, CKD is
considered a major concern, leading to increased healthcare costs worldwide (Levin, 2018).
The prevalence of CKD was reported to be 9.1% (697.5 million cases) globally in 2017,
resulting in 1.2 million deaths and ranking it as the 12th leading cause of death worldwide
(Carney, 2020). DKD, a significant contributor to CKD, is one of the most serious
complications of diabetes, leading to glomerulosclerosis and end-stage renal disease
(ESRD)(Dronavalli et al., 2008). Approximately 50% of patients with diabetes develop
DKD, and consequently ESRD, 20 years after diabetes onset (Packham et al., 2012). Notably,
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approximately 40%–45% and 30% of patients with type 1 and type
2 diabetes develop DKD, respectively (Oltean et al., 2017; Dong et al.,
2021). AKI is another crucial factor contributing to CKD, with
approximately 13 million cases worldwide each year, causing
1.7 million deaths, prolonged hospitalization, and increased
healthcare costs (Mehta et al., 2015; Mehta et al., 2016). Despite
the increasing burden of renal diseases on global health, there is still
no satisfactory treatment (Mehta et al., 2016). Therefore,
understanding the mechanisms of post-translational
modifications (PTMs) in renal diseases is essential for identifying
novel targets for therapy development. Additionally, epigenetic
involvement has been suggested in the pathogenesis of renal
disease in many cases, providing further insights into the
molecular basis of renal diseases.

Epigenetics is a process of heritable gene expression changes
without any changes in nucleotide sequence. This process involves
various mechanisms, including DNA methylation, histone
modifications, and microRNAs, which can lead to heritable
phenotypic changes without altering the DNA sequence (Zhang

et al., 2020a). The study of epigenetic mechanisms involved in gene
expression regulation has emerged as an effective method, providing
new insights for the clinical treatment of different diseases. Histone
modifications are among the crucial epigenetic mechanisms that have
gained significant attention in renal diseases recently. Nucleosomes,
which are the basic building blocks of chromatin, consist of double-
stranded DNA and four basic histones, including H2A×2, H2B×2,
H3×2, and H4×2, that form an octameric core histone. These histones
are rich in lysine and arginine residues, making them easily modifiable
(Kouzarides, 2007; Li et al., 2019). The N and C termini of histones can
undergo PTMs, such as acetylation, methylation, SUMOylation, and
ubiquitination (Strahl and Allis, 2000). These modifications can alter
the charge and structure of histone tails bound to DNA, modify the
chromatin state, and subsequently positively or negatively regulate gene
expression (Chen et al., 2014). Histone modifications have been found
to play a crucial role in the pathogenesis of various diseases (Tang and
Zhuang, 2019; Bajbouj et al., 2021; Wang et al., 2022a).

The transcription of numerous genes and activation of various
signaling pathways involved in the pathogenesis of renal diseases are

FIGURE 1
Types and structures of post-translational modifications: acetylation, glycosylation, phosphorylation, crotonylation, 2-hydroxyisobutyrylation, β-
hydroxybutyrylation, protein propionylation and butyrylation, succinylation, malonylation, lactylation, and histone methylation.
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associated with histone PTMs (HPTMs) (Lin et al., 2014a; Huang
et al., 2014; Huang et al., 2021a). Therefore, targeting these
modifications could be a promising strategy to safeguard the
kidney and promote renal function repair and recovery. This
review primarily focuses on the latest research developments on
HPTMs in CKD, DKD, AKI, renal fibrosis, and other renal diseases.
It explores the role of histone modifications in the regulation,
modification, and significance of these diseases (Figures 1, 2).

PTMs in renal diseases

PTMs are covalent changes in proteins or peptides that increase
the functional diversity of the proteome through the covalent
addition of functional groups or proteins, proteolytic cleavage of
regulatory subunits, or degradation of the entire protein. This
increases the complexity of protein regulation by affecting active
states, subcellular localization, turnover, and interactions with other
cellular molecules (Mann and Jensen, 2003). With the critical role of
functional proteomics, an increasing number of protein PTM types
have been found to be associated with the development and
progression of various renal diseases (Table 1). Lundby et al.
reported that among the tissues examined, the kidney contained

the most acetylated proteins, and the largest acetylated proteome
was localized to the plasma membrane of the kidney and was
involved in ion transport. Regulation of the balance between
acetylation and deacetylation is critical in maintaining renal
function (Hyndman and Knepper, 2017). Glycosylation promotes
the proliferation and apoptosis of tubular epithelial cells and is
involved in the progression of renal diseases (Xu et al., 2023).
Tyrosine phosphoproteins are concentrated in glomeruli to play a
critical role in their signaling (Denhez and Geraldes, 2017). Lysine
crotonylation, 2-hydroxyisobutyrylation, 3-hydroxybutyrylation,
protein propionylation and butyrylation, succinylation,
malonylation, lactylation, and other novel short-chain lysine
acylation reactions originating from short-chain fatty acids
(SFCA) have received increasing attention. For example, butyrate
and propionate can prevent AKI induced by ischemia-reperfusion in
mice as well as diabetic nephropathy (Andrade-Oliveira et al., 2015;
Huang et al., 2020). In sepsis-induced acute kidney injury (SAKI), a
lactate-mediated increase in Fis1 lactate levels promotes excessive
mitochondrial division, which subsequently leads to excessive
mitochondrial reactive oxygen species (MtROS) production and
mitochondrial apoptosis, providing a new perspective on novel
targets for AKI treatment (An et al., 2023). PTMs are involved in
the development of kidney disease, and the mechanism may be

FIGURE 2
The summary of the role and mechanisms of histone post-translational modifications (HPTMs) in renal diseases. Most HPTMs originate from acyl-
CoA. It has been verified that HPTMs participate in the regulation of apoptosis, inflammation, Wnt/β-catenin signaling, TGF-β signaling, and so on in renal
diseases. DKD: diabetic kidney disease; AKI: acute kidney injury; IgAN: IgA nephropathy; ccRCC: clear cell renal cell carcinoma. Histone methylation was
only studied for H3K4 and H3K27 methylation.
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related to inflammatory responses, oxidative stress, mitochondrial
function, autophagy and apoptosis of kidney cells, and other
physiological processes to protect the kidneys (Table 2). In this
part, we focus on the research progress of histone and some non-
histone post-translational repair in kidney diseases, especially DKD.

Acetylation

Histone acetylation (Kac), which involves the transfer of acetyl
groups to lysine residues, has garnered attention as a prominent
type of histone modification in renal pathogenesis. It alters the
charge of histone, leading to chromatin relaxation, and facilitates
the binding of transcription factors to promoters, thus promoting
gene expression. The dynamic balance of histone acetylation and
deacetylation is regulated by two opposing enzymes, histone
acetyltransferase (HAT) and histone deacetylase (HDAC),
respectively (Chen et al., 2014). HATs can be grouped into
three major families: GCN5, p300, and MYST. Similarly,
HDACs are divided into four classes: classes I (HDAC-1, 2, 3,
and 8), II (HDAC-4, 5, 6, 7, 9, and 10), III sirtuin family (SIRT1-
SIRT7), and IV (HDAC-11)(Bhaumik et al., 2007). HATs and
HDACs also regulate the acetylation and deacetylation of non-
histone proteins and are also referred to as lysine acetyltransferases
and lysine deacetylases, respectively (Narita et al., 2019).
Acetylation of numerous genes involved in kidney function can
be regulated by these enzymes.

Acetylation is a well-known histone modification type that has
been linked to diabetes pathogenesis. HDAC has been identified as a
critical player in DKD, with upregulation of HDAC-2, 4, and
5 detected in the kidneys of diabetic rats, db/db mice, and renal
biopsy samples of patients with diabetes (Wang et al., 2014). In a
2020 study by Shi et al., 2020, HDAC-4 was found to be involved in
podocyte apoptosis in DKD. Stimulation of podocytes with FK506, a
CaN inhibitor, after overexpression of HDAC-4, decreased CaN and
reduced Bax expression while increasing Bcl-2 expression,
ultimately attenuating podocyte apoptosis caused by HDAC-4
overexpression (Shi et al., 2020). Furthermore, renin instability
has been shown to decrease podocyte survival and accelerate
diabetes-induced renal damage, while HDAC-4 signaling is
involved in renin stability in the progression of diabetes-induced
podocyte injury. Inhibition of HDAC-4 has been demonstrated to
restore H3K9ac enrichment at the miR-29a promoter region and
increase miR-29a transcription in the high glucose-stimulated
podocyte state. Inhibition of HDAC-4 also restores the
acetylation status of nephrin, thereby improving diabetes-induced
podocyte injury and renal dysfunction. Additionally, miR-29a
overexpression significantly reduces HDAC4 levels, highlighting
the epigenetic involvement in the pathological process of
podocytes in DKD (Lin et al., 2014a).

Mammalian SIRT1, a conserved nicotinamide adenine
dinucleotide + -dependent protein deacetylase of the sirtuin
family, is expressed widely in mammalian cells (Afshar and
Murnane, 1999) and plays a crucial role in various biological

FIGURE 3
The process of protein glycosylation.
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TABLE 1 Summary of types of post-translational modifications in renal diseases.

Post-translational
modifications

Writers Readers Erasers Involved renal
diseases

References

Acetylation GCN5, PCAF P300/CBP MYST Bromodomaindou DPF
domain YEATS domain

HDACs: Class I(HDAC1-3,8);
Class II (HDAC4-7,9,10); Class

IV (HDAC-11) SIRT1-7

renal-proliferation
AKI DKD renal
fibrosis ccRCC

Villanueva et al. (2006), Wang et al.
(2014), Cai et al. (2020), Cui et al.
(2022b), Zhang and Cao, 2022

Glycosylation GTs (GT-A,GT-B,GT-C) - GHs DKD IgAN renal
fibrosis

Huang et al. (2016), Cannizzaro et al.
(2017), Morais et al. (2023), Xu et al.

(2023)

Phosphorylation STKs,TKs,DSKs(AGC,CAMK,CK1,CMGC,MAPKs,GSK3,CDK2,STE,TK,TKL) SLiMs PTPs,PPPs(PP1, PP2A, PP2B,
PP4–PP7)PPMs),DUSPs

DKD AKI renal
fibrosis

Tikoo et al. (2001), Ardito et al. (2017),
Alghamdi et al. (2018), Kliche and
Ivarsson (2022), Lin et al. (2023)

Crotonylation P300/CBP, PCAF, MOF DPF domain YEATS
domain CDYL

HDAC1-3,8 SIRT1-3 AKI Martinez-Moreno et al. (2020a)

2-hydroxyisobutyrylation P300 Tip60 _ HDAC1-3 SIRT3 renal-proliferation
AKI IgAN renal
fibrosis ESRD

Huang et al. (2021b), Perico et al.
(2021), Zheng et al. (2021)

β-hydroxybutyrylation P300/CBP _ HDAC1-3 SIRT1-3 DKD PKD Luo et al. (2020a)

Propionylation P300 GCN5/PCAF MYSTs Bromodomaindou
YEATS domain

SIRT1-3 ESRD Meyer et al. (2020a)

Butyrylation P300/CBP Bromodomaindou
YEATS domain

SIRT1-3 DKD Luo et al. (2020a)

Succinylation P300 GCN5 YEATS domain SIRT5 SIRT7 ccRCC Meyer et al. (2020a)

Malonylation _ _ SIRT2 SIRT5 _ _

Lactylation P300 _ HDAC1-3 ccRCC Yang et al. (2022)

Histone Methylation
(H3K4, H3K27)

Set1 Ezh2 PHD domain Chromo
domain

Jhd2 JARID2 DKD Chen et al. (2019), Cao et al. (2021)
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TABLE 2 PTM mechanisms in renal diseases.

PTM Target Pathway (target) Biologic effects Renal
diseases

Reference

Kac SIRT1 PGC-1α reduced oxidative stress DKD Hong et al. (2018)

SIRT1 FOXO4/BCL2 reduced apoptosis DKD Wakino et al. (2015), Chen
et al. (2020)

SIRT1 P53/AMPK enhanced autophagy and mute
inflammation and apoptosis

DKD Dong et al. (2021)

SIRT1 TGF-β/Smad3 reduced extracellular matrix protein
expression

CKD Huang et al. (2014)

SIRT1 P53/NF-κB Enhanced inflammation CKD Fu et al. (2022)

SIRT1 P53 alleviated oxidative stress and
reduced apoptosis

AKI Li et al. (2019)

SIRT1 HMGB1 mute inflammation SA-AKI Wei et al. (2019)

SIRT1 PGC-1α activated mitochondrial biogenesis
and respiration via oxidative

phosphorylation

AKI Funk and Schnellmann
(2013)

SIRT3 SOD2 reduced oxidative stress DKD Locatelli et al. (2020)

SIRT3 TGF-β/Smad3 led endothelial-to-mesenchymal
transition (EndMT)

DKD Sriyastava et al. (2021)

SIRT6 Notch enhanced autophagy DKD Liu et al. (2017)

SIRT6 WNT/β-catenin decreased fibrotic gene expression
and suppressed renal fibrosis

Renal fibrosis Cai et al. (2020), Jin et al.
(2022)

SIRT6 TGF-β/Smad3 Inhibited nuclear accumulation and
transcriptional activity

DKD Wang et al. (2021)

HDAC4 miR-29a/HDAC3/H3K9Ac reduced podocyte apoptosis,
glomerular fibrosis, inflammation,

and renal dysfunction

DKD Lin et al. (2014a)

HDAC3 p27Kip1 mute cell proliferation Kidney
development

Zhang et al. (2021)

HDAC4 BAX/BCL2 reduced apoptosis DKD Shi et al. (2020)

HDAC5 BMP7 promoted regeneration of the
injured kidney

I/R kidney Injury Marumo et al. (2008)

GCN5L1 TFAM led mitochondrial dysfunction AKI Lv et al. (2022)

GCN5L1 MnSOD relieved oxidative stress-induced
renal inflammation and fibrosis

DKD Lv et al. (2021)

p300 SNIP/TGF-β/SMAD4 Increased histone acetylation and the
activation of cell movement related

genes

ccRCC Cui et al. (2022b)

Glycosylation ENTPD5 N-glycosylation promoted proliferation or apoptosis
of tubular epithelial cells

DKD Xu et al. (2023)

IgA1 O-glycosylation resulted in the formation of
pathogenic immune complexes and

induced glomerular injury

IgAN Berthoux et al. (2012)

Phosphorylation SIRT3 MAPK/NF-κB regulated mitochondrial oxidative
capacity and expression of

antioxidant genes

proteinuric kidney
disease

Koyama et al. (2011)

SIRT6 AMPK mute apoptosis DKD Fan et al. (2019)

SIRT6 NF-κB reduced inflammation renal fibrosis You et al. (2019)

ATM/γH2AX regulated mitochondrial injury and
tubular cell apoptosis by DDR

AKI Ma et al. (2014)

(Continued on following page)
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processes, including aging (Xu et al., 2020), inflammation
(Nakamura et al., 2017), cancer (Zhang et al., 2015), metabolism
(Hong et al., 2015), and neurodegenerative diseases (Dobbin et al.,
2013). SIRT1, along with other sirtuins, also contributes significantly
to the development of renal disease (Hao and Haase, 2010). In
particular, SIRT1 expression in podocytes and glomerular cells of
human diabetic kidneys and the overall reduction of SIRT1 in db/db
mice have been shown to accelerate DKD progression, whereas
tubular SIRT1 expression mitigates diabetic glomerular injury
reduction and elevates SIRT1 expression in glomerular podocytes,
to attenuate DKD. Overexpression of SIRT1 in OVE diabetic mice
has been found to reduce podocyte foot process effacement,
glomerular basement membrane thickening, glomerular
hypertrophy, and mesangial matrix expansion, suggesting that
SIRT1 plays a role in and enhances the progression of DKD
(Hong et al., 2018). SIRT1 also reduces apoptotic degeneration of
podocytes and urinary protein by deacetylating FOXO4 and
suppressing the expression of pro-apoptotic factor Bcl2. Similarly,
reduced expression of SIRT1 in proximal tubules affects glomerular
function (Hasegawa et al., 2013; Wakino et al., 2015). Additionally,
inhibition of miR-150-5p promotes the interaction between
SIRT1 and p53, reduces p53 acetylation in podocytes and renal
tissue, and exerts a protective effect on the kidney in DKD mice
(Dong et al., 2021). In the kidneys, the most extensively studied
sirtuin is SIRT1, which, together with SIRT3, exerts cytoprotective
effects by inhibiting apoptosis, inflammation, and fibrosis. This
important metabolic sensor regulates ATP production and
mitochondrial adaptive responses to stress. Yoshio et al. found
that mitochondrial oxidative stress was caused by decreased
activities of superoxide dismutase 2 (SOD2) and isocitrate
dehydrogenase 2 (IDH2) in the kidneys of type 2 diabetic rats,
which was associated with a decreased intracellular NAD +/NADH
ratio and Sirt3 activity (Ogura et al., 2018). Further studies later
found that inhibition of CD38 with apigenin in the kidneys of
diabetic rats reduced tubular cell injury and proinflammatory gene
expression by increasing the intracellular NAD+/NADH ratio and

SIRT3-mediated mitochondrial antioxidant enzyme activity (Ogura
et al., 2020). In 2020, Monica et al. found that Honokiol was able to
activate SIRT3 signaling, and diabetic mice treated with Honokiol
had increased SIRT3 activity, decreased SOD2 acetylation levels, and
restored levels of NRF2, thus exerting a potential mechanism of its
antioxidant activity to protect the kidneys (Locatelli et al., 2020). In
addition, SIRT3 overexpression suppressed NF-κB-dependent
transcriptional activity of inflammatory genes, decreased
phosphorylation of ERK1/2 and p38, and decreased ROS levels,
indicating a possible molecular mechanism of SIRT3-mediated
antioxidant and anti-inflammatory effects in proximal tubular
cells (Koyama et al., 2011).SIRT3 deficiency has been reported to
promote mesenchymal transformation of tubular epithelial cells,
thereby inducing fibrosis in DKD (Sriyastava et al., 2021). SIRT6 is
also a potential therapeutic target for preventing and delaying DKD.
Liu et al. found that Sirt6 expression was downregulated in renal
biopsies from podocyte inury patients and correlated with the
glomerular filtration rate. In patient and mouse models of DKD,
reduction of SIRT6 levels leads to increased levels of H3K9ac in
Notch1 and Notch4 promoters, thereby enhancing transcription of
Notch1 or Notch4 genes. Activation of Notch signaling ultimately
leads to podocyte injury by inducing inflammation, apoptosis, actin
cytoskeleton disorganization, as well as inhibition of autophagy.
Among target genes downstream of the Notch signaling pathway,
HES1 and Snail are mainly associated with proteinuria in renal
diseases. Further, it was found that Snail and HES1 expression in
podocytes was promoted in a high-glucose environment, and
Sirt6 significantly inhibited their induction. Mitochondrial
function is impaired under high-glucose conditions, and the
transfection of plasmids overexpressing Sirt6 has been found to
protect mitochondrial function and reduce oxidative stress by
increasing AMPK phosphorylation (Liu et al., 2017; Fan et al.,
2019; Yang et al., 2022a). At the same time, SIRT6 reduced the
mRNA levels of inflammation-related factors IL-1β, IL-6, and TNF-
α in podocytes (Liu et al., 2017). This evidence suggests that
SIRT6 plays a protective role in high glucose-induced renal

TABLE 2 (Continued) PTM mechanisms in renal diseases.

PTM Target Pathway (target) Biologic effects Renal
diseases

Reference

H3Ser10 phosphorylation p38 MAPK/MSK1/2 facilitated glomerular endothelial
activation

DKD Alghamdi et al. (2018)

FADD TLR4/myD88/NF-Κb,
mTOR, TGF-β/Smad

indicated EMT renal fibrosis Lin et al. (2023)

MAP4 p38/MAPK -MAP4 prevented the dediferentiation and
apoptosis

DKD Li et al. (2022)

Cdk5 MEKK1/JNK reduced podocyte apoptosis DKD Zhang et al. (2017)

Kcr SIRT3 PGC-1α mute inflammation AKI Martinez-Moreno et al.
(2020b)

Ksucc SIRT5 SDHA promoted cell proliferation ccRCC Meyer et al. (2020a)

Kma SIRT5 aldolase A and B Involved in glycolysis and
peroxisomal fatty acid oxidation

DKD Baek et al. (2023)

Histone
methylation

UTX Jagge-1 facilitated inflammation and DNA
damage

DKD Chen et al. (2019)
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injury by reducing oxidative stress, mitochondrial damage, and
inflammation, demonstrating Sirt6 as a potential therapeutic
target in DKD (Yang et al., 2022a).

Previous research has established that SIRT1 can modify
numerous transcription factors, including Smad3, a transcription
factor that plays a significant role as a fibroblast mediator of
transforming growth factor (TGF)-β, which is implicated in the
development of CKD. The activation of SIRT1 has been shown to
inhibit TGF-β/Smad3 signaling, thereby reducing Smad3 acetylation
and improving renal fibrosis in 5/6 nephrectomized rats (Huang
et al., 2014). Recent studies have identified that the activation of
P53 inhibits the expression of SIRT1, resulting in increased
p65 acetylation and nuclear factor (NF)-κB activation in the
pathogenesis of CKD induced by repeated low-dose cisplatin
treatment. This leads to the development of chronic kidney
inflammation (Fu et al., 2022). Additionally, the SIRT1-p53
pathway plays a crucial role in cisplatin-induced premature renal
failure and renal fibrosis induced by cisplatin treatment. Cisplatin
triggers mitochondrial dysfunction and increased reactive oxygen

species (ROS) production, which down-regulates the expression of
SIRT1 and increases the level of acetylated p53, resulting in
premature renal failure and, in turn, renal interstitial fibrosis (Li
et al., 2019). Mitochondrial SIRT3 has been reported to play a critical
role in the regulation of mitochondrial integrity and metabolism.
Endothelial SIRT3 is an important anti-fibrotic molecule in diabetic
kidneys. In diabetic mouse kidneys, endothelial cell (EC)
SIRT3 regulates glucose and lipid metabolism and epithelial-
mesenchymal transition (EMT) through control of TGF-β-
Smad3 signaling. Kidneys from diabetic SIRT3 eKO mice were
found to display significantly higher levels of FSP-1, aSMA, and
TGFR1 in CD31-positive cells than those from diabetic littermate
controls. SIRT3 deficiency in ECs leads to higher levels of TGF-β-
smad3 signaling. It shows metabolism-related endothelial-to-
mesenchymal transition (EndMT) defects, disrupting EC
homeostasis and thus aggravating the process of fibrosis, which is
one of the fibrotic phenotypes leading to PKC activation and
PKM2 tetramer-to-dimer interconversion in diabetes (Sriyastava
et al., 2021). SIRT6 is also implicated in the development of renal

FIGURE 4
The process of protein phosphorylation.
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fibrosis. Cai et al., 2020 reported that SIRT6 deacetylates histone
H3K56, reducing the expression of FN and MMP7 in β-catenin
target genes. This suggests that the WNT/β-catenin signaling
pathway may be a promising therapeutic avenue for treating
renal fibrosis. Furthermore, SIRT6 was found to have some
therapeutic effect on tubulointerstitial inflammation and renal
fibrosis induced by unilateral ureteral obstruction (UUO) by
regulating acetylation of β-catenin and extracellular matrix
promoter enrichment at β-catenin acetylation sites (Jin et al.,
2022). In addition, SIRT6 reduces inflammation by negatively
regulating NF-κB signaling and synergistically regulates chronic
renal fibrosis in ureteral obstruction (You et al., 2019).

A study has reported that renal (I/R) injury causes a decrease in
p53 expression through the deacetylation of p53 by SIRT1, which
subsequently promotes p53 ubiquitination and proteasomal
degradation. Consequently, targeting the activation of SIRT1 and
deacetylation of p53 may be a viable therapeutic approach to
mitigate premature renal failure and delay the progression of
CKD following AKI (Fan et al., 2013; Fu et al., 2022). Prior
research has also shown that SIRT1 can alleviate sepsis-associated
AKI (SA-AKI). HMGB1, a critical inflammatory mediator in sepsis
pathogenesis, can be inhibited by SIRT1 through the deacetylation of
its K28, K29, and K30 lysine sites, thereby hindering its transfer from
the nucleus to the cytosol, suppressing the transmission of
downstream inflammatory signals, and ameliorating renal
function. These findings suggest a novel therapeutic strategy for
the treatment of SA-AKI (Wei et al., 2019).

According to emerging evidence, mitochondrial function is
thought to play a crucial role in kidney injury and repair
following AKI (Lan et al., 2016; Zhang et al., 2021). Genetic
deletion of one allele of SIRT1 significantly aggravated the
tubular injury and apoptosis in an ischemia-reperfusion injury-
induced AKI model (Fan et al., 2013). Further studies showed that
SIRT1 activates PGC-1a, an important driver of renal protection in
AKI (Tran et al., 2016), and activation of mitochondrial biogenesis
and oxidative respiration by oxidative phosphorylation leads to
proximal tubule repair (Funk and Schnellmann, 2013). Marina
et al. found that improving mitochondrial dynamics by
enhancing SIRT3 has the potential to be an approach to
improving and preventing AKI. Cisplatin-induced severe
mitochondrial damage in AKI mice was associated with
decreased SIRT3 in the proximal tubules. In mechanistic studies,
reduction of SIRT3 levels was found to initiate recruitment of the
split protein Drp1 on the mitochondrial membrane, as well as
downregulation of expression of the pro-fusion dynamin-related
protein OPA1, ultimately facilitating mitochondrial fission and
changing mitochondrial dynamics (Morigi et al., 2015). Further
studies have found that mesenchymal stromal cells (MSCs) have
renoprotective and regenerative driving forces after injury. Human
umbilical cord (UC)-MSCs transplanted into cisplatin-induced AKI
mice modulated the biogenesis of proximal tubule mitochondria by
increasing PGC1α expression, NAD + biosynthesis, and
SIRT3 activity, thereby promoting antioxidant defense and ATP
production (Perico et al., 2017). In a rat model of renal I/R injury, the
number of kidney mitochondria was significantly reduced due to
accompanying structural changes (Szeto et al., 2017). GCN5L1, a
newly identified acetyltransferase, was found to regulate
mitochondrial protein acetylation and various mitochondrial

biological functions. The expression of GCN5L1 was found to be
significantly increased in AKI, and knockdown of GCN5L1 was
found to reduce I/R-induced renal injury. GCN5L1 was found to
acetylate TFAM at its K76 site, impairing its binding to
TOMM70 and affecting its entry into mitochondria and DNA-
binding ability, leading to mitochondrial dysfunction (Lv et al.,
2022). GCN5L1 may serve as an energy sensor and modulator of
mitochondrial function and, therefore, represents a potential target
for intervention in DKD. In renal tissue from patients with DKD and
mouse models, as well as in renal tubular epithelial cells (TECs)
treated with high glucose, the expression of GCN5L1 was
significantly increased. Treatment of STZ-DKD mice with sh-
GN5L1AAV reduced tubulointerstitial injury and knockdown of
GCN5L1 in TECs similarly reduced epithelial-to-mesenchymal
transition (EMT) and inflammation, suggesting that targeting
GCN5L1 may be an attractive therapeutic option for DKD.
Moreover, the downregulation of GCN5L1 was found to protect
the kidney through the MnSOD/ROS pathway in vivo.
Downregulation of GCN5L1 was found to reduce acetylation
levels of MnSOD K68, thereby attenuating oxidative stress-
induced renal inflammation and fibrosis. GCN5L1 was found to
aggravate oxidative stress-induced kidney injury by mediating
MnSOD acetylation, indicating that GCN5L1 may be a potential
intervention target for the treatment of DKD (Lv et al., 2021). In
streptozotocin rats, stimulation with sodium butyrate (NaB) had a
therapeutic effect on the kidney, with decreased HDAC activity,
indicating that this protection was mediated by regulating histone
acetylation, particularly in the context of DKD (Khan and Jena,
2014).

In numerous renal diseases, HDAC is expressed, with HDAC-3
playing a particularly crucial role in kidney development due to its
unique structure. HDAC-3 hinders the proliferation of renal cells by
inhibiting p27Kip1 (Sharma et al., 2009; Zhang and Cao, 2021).
Recently, a novel anti-aging gene, NM_026333, was identified, and it
appears to prevent renal aging by inhibiting the autophagy protein
Atg7, which is related to HDAC-3 (Osanai et al., 2018). The kidney’s
regenerative capacity after transient ischemia makes it an optimal
organ for exploring I/R mechanisms. Ischemia induces histone
remodeling and is involved in renal recovery following
reperfusion. In proximal tubular cells, renal ischemia may lead to
decreased HAT activity, which lowers histone acetylation levels.
However, after reperfusion, the acetylation levels of histones are
partly restored by downregulating HDAC-5. BMP7, a significant
factor in kidney development, is involved in the regeneration
process of renal tubules to repair kidney injury, and the reduced
expression level of HDAC-5 causes the induction of
BMP7 expression in proximal tubules (Gould et al., 2002;
Villanueva et al., 2006; Marumo et al., 2008).

A recent genome-wide association study conducted by Chen
et al. has revealed the involvement of DPF3 in the development of
renal clear cell carcinoma (ccRCC). Upregulation of DPF3a
expression is observed in ccRCC, and DPF3a specifically interacts
with SNIP1 to form a complex with SMAD4, a key transcriptional
regulator of the TGF-β signaling pathway, and p300 HAT. This
complex activates p300 by binding SNIP1 and inhibiting its activity,
which leads to increased acetylation of local histones. Ultimately,
this activation of transcription results in cell migration, thus
promoting ccRCC metastasis. These findings suggest that
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DPF3 may serve as a potential therapeutic target for ccRCC (Cui
et al., 2022a).

Glycosylation

Protein glycosylation plays an important role in protein
secretion, stability, binding, folding, and activity and is one of the
most important PTMs of proteins. Protein glycolsylation includes
the addition of N-linked glycans, O-linked glycans, phosphorylated
glycans, glycosaminoglycans, and glycosylphosphatidylinositol
(GPI) anchors to the peptide back as well as C-mannosylation of
tryptophan glycosylation residues (Reily et al., 2019). Glycosylation
of proteins is catalyzed by glycosyltransferases (GTs), which transfer
sugars from donors to acceptors. In protein glycosylation, receptors
are proteins or sugars already attached to proteins. Sugar donors are
activated nucleotide sugars or phospholipid-linked sugars.
According to the structural fold of GT pairs, they can be divided
into one of three superfamilies: GT-A, GT-B, or GT-C (Figure 3). In
fact, changes in glycosylation canmodulate inflammatory responses,
allow viral immune escape, promote cancer cell metastasis, or
regulate apoptosis; the composition of glycome also impacts
kidney function in health and diseases (Reily et al., 2019).

Abnormal glucose metabolism in DKD patients may lead to
abnormal glycosylation, thereby driving DKD progression (Reily
et al., 2019; Inagi, 2021). Extracellular ribonucleoside triphosphate
diphosphate hydrolase 5 (ENTPD5) is an endoplasmic reticulum
(ER)-located nucleotide hydrolase that hydrolyzes UDP to UMP,
mediated by UGGT and promotes the correct folding of
N-glycoproteins in the ER (Fang et al., 2010). Xu et al. found
that ENTPD5 was mainly expressed in the renal tubules of the
kidneys, and the expression level of ENTPD5 was changed in the late
stage of DKD in diabetic mice and patients, first increasing and then
decreasing. ENTPD5 has been reported to be an indicator for the
clinical judgment of the pathological stage of DKD. More
importantly, mechanistic studies in DKD have shown that
hyperglycemia activates the hexosamine biosynthesis pathway
(HBP), which promotes or inhibits SP1 O-glycosylation through
a negative feedback mechanism, thereby regulating
ENTPD5 expression at the transcriptional level.
ENTPD5 regulates the N-glycosylation of unfolded proteins in
the ER and promotes the proliferation or apoptosis of tubular
epithelial cells. Interestingly, ENTPD5 has also been shown to be
involved in the progression of other renal diseases by Xu et al., 2023
In a mouse model of UUO-induced nephropathy, multi-point
injection of AAV-ENTPD5 and AAV-SH-ENTPD5 into the renal
cortex upregulated and downregulated the expression of ENTPD5,
and the results showed that UUO mice with overexpressed
ENTPD5 had decreased creatinine and blood urea nitrogen
levels, significantly improved renal morphology, reduced renal
interstitial fibrosis, and decreased tubular cell apoptosis. In
addition, Ankita et al. discovered the role of long non-coding
RNAs (lncRNAs) in DKD with glycosylation, providing new
ideas for exploring the remission of glycosylation-related diabetic
nephropathy (Durge et al., 2022). IgAN is the most common
primary glomerulonephritis worldwide and is characterized by
the deposition of polymerized Gd-IgA1 on the mesangium in the
form of immune complexes. Most IgAN patients have elevated Gd-

IgA1 serum levels (Moldoveanu et al., 2007; Berthoux et al., 2012).
Aberrant glycosylation of IgA1 O-glycans is present in genetically
susceptible individuals and autoantigenic epitopes that can be
recognized by IgG autoantibodies (Huang et al., 2016; Suzuki and
Novak, 2021), leading to the formation of ICs containing Gd-IgA1
and renal deposition, which leads to glomerular injury (Lai et al.,
2016; Suzuki and Novak, 2021). Nephrin is reported to be a
membrane glycoprotein expressed on the surfaces of podocytes,
where it functions as an adhesion and scaffold receptor and signaling
molecule. N-glycosylation at up to 10 potential glycosylation sites is
crucial for the proper folding, transport, surface expression, and
function of nephrin. Indeed, N-glucan deficiency in neparin leads to
poor septal cleft formation and impaired renal function (Reily et al.,
2019). This evidence suggests that glycosylation impacts aberrant
cell signaling, transcription factor activation, and alterations in gene
expression patterns, in addition to affecting protein structure and
function.

In addition, the final products formed by glycosylation are called
glycation end products (AGEs). AGEs have been reported to play an
important role in the etiology of kidney injury in diabetic
nephropathy. The severity of diabetic nephropathy is closely
related to the number of AGEs and the expression of advanced
glycation end product receptors (RAGE) in the glomerular and
tubulointerstitial compartments. AGEs are thought to be a factor in
decreased renal filtration rate (GFR) in diabetic nephropathy. AGEs
promote the synthesis of asymmetric dimethylarginine (ADMA),
which is inversely correlated with endothelial function. In addition,
AGEs decreased mRNA levels of the ADMA-degrading enzyme
dimethylarginine dimethylaminohydrolase (DDAH-II) and
increased ADMA levels, and the antioxidant N-acetylcysteine
inhibited the development of these phenomena. The results
suggest that AGE-RAGE-mediated ROS production may be
associated with endothelial dysfunction in diabetic end-stage
renal disease patients and may promote ADMA formation by
decreasing DDAH activity in endothelial cells (Ando et al., 2013;
Khanam et al., 2023). In addition, AGEs affect extracellular matrix
(ECM)metabolism and contribute to the development of diabetic
nephropathy. Diabetic nephropathy is characterized by ECM
accumulation in the glomerular mesangium, tubulointerstitium,
and glomerular basement membrane. AGEs affect collagen
metabolism and interfere with extracellular matrix and cell-
matrix interactions, leading to the loss of the epithelial
phenotype. Accumulation of AGEs in extracellular matrix
components aggravates glomerulosclerosis, and glycosylated
collagen in basement membranes promotes platelet aggregation
(Marshall, 2016). AGEs promote expression of TGF-β and
promote fibrosis in podocytes, tubular epithelial cells, and
mesangial cells (Coughlan et al., 2007; Khanam et al., 2023).
Briefly, AGEs caused changes in ECM and the appearance of a
late renal phenotype. Interestingly, AGEs have been found to bind to
their specific RAGE and can activate NF-κB signaling to promote an
increase in the level of the inflammatory factor TNF-α. Meanwhile,
the AGE-RAGE axis promotes the production of ROS by activating
NADPH oxidase and, through other similar mechanisms, leads to
aggravated oxidative damage to cells and promotes fibrotic
responses in diabetic nephropathy (Tobon-Velasco et al., 2014;
Cannizzaro et al., 2017). More interestingly, Li et al. explored the
effect of flavonoids from buckwheat husk extract on AGEs. They
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synthesized two different types of AGEs, including the BSA-MGO
model and the BSA-Glu model, to explore the effects of total
buckwheat husk flavonoids (TBHF) as well as each monomer
compound on these two models. The results demonstrated that
both AGEs could be effectively mitigated in all experimental groups,
with a stronger effect observed on the BSA-MGO model. The
flavonoid monomer component had a more significant and
effective breaking effect than TBHFs. At the same time, mouse
experiments have confirmed a more significant inhibitory effect on
the AGE-RAGE signaling pathway (Li et al., 2021).

Phosphorylation

Phosphorylation has long been an important PTM of proteins,
and its role in kidney diseases has also gained increasing attention.
Here, we briefly present studies on the role and molecular
mechanisms of histone phosphorylation and non-histone
phosphorylation in kidney diseases (Figure 4).

Sixteen histone residues have been reported to be
phosphorylated in mammalians (Banerjee and Chakravarti,
2011). Histone phosphorylation is involved in many aspects of
chromatin function, which include transcriptional activation and
repression, chromatin condensation, and DNA repair.
Phosphorylation of serine 10 and 28 of H3 and serine 32 of H2B
is associated with regulating epidermal growth factor (EGF)-
responsive gene transcription, while EGF and its receptor play an
important role in renal regeneration after AKI. It has been found
that inhibition of H3 phosphorylation by PD98059, a selective
mitogen-activated protein kinase 1 inhibitor, or poly (ADP-
ribose) polymerase inhibition with 3-aminobenzamide, improves
tubular cell survival (Tikoo et al., 2001). Phosphorylation of histone
H2AX at Ser139 by ATM in mammalian cells is a biochemical
hallmark of the DNA damage response (DDR). Phosphorylated
H2AX, also known as γH2AX, significantly increased γH2AX-
positive tubular epithelial cells in ischemia-reperfusion cortical
tissues (Ma et al., 2014). Histone phosphorylation modifications
are also important in DKD. DKD is an inflammatory disease and an
endothelial disease. The receptor CCR2 expressed by GECs was
found to bind to ligands and induce upregulation of expression of
the proinflammatory adhesion molecule VCAM-1 through a
pathway dependent on the regulation of
H3Ser10 phosphorylation of MSK1/2. Histone H3Ser10 levels are
elevated in experimental and human DKDs, which allows us to
continue to explore therapeutic targets for DKD from a new
perspective (Alghamdi et al., 2018).

Lin et al. explored the mechanism of FADD phosphorylation in
renal fibrosis in FADD-D mice (Hua et al., 2003). Phosphorylation
of FADD has been found to activate the TLR4/myD88/NF-κB,
mTOR, and TGF-β/Smad signaling pathways. First, activation of
the TLR4/myD88/NF-κB pathway was detected by quantitative
polymerase chain reaction and western blotting in FADD mice.
The expression levels of inflammatory cytokines TNF-α, IL-6, and
TNF-β were significantly increased, and the degree of macrophage
infiltration was significantly increased compared with those in
controls. In addition, protein levels of P70S6K, as well as
phosphorylation levels of mTOR, GSK3β, and AKT, were
significantly increased in FADD-D mice. Immunofluorescence

staining showed that expression levels of myofibroblast markers
such as Snail, N-cadherin, vimentin, and fibronectin were
significantly increased compared with those of control mice, and
these data suggest that FADD phosphorylation promotes EMT as
well as pro-fibrotic factor expression through the mTOR pathway.
Interestingly, knockdown or overexpression of FADD in MES cells
and HK2 cells showed increased expression levels of α-SMA and
TGF-β1 and decreased expression of E-cadherin, activating the
TGF-β1 pathway and promoting the process of EMT. This
evidence led us to understand that phosphorylation of FADD
may lead to IgA nephritis and, ultimately, renal fibrosis (Lin
et al., 2023). In addition, Li et al. first demonstrated increased
phosphorylation of microtubule-associated protein 4 (MAP4) in
urine samples from diabetes patients and in streptozotocin (STZ)-
induced diabetic mouse kidneys. MAP4 phosphorylation induces
tubulin (MT) and F-actin rearrangement, podocyte EMT, and
apoptosis, leading to proteinuria, similar to the processes in
diabetic nephropathy. Blocking p38/MAPK signaling inhibited
podocyte differentiation and apoptosis. These results suggest that
modulation of p38/MAPKMAP4 phosphorylation signaling may
identify a novel therapeutic target to attenuate proteinuria and renal
fibrosis in patients with diabetic nephropathy (Li et al., 2022). ER
stress has been reported to be associated with podocyte apoptosis in
diabetic nephropathy. Zhang et al., 2017 found that cyclin-
dependent kinase 5 (Cdk5) plays an important role in its
mechanism. High-glucose stimulation was found to rapidly
induce upregulation of expression of GPR78, an ER stress
marker, while tunicamycin (TM), an ER stress inducer, promoted
Cdk5 expression in podocytes. Importantly, CDK5 phosphorylates
MEKK1 at Ser280 in TM-treated podocytes, and they increase JNK
phosphorylation. In addition, blocking this pathway could reduce
TM-induced podocyte apoptosis. These results suggest that
Cdk5 plays an important role in ER stress-induced podocyte
apoptosis in diabetic nephropathy through the MEKK1/JNK
pathway. In addition, Cdk5, as a key kinase, can participate in
mitochondrial dysfunction and podocyte injury by promoting
Sirt1 phosphorylation at S47, which leads to the progression of
diabetic nephropathy (Wang et al., 2021). Interestingly, sulfides have
been found to have some protective effects in the kidney in recent
years, and Sun et al. explored the mechanism of action of NaS in
renal injury and found that Na2S4 ameliorates diabetes-induced
renal injury by sulfidation and upregulation of SIRT1 protein
expression, followed by inhibition of p65 NF-κB/
STAT3 phosphorylation and acetylation (Sun et al., 2021).

This evidence leads us to understand the role and molecular
mechanism of protein phosphorylation in kidney diseases, and
PTMs have gradually become a new idea for treating kidney
diseases, providing more options for treatment.

Crotonylation

Histone lysine crotonylation (Kcr), an evolutionarily-conserved
histone mark, involves a modification of the addition of crotonyl
moieties from crotonyl-CoA to lysine residues, leading to changes in
the charge of histones (Tweedie-Cullen et al., 2012; Fontecha-
Barriuso et al., 2018). Kcr, a novel PTM, was initially identified
in human cell lines and mouse sperm histones (Peng et al., 2011). It
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is present in all core histones and acts as a marker for active
promoters and potential enhancers (Tan et al., 2011). In a
previous study, the role of acetylation modification in various
renal diseases and renal cancer was reviewed, highlighting its
significance in kidney function. Although histone crotonylation
and histone acetylation share enzyme modulators and structurally
similar modifier groups, they differ in function and mechanism.
Crotonylation is essential for mammalian cell transcription and is
not redundant with acetylation (Tan et al., 2011; Wei et al., 2017).
The transferases involved in crotonylation include HCT, P300/CBP,
PCAF, and MOF, while those involved in descrotonylation are
HDAC-1, HDAC-2, HDAC-3, HDAC-8, SIRT1, SIRT2, and
SIRT3 (Wan et al., 2019). In this review, we present the current
understanding of the role of lysine crotonylation in renal diseases
and the associated molecular mechanisms.

AKI and CKD represent severe and closely interconnected
consequences of kidney injury, given that CKD can increase the
likelihood of AKI and, in turn, worsen CKD progression. Renal
injury is currently considered the most prominent disease for
assessing the function and extent of histone crotonylation, which
has been observed to increase during AKI (Justo et al., 2006).
Notably, the therapeutic potential of crotonate in treating AKI-
induced kidney injury-has been attributed to its ability to enhance
histone crotonylation. CCL2, a chemokine known to promote renal
inflammation, can be countered by the protective effects of PGC1a
and SIRT3 on the kidney (Ruiz-Andres et al., 2016; Fontecha-
Barriuso et al., 2019; Martinez-Moreno et al., 2020a). In vitro cell
experiments conducted onmouse tubular epithelial cells have shown
that crotonate treatment induces an increase in histone
crotonylation, thereby promoting increased expression of PGC1a
and SIRT3 and decreased expression of CCL2 (Martinez-Moreno
et al., 2020b). These findings suggest that histone crotonylation plays
a favorable role in mitigating renal injury; however, the therapeutic
efficacy of histone crotonylation in treating DKD requires further
investigation.

Huang et al., 2021a have identified that class B scavenger
receptor CD36 is strongly associated with renal failure based on
the KEGG pathway enrichment analysis. CD36 is expressed in
various renal cells, including the proximal tubular epithelial cells,
mesangial cells, podocytes, monocytes, and macrophages. It plays a
pivotal role in diverse biological processes such as lipid
accumulation, inflammation, energy reprogramming, apoptosis,
and renal fibrosis (Yang et al., 2017). Notably, histone
crotonylation has been shown to influence the expression of
CD36-related genes, and modulating histone and non-histone
crotonylation may have therapeutic potential for treating patients
with chronic renal failure (CRF) by slowing disease progression and
restoring these functions.

2-hydroxyisobutyrylation

2-hydroxyisobutyrylation (Khib), a PTM that utilizes 2-
hydroxyisobutyrate (HIBA) and 2-hydroxyisobutyryl-CoA
(HibCoA) as substrates, is conserved across eukaryotic and
prokaryotic cells and is involved in various biological processes
(Dai et al., 2014; Huang et al., 2018a). The catalytic enzymes for this
modification are P300 and Tip60, while HDAC1-3 and SIRT3 are

responsible for its removal (Huang et al., 2018b; Wang et al., 2022b).
During kidney development, epigenetic regulation plays a crucial
role, with Khib, in addition to DNAmethylation and H3K27me, also
contributing to this process. SIRT3, functioning as a de-2-
hydroxyisobutyrylase, is highly expressed in early kidney
development, with increased histone lysine H3 and H4 Khib
promoting glycolytic processes in SIRT3-null mice. However,
after AKI, Khib may lead to renal function impairment or even
death (Perico et al., 2021). Khib has also been found to play a role in
important cellular processes such as glycolysis/gluconeogenesis and
the tricarboxylic acid cycle (TCA) cycle. A recent study by Huang
et al., 2021b in 2021 has shown that Khib mainly accumulates in the
interleukin (IL)-17 signaling pathway and phagosome category,
which is associated with IgAN. As renal fibrosis is a common
marker of various etiologies, including CKD and ESRD,
understanding its pathogenesis is particularly important. The
Rho/Rho-Kinase (Rho/ROCK) signaling pathway, which is
significantly upregulated in ESRD, is found to be modified by
Khib, and through this pathway, this modification may promote
renal fibrosis in mesangial cells (Zheng et al., 2021). Although this
sheds light on the role of Khib in renal diseases, more research is
necessary to elucidate the impact of histone modifications in the
context of other renal diseases.

β-hydroxybutyrylation
β-hydroxybutyrate (BHB) is the predominant ketone body,

contributing to 70%–80% of the overall ketone pool. It is
biosynthesized by the hepatic metabolism of fatty acids under
conditions of diminished glucose levels and energy demand in
the body (Anson et al., 2003). In the cellular milieu, increased
levels of BHB promote lysine β-hydroxybutyrylation (Kbhb) on
histones, thereby demonstrating an association of histone Kbhb
marking with active gene promoters of ketoacid-induced metabolic
pathways. The discovery of histone Kbhb as an innovative epigenetic
regulator of cellular physiology and pathology has garnered
significant attention (Xie et al., 2016). The enzymatic catalysis of
BHB at lysine residues is facilitated by CBP and p300, whereas
SIRT13 and HDAC1-3 are involved in its removal. However, further
investigation is warranted to identify the histone Kbhb-specific
“eraser” (Zhao et al., 2018; Chen et al., 2020; Zhou et al., 2022a).

Although ketosis is known to be detrimental to individuals with
diabetes, BHB at physiological concentrations below 10 mM may
play a crucial protective role. Moderately elevated ketone levels have
been closely linked to increased insulin sensitivity in diabetes.
Studies have demonstrated that feeding mouse models with type
1 (Akita) and type 2 (db/db) diabetes with a ketogenic diet for
8 weeks reduces blood glucose levels, urine protein/creatinine ratio,
and oxidative stress-related gene expression (Poplawski et al., 2011).
The use of BHB has also been found to reduce diabetic retinopathy
(Min et al., 2018; Luo et al., 2020a). Although the relationship
between BHB and DKD has been explored to a lesser extent, the
potential beneficial effects of Kbhb in DKD have been suggested.
Elevated serum BHB levels have been found in both fasted and
streptozotocin-diabetic mice, and this increase in BHB is associated
with an increase in histone Kbhb levels, possibly due to histone
Kbhb’s role in energy metabolism reprogramming (Xie et al., 2016).
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Studies have further revealed that BHB may have a protective effect
against oxidative stress in the mouse kidney by inhibiting the
activities of HDAC-1 and HDAC-2 and inducing histone
acetylation at the promoter genes (Foxo3a and Mt2) of anti-
oxidative stress (Shimazu et al., 2013). The expression of anti-
oxidative stress genes, such as Duox1 and SOD1, may be
increased in renal disease, thereby improving -DKD-in type 1
(Akita) and type 2 (db/db) diabetic mice, and BHB may play a
role in this regard. Although it has not been verified in renal cells,
BHB has been found to protect neuronal cells from glucose-induced
oxidative stress (Obokata et al., 2017). Studies have also
demonstrated the therapeutic effect of BHB on glomerulosclerosis
in diabetic rats, as it ameliorated glomerulosclerosis by increasing
the expression level of matrix metalloproteinase-2 (MMP-2) and
causing an increase in H3K9bhb at the MMP2 promoter in the
kidney of diabetic rats, thus alleviating the morphological changes of
glomeruli and glomerular type IV collagen content (Luo et al.,
2020a).

Prior research has revealed that dietary restriction is linked to
reduced renal cyst growth and mTOR activity in mouse models of
PKD (Kipp et al., 2016). Recent investigations have established that
time-limited feeding (TRF) can lower mTORC1 and
STAT3 signaling, as well as alleviate interstitial fibrosis and
proliferation in cystic kidneys. Additionally, oral administration
of BHB has been found to delay the advancement of PKD in
juvenile rats, suggesting that BHB could potentially influence the
progression of PKD through specific molecular mechanisms (Torres
et al., 2019; Luo et al., 2020a).

Propionylation and butyrylation

In 2007, Chen et al. reported the discovery of two novel in vivo
lysine modifications in histones: propionylation (Kpr) and
butyrylation (Kbu). Through in vitro labeling and mass
spectrometry peptide mapping, it was confirmed that
acetyltransferase p300 and CREB binding proteins catalyze the
lysine propionylation and lysine Kbu of histones. The acyl groups
responsible for Kpr and Kbu originate from propionate and
butyrate, respectively, and are converted into small active
molecules similar to acetyl-CoA via ACSS2. These molecules
participate in the mediation of histone acylation processes (Chen
et al., 2007).

In 2019, Fabian and colleagues reported the potential benefits of
propionate supplementation in reducing systemic inflammatory
response and protecting against ESRD in patients (Meyer et al.,
2020a). Contrast-induced nephropathy (CIN) can lead to AKI and
inhibit the activation of NF-κB even after NaB treatment, resulting
in inflammatory response and tubular injury (Machado et al., 2012).
In a rat model of AKI induced by I/R, pre-conditioning with butyric
acid significantly improved renal function and reduced serum
creatinine levels, thus mitigating I/R-induced renal damage (Sun
et al., 2022). Zhou et al. discovered that intraperitoneal injection of
NaB could alleviate dyslipidemia in DKD mice, maintain glucose
and lipid homeostasis through non-gastrointestinal intervention,
and improve renal injury caused by DKD. Furthermore, their study
revealed that histone H3K9bu was significantly up-regulated by
NaB, which played a role in reversing anti-inflammatory and anti-

fibrotic effects and improving renal injury caused by DKD (Zhou
et al., 2022b).

Succinylation

In 2010, Zhang et al. reported the first identification and
validation of lysine succinylation (Ksucc) in Escherichia coli
proteins. This modification entails the transfer of a succinyl
group to a lysine residue in the protein and is a reversible and
dynamic process that is evolutionarily conserved (Zhang et al.,
2011). Subsequent investigations have comprehensively explored
succinylation in bacterial and mammalian cells, revealing its
widespread occurrence in various mitochondrial metabolic
enzymes (Park et al., 2013) and its association with diverse
diseases, including the liver, heart, and lung diseases (Sadhukhan
et al., 2016). Notably, Ksucc has also been implicated in the
pathogenesis of renal disease. Studies have revealed a significant
increase in succinate levels in the cytosol during I/R in the I/R rat
model, closely linked with reactive oxygen species generation
(Kamarauskaite et al., 2020). Furthermore, the accumulation of
succinate in the diabetic kidney has been shown to inhibit
mitochondrial fatty acid oxidation dysregulation and promote the
formation of ROS (Wang et al., 2022c). SIRT5, a crucial eraser,
regulates protein succinylation. In ccRCC, SIRT5 can synchronously
inhibit succinylation of the succinate dehydrogenase (SDH)
complex subunit A (SDHA) to promote the proliferation of
ccRCC cells, thus providing a novel avenue for the treatment of
ccRCC (Meyer et al., 2020a).

Malonylation

Chao et al. have successfully validated the conserved PTM,
malonylation (Kma) in mammalian and bacterial cells. They
identified SIRT5 as a key regulatory enzyme for both lysine
malonylation and lysine succinylation and demonstrated its
ability to catalyze lysine desmalonylation and desuccinylation
reactions both in vitro and in vivo (Peng et al., 2011). Through
functional enrichment analysis, they have revealed significant
enrichment of Kma in glucose and fatty acid metabolic pathways
(Du et al., 2015). Moreover, their investigations indicate that histone
malonylation levels are elevated in NE4C of high glucose-treated
mice, suggesting the potential involvement of histone malonylation
in neurological complications of diabetes. The authors have also
established a close relationship between protein malonylation and
energy metabolism processes, such as glycolysis and mitochondrial
respiration. SIRT5 deficiency in chondrocytes results in elevated
malonylation and alters cellular metabolic processes, particularly
related to the TCA, glycolysis, and amino acid cycles (Zhu et al.,
2021a). Interestingly, Judy et al. found reduced malonylation levels
in the renal cortexof type 2 diabetic BKS db/db mice, which
correlated well with increased SIRT5 expression. Proteomic
analysis showed that the malonylation levels of aldolase A and
aldolase B, targets of the glycolytic pathway, were significantly
decreased in the db/db cortex, as well as the malonylation levels
of PGM1, PFKM, LDHA, LDHB, and other enzymes in the
glycolytic pathway. At the same time, the malonylation levels of
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SLC27A2, CAT1, ACOX1, DBP, LBP, SCP2, and other enzymes in
the peroxisomal fatty acid oxidation pathway were also decreased in
diabetic db/db cortices. Interestingly, increases in SIRT5 levels and
decreases in malonylation were found to be associated with increases
in peroxisomal FAO. Importantly, investigators also analyzed
diabetic kidney transcriptome data from a West South American
Indian cohort and showed tubulointerstitial-specific increases in
SIRT5 expression. These data allow us to gain further insights into
the potential role of SIRT5 in themetabolic reprogramming of DKD,
and its role in propionylation makes SIRT5 a potential target for the
treatment of DKD (Baek et al., 2023). Additionally, the authors
investigated the role of malonic acid acylation in renal I/R injury and
found that inhibition of the mitochondrial enzyme SDH using
malonate prodrugs can effectively improve renal injury caused by
ROS production during ischemia. In summary, these findings
suggest that malonylation plays a critical role in various cellular
processes and disease states, particularly DKD, and warrants further
investigation (Beach et al., 2020).

Lactylation

In 2019, Professor Yingming Zhao and his research team at the
University of Chicago identified a novel form of post-translational
protein modification known as lysine lactylation (Kla), which
involves adding a lactate group to lysine residues of nuclear
histones. Histone lactylation has been shown to play a role in
regulating tumorigenesis by activating gene transcription and
inflammation through macrophages (Jiang et al., 2021; Xie et al.,
2022). Further studies have since demonstrated that lactylation is a
crucial mechanism for lactate to exert its biological functions,
including regulation of glycolysis-related cellular functions (Li
et al., 2020), macrophage polarization (Irizarry-Caro et al., 2020),
nervous system regulation (Hagihara et al., 2021), and development
in rice grains (Meng et al., 2021). Lactylation has been implicated in
numerous physiological effects and linked to the pathophysiology of
several diseases, including renal disorders. Specifically, lysine
lactylation is induced by lactic acid, and the H3K18la
modification has been found to be highly enriched at the
promoter of the platelet-derived growth factor receptor β
(PDGFRβ). Lactylation modification activates the transcription of
PDGFRβ, thereby promoting tumor proliferation and migration in
ccRCC (Yang et al., 2022).

In 2021, Cui et al., 2021 revealed that lactate could stimulate the
lactylation of histones via p300 in lung myofibroblasts, which
consequently facilitates the profibrotic response of macrophages,
leading to the advancement of pulmonary fibrosis. Recent studies
have demonstrated that lactate is not merely a “waste product” of
glycolysis, as it is capable of regulating both innate and adaptive
immune cells and causing considerable changes in gene expression
(Martinez-Outschoorn et al., 2011; Haas et al., 2016). Despite this,
renal lactylation has not been fully explored. During the onset of
AKI, the clearance of lactic acid in the kidney declines, resulting in
its accumulation in the bloodstream. Subsequently, this accumulated
lactic acid contributes to the recovery process of AKI (Wen et al.,
2021). The precise mechanisms and functions of lactylation in renal
diseases necessitate further investigation. Renal diseases are
commonly associated with significant pathogenic factors such as

ischemia and hypoxia. In the context of DKD, there is evidence of
elevated lactate production, which merits further exploration in
terms of the potential impact of lactylation on DKD. Further
research is therefore warranted to elucidate the role of lactylation
in DKD (Lin et al., 2011).

Previously, relevant studies on the role and molecular
mechanisms of acetylation in renal diseases were reviewed.
Subsequent investigations have shown that P300, traditionally
known as a HAT, is also overexpressed and capable of decreasing
the expression in HEK293T and HCT116 cells (Zhang et al., 2019),
thereby highlighting its potential as a “writer” of lactylation.
However, the potential association between lactylation and
acetylation remains unclear. Notably, histone lactylation levels
increased at 16–24 h during M1 macrophage polarization, while
acetylation levels decreased at the corresponding time nodes after
lipopolysaccharide and interferon-gamma treatment of bone
marrow-derived macrophages (Zhang et al., 2019). Thus, a
possible divergence between lactylation and acetylation may exist.
Consequently, given the possibility of lactylation and acetylation
playing a pivotal role in the advancement of renal diseases, further
investigations are required.

Histone methylation

Histone methylation is a vital process that involves the transfer
of methyl groups to histone lysine or arginine residues by histone
methyltransferases (HMTs). This process is critical for the
regulation of gene expression and maintenance of genome
stability, which require coordinated enzymatic regulations (Audia
and Campbell, 2016). Histone methylation relies on HMTs, which
can be classified into lysine-specific (KMTs) and arginine-specific
(PRMT) methyltransferases (Black and Whetstine, 2013). The
extent of methylation varies for different lysine and arginine
residues, with lysine residues accepting up to three methyl
groups to produce mono-, di-, or trimethyl-lysine, while arginine
residues can accept up to two methyl groups to yield mono- or
dimethyl-arginine. Reversible covalent modifications of histones are
a crucial aspect of this process, and lysine-specific demethylase 1A
(KDM1A, also known as LSD1) has been identified as the first
demethylase to catalyze H3K4 and H3K9 demethylation. However,
research on arginine demethylase is still in progress (Shi et al., 2004).

In recent years, there has been increasing evidence to suggest
that histone modifications play a critical role in various pathological
processes associated with diabetes, including metabolic memory,
inflammatory response, and endothelial dysfunction. Among these
modifications, histone methylation has emerged as a key player in
the pathogenesis of DKD, along with acetylation. Several previous
studies have established the involvement of various histone
methylation modifications in the development of DKD, such as
H3K4me1/2/3, H3K36me2/3, H3K79me2, H3K9me2/3,
H3K27me3, and H4K20me3 (Zhong and Kowluru, 2010; Liao
et al., 2018; Qu et al., 2020). Notably, H3K27 and H3K4 are two
widely investigated histone methylation modifications (Sun et al.,
2014). The former is targeted by two specific histone demethylases,
UTX (also known as KDM6A) and JMJD3 (also known as KDM6B),
with UTX being upregulated in podocytes of patients with DKD and
focal segmental glomerulosclerosis. Studies have demonstrated that
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UTX modulates the pathogenesis of DKD in multiple ways,
including promoting inflammatory responses and DNA damage,
whereas overexpression of UTX in podocytes can upregulate Jagge-1
(Majumder et al., 2018). Furthermore, UTX overexpression in renal
tubular and mesangial cells has been shown to improve early DKD
lesions in animal models, indicating its potential as a therapeutic
target for DKD (Chen et al., 2019). H3K4me3 is also implicated in
DKD development, with PTIP, a component of the MLL3/4 histone-
H3K4 methyltransferase complex, playing a critical role. Notably,
the downregulation of DACH1 in podocytes has been shown to
reduce DACH1-PTIP promoter binding, resulting in elevated
H3K4me3 levels and increased susceptibility to podocyte injury
(Cao et al., 2021).

Epigenetic regulation is a process that induces changes in gene
expression without modifying the heritable changes in DNA, and
it has a significant role in the pathophysiology of kidney
transplantation. During kidney transplantation, I/R is a process
that cannot be avoided (Debout et al., 2015). In cases of acute
tubular necrosis in acute and chronic allograft injuries, the
demethylation of the C3 complement gene, and the
methylation of the CALCA (calcitonin-related polypeptide α)
gene in the urine of renal transplant patients demonstrate that
DNA methylation has potential therapeutic benefits in cold
ischemia-related kidney transplantation injury (Mehta et al.,
2006; Parker et al., 2008). The methylation of different T cells
can alter immunoreactivity outcomes after kidney transplantation.
In 2011, Bestard et al. discovered that demethylation of Foxp3 was
associated with a high expression of Treg cells and rejection
outcomes in kidney transplant patients. In 2020, it was
demonstrated in mouse kidney transplantation that
demethylation with DNA methyltransferase (DNMT) inhibitors
and negative regulators that enhance the mTOR signaling pathway
can decrease inflammatory damage and acute rejection in kidney
transplantation (Zhu et al., 2021b).

Prior investigations have demonstrated that disruption and
activation of endoplasmic reticulum proteostasis play a crucial
role in the development of various kidney-related ailments, such
as glomerulosclerosis, glomerulonephritis, ischemia, DKD,
nephrotoxicity, and CKD (Liu et al., 2016; Cybulsky, 2017; Gu
et al., 2018). Consequently, targeting the deficient cellular unfolded
protein response could be a potential therapeutic strategy for halting
or mitigating the progression of renal diseases. Recent studies
indicate that histone H3K9 and H3K27 methylation can enhance
ER stress, thus ameliorating oxidative stress and the concomitant
pathological process of exacerbating kidney damage (Diaz-Bulnes
et al., 2022).

Potential therapeutic applications in
kidney disease

PTMs are important candidate targets for the prevention and
treatment of kidney diseases. In this review, we reveal the important
role of PTMs in various renal diseases. We found that PTMs have
multiple protective effects on the kidneys, including relieving
oxidative stress and inflammatory responses, decreasing levels of
apoptosis, increasing autophagy, promoting gene expression, and
regulating ATP and mitochondrial homeostasis, indicating that

PTMs are significant therapeutic targets for preventing kidney
diseases. In this context, it is important to highlight the
emergence of novel protein PTMs, such as lactation, which
provide new ideas for treating kidney diseases. In addition, by
summarizing the therapeutic targets of PTMs in renal diseases
(Table 2), we found that most studies of PTMs are clinical
studies, and therefore, the focus of PTM research needs to shift
to clinical applications, including pharmacokinetic,
pharmacodynamic, and safety studies of various transferases and
detransferase agonists or inhibitors.

Epigenetic modifiers can serve as potential therapeutic targets
for renal disease, and promising results have been obtained in
randomized clinical trials. Many epigenetic modifying agents, such
as histone modifiers and DNA methylation inhibitors, are
currently available and have been tested in preclinical models of
AKI and CKD. Increased histone acetylation using HDACis
generally protects the kidney from AKI and promotes kidney
repair. In addition, inhibition of DNA methylation by DNA
methylation inhibitors or DNA demethylation activators also
improves renal fibrosis (Fontecha-Barriuso et al., 2018).
However, preclinical studies have shown that some epigenetic
drugs, such as HDACis, have renoprotective effects at low
doses, but nephrotoxicity at high doses, so there are still great
limitations (Dong et al., 2008). Epigenetic markers, such as
bromodomain and extra terminal (BET) proteins, also play a
very important role in the treatment of renal diseases.The
BD2 selective BET inhibitor apabetone was the first epigenetic
modulator to conduct a phase 3 clinical trial in DKD with renal
function as the end-point (Martinez-Moreno et al., 2020a). The
apabetone trial in patients with T2DM and CKD responded well to
treatment, with fewer hospitalizations and significantly fewer
major adverse cardiovascular events (MACEs) (Nicholls et al.,
2021). Losartan, a representative AT1R blocker used to treat
clinical DKD, was found to partially reduce histone methylation
observed in db/db mice, but the specific mechanism remains
elusive (Reddy et al., 2014). In addition, substrate availability
regulates histone posttranslational modifications, such as the
aforementioned ability of ESRD patients to reduce systemic
inflammatory responses after propionate supplementation and
has some protective effect against ESRD (Meyer et al., 2020a).
In 2021, Svetlana et al. reported that determination of urinary free
amino acids and their PTM metabolites and AGEs in kidney
transplant recipients (KTR) is a non-invasive method in kidney
transplantation (Baskal et al., 2021). However, statistical
significance in observational studies in nature is not equivalent
to biological significance. It remains unclear whether the
relationship between age and the excretion rate of PTM
metabolites and mortality is causal or associative, and the
selection of the study population also has some limitations. In
addition, it is interesting to note the idea that acetylsalicylic acid
(ASA) does not increase fibrinogen acetylation in T2DM patients
and that glycosylation may block previously identified acetylation
sites in vitro (Bryk et al., 2021). In addition, another limitation of
epigenetic drugs is that they are highly non-specific and induce
global epigenetic changes that are not gene-specific or organ-
specific. Xu et al., 2018 found that novel high-fidelity methods
for crispr-cas9 could achieve hydroxymethylation of specific genes.
The fusion of the catalytic domain of the DNA methylation eraser
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TET3 with inactivated high-fidelity Cas9 (dHFCas9) creates a
construct that specifically targets gene demethylation by guiding
RNAs. The use of this approach resulted in successful reactivation
of Rasal1 and Kl, leading to attenuation of UUO-related renal
fibrosis. These studies have led us to realize that relevant clinical
studies of PTMs in kidney disease still deserve our exploration.

Interestingly, we found that environmental factors also
influence the role of PTMs in kidney disease. Fasting has been
found to increase levels of 3-hydroxybutyrate, thereby increasing
histone β-hydroxybutyrate, such as PPARGC1A gene encoding
PGC-1α, which is a key renoprotective molecule (Fontecha-
Barriuso et al., 2020; Zhang et al., 2020). A high-fat diet,
sedentary lifestyle, or exposure to toxic substances, can lead to
chronic metabolic inflammation causing hyperglycemia, thereby
increasing the likelihood of DKD development (Naidoo et al.,
2018; Ramos-Lopez et al., 2021). Epigenetic mechanisms control
the expression of these inflammatory factors, such as crotonate
increases histone crotonylation, PGC1a and SIRT3 expression, and
CCL2 expression in tubular epithelial cells, which acts as a
chemokine that promotes renal inflammation, and its decreased
expression can alleviate renal injury at the onset of AKI (Naidoo
et al., 2018; Martinez-Moreno et al., 2020b; Ramos-Lopez et al.,
2021). In addition, TGF-β signaling stimulated histone acetylation
and methylation through activation of HAT p300/CBP upon
stimulation with high glucose, resulting in enrichment of
H3K9/14Ac and HAT p300/CBP at renal fibrosis gene
promoters. This further leads to increased fibrosis gene
transcription and epithelial to mesenchymal transition (EMT)
in DKD kidneys (Sun et al., 2017). This allows us to
understand that genetic and external factors are involved in
many kidney diseases and, in some cases, environmental
changes lead to adaptive epigenetic changes. In general,
epigenetic modifications are considered stable and heritable
during cell division, and they may be reversible, in addition to
environmental factors that may also be influenced by disease states
and genomes. Up-regulation of p300/CBP-associated factor
(PCAF; HAT) was found to be associated with increased
acetylation of histones (e.g., H3K18Ac) and increased
expression of inflammatory genes in a lipopolysaccharide (LPS)
-induced septic AKI mouse model (Huang et al., 2015); down-
regulation of the renoprotective factor Klotho (in mice encoded by
Kl) in folate-induced AKI was shown to occur through TWEAK
(TNF-atedrelinducer of apoptosis) -mediated deacetylation of the
Kl gene promoter (Moreno et al., 2011).

In addition, with the continuous emergence of PTMs types,
there are various strategies for the detection, enrichment,
identification and quantitative analysis of PTMs. Targeting a
posttranslational modified protein is generally achieved by
western blot, immunofluorescence, or immunohistochemistry,
and Edman degradation, nuclear magnetic resonance (NMR),
and mass spectrometry (MS) are used to identify the detailed
sites of PTMs.Despite improvements in techniques for detecting
and identifying PTMs, there are many limitations, such as the low
abundance of enrichment of some post-translational modified
proteins, which require more sensitive and resolution-based
enrichment strategies and mass spectrometers. Several major
hurdles remain in mass spectrometry-based clinical research.
These include sample preparation, throughput, and complex data

analysis. Proteins can be simultaneously modified by different PTMs
at multiple sites. The combined action of multiple PTMs on the
same or different proteins is called PTM crosstalk. A proteomic
approach to detect PTM crosstalk was outlined by Mario et al.
(Leutert et al., 2021). This further leads us to a profound
understanding that PTMs do not exist in isolation, as we
mentioned earlier that sulfide inhibits p65 NF-κB/
STAT3 phosphorylation and acetylation to ameliorate diabetes-
induced kidney injury. It has been found that different PTMs can
also be regulated by regulating enzyme activity, and phosphorylation
of certain E3 ligases can enhance or prevent ubiquitination of their
protein targets (Hunter, 2007). Histone lysine crotonylation and
histone acetylation have the same enzyme system, and the modified
groups of the two are structurally similar, but they are functionally
andmechanistically different (Tan et al., 2011). This evidence tells us
that PTMs are interconnected and interact to control biological
processes.

Summaries and perspectives

The modulation of protein function through PTMs has become
a pivotal regulatory mechanism in biological systems. This process
serves as an interface between metabolism and physiological as well
as pathological processes, thereby influencing the development of
various human diseases. With the advancing research in this field, an
expanding repertoire of HPTMs has been discovered, which are
intricately linked to the pathogenesis of renal diseases.

This review article centers on the exploration of the significance
of HPTMs, specifically acetylation, crotonylation, and Khib, as well
as some non-HPTMs in renal diseases, particularly DKD and AKI.
At the same time, through the discussion of protein glycosylation
and phosphorylation in relation to kidney diseases, it is found that
these two significant modifications are also involved in the
development of kidney diseases, especially DKD. These
modifications offer novel therapeutic prospects for the treatment
of renal diseases. However, the link between novel PTMs and renal
diseases remains unexplored and superficial. Since most of these
modifications are reversible, it is probable that targeting the
upstream or downstream intervention sites can pave the way for
novel approaches in the treatment of renal diseases. This review
highlights the regulatory role of acetyltransferases and de-
acetyltransferases in diverse modifications, including p300, Khib,
and lactylation, to control the enzyme activities of various substrates.

Many renal diseases involving lactylation have not been
extensively studied with regard to HPTMs, except for H3K18la,
which is enriched in ccRCC but not reported in lactylation in other
renal diseases. The emerging field of lactylation in histones is
currently under investigation in renal disease. The
implementation of various omics technologies has led to the
identification of novel types of PTMs and specific modification
sites, which have improved and refined the modification profiles in
renal diseases. Furthermore, since acyltransferases are not specific,
we are investigating the possible relationship between lactylation
and acetylation. This raises questions regarding the potential
correlation between other modification and acetylation
modification types, which should be investigated in future studies
of the molecular mechanisms of renal diseases. The ongoing
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identification of novel types of HPTMs may open up new
opportunities for the treatment of renal diseases.

It is interesting to explore the targets of novel PTMs in kidney
disease. So far, we have learned that there are limited treatments
for kidney disease, but the incidence and mortality of kidney
disease are increasing. Epigenetic regulators control gene
expression and can find more therapeutic targets by exploring
the role and mechanism of different PTMs in kidney disease.
However, more efforts are needed to apply these new ideas and
ideas to the clinical field. Apabetalone was the first epigenetic
modulator to conduct a phase 3 clinical trial in diabetic
nephropathy with renal function as an endpoint. Therapeutic
modulation can be performed directly by pharmacological
modulators of specific enzymes involved and therapeutic use
of desired substrates. But this remains a big challenge. Further
exploration of the role PTMs play in the field of renal disease is
still needed in the future, and given that interventions targeting
epigenetic modifications in renal disease are still in clinical trials,
it remains unknown whether early intervention in these pathways
can treat the disease.
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