
TYPE Original Research

PUBLISHED 21 November 2023

DOI 10.3389/fnins.2023.1275065

OPEN ACCESS

EDITED BY

Lei Wang,

Northwestern University, United States

REVIEWED BY

Michael Lassi,

Institute of BioRobotics, Sant’Anna School of

Advanced Studies, Italy

Arcady A. Putilov,

Federal Research Center of Fundamental and

Translational Medicine, Russia

*CORRESPONDENCE

Mincheng Cai

minchengcai@whut.edu.cn

RECEIVED 09 August 2023

ACCEPTED 27 October 2023

PUBLISHED 21 November 2023

CITATION

Liu H, Liu Q, Cai M, Chen K, Ma L, Meng W,

Zhou Z and Ai Q (2023) Attention-based

multi-semantic dynamical graph convolutional

network for eeg-based fatigue detection.

Front. Neurosci. 17:1275065.

doi: 10.3389/fnins.2023.1275065

COPYRIGHT

© 2023 Liu, Liu, Cai, Chen, Ma, Meng, Zhou and

Ai. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Attention-based multi-semantic
dynamical graph convolutional
network for eeg-based fatigue
detection

Haojie Liu, Quan Liu, Mincheng Cai*, Kun Chen, Li Ma, Wei Meng,

Zude Zhou and Qingsong Ai
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Introduction: Establishing a driving fatigue monitoring system is of utmost

importance as severe fatigue may lead to unimaginable consequences. Fatigue

detection methods based on physiological information have the advantages

of reliable and accurate. Among various physiological signals, EEG signals are

considered to be the most direct and promising ones. However, most traditional

methods overlook the functional connectivity of the brain and fail to meet

real-time requirements.

Methods: To this end, we propose a novel detectionmodel called Attention-Based

Multi-Semantic Dynamical Graph Convolutional Network (AMD-GCN). AMD-GCN

consists of a channel attention mechanism based on average pooling and max

pooling (AM-CAM), a multi-semantic dynamical graph convolution (MD-GC), and

a spatial attention mechanism based on average pooling and max pooling (AM-

SAM). AM-CAM allocates weights to the input features, helping the model focus

on the important information relevant to fatigue detection. MD-GC can construct

intrinsic topological graphs under multi-semantic patterns, allowing GCN to

better capture the dependency between physically connected or non-physically

connected nodes. AM-SAM can remove redundant spatial node information

from the output of MD-GC, thereby reducing interference in fatigue detection.

Moreover, we concatenate the DE features extracted from 5 frequency bands and

25 frequency bands as the input of AMD-GCN.

Results: Finally, we conduct experiments on the public dataset SEED-VIG, and the

accuracy of AMD-GCN model reached 89.94%, surpassing existing algorithms.

Discussion: The findings indicate that our proposed strategy performs more

e�ectively for EEG-based driving fatigue detection.

KEYWORDS

EEG, driving fatigue detection, channel attention mechanism, graph convolutional

network, spatial attention mechanism

1 Introduction

Drivers driving for a long time or driving at night can lead to a decline in physical and

psychological abilities, seriously affecting the ability to drive safely. Fatigue while driving

can impair basic skills such as attention, decision-making, and reaction time, while also

affecting cognitive processes, sensory perception, and overall mental well-being. In severe

cases, this may result in a decline in motor function and increase the likelihood of being

involved in traffic accidents. Statistically, in 2004, the World Health Organization released

the "World Report on Road Traffic Injury Prevention", which pointed out that approximately

20% ∼ 30% of traffic accidents were caused by fatigue driving. By 2030, the number of road

traffic fatalities is projected to rise to about 2.4 million people annually, making road traffic
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deaths the fifth leading cause of death worldwide (WHO, 2009).

As the number of casualties due to fatigue driving continues to

increase, it is urgent to develop reliable and effective driving fatigue

detection methods.

The existing fatigue detection methods mainly include

vehicle information-based, facial feature-based, and physiological

signal-based approaches. The vehicle information-based detection

method indirectly assess the driver’s fatigue state based on the

driver’s manipulation of the vehicle (Li et al., 2017; Chen et al.,

2020). This method utilizes on-board sensors and cameras to

collect data such as steering wheel angle, grip force, vehicle

speed, and driving trajectory. By analyzing the differences in

driving behavior parameters between normal driving and fatigue

states, it assesses the driver’s fatigue condition. However, it is

challenging to collect accurate and stable data using this method

due to variations in driving habits and proficiency among drivers.

The facial feature-based detection method infers the driver’s

fatigue state through analyzing eye status, mouth status, and

head posture (Wu and, 2019; Quddus et al., 2021; Huang et al.,

2022). This method mainly uses the camera to capture the driver’s

face image, and extracts the fatigue-related information through

the computer vision technology. In contrast, physiological signal-

based detection methods can directly reflect the driver’s driving

state, including electroencephalogram (EEG), electrooculogram

(EOG), electrocardiogram (ECG), and electromyogram (EMG).

Among various physiological signals, EEG signals contain all the

information of brain operation and are closely related to mental

and physical activity, with good time resolution and strong anti-

interference ability (Yao and Lu, 2020), which are the result of

excitatory or inhibitory postsynaptic potentials generated by the

cell bodies and dendrites of pyramidal neurons (Zeng et al., 2021).

Meanwhile, the EEG caps tend to be intelligent and lightweight (Lin

et al., 2019), making it convenient to keep an EEG capwhile driving.

EEG signals are considered the most direct and promising.

EEG signals are recordings of the spontaneous or stimulus-

induced electrical activity generated by specific regions of the

brain’s neurons during physiological processes, reflecting the

brain’s biological activities and carrying a wealth of information (Jia

et al., 2023). From an electrophysiological perspective, every subtle

brain activity induces corresponding neural cell discharges, which

can be recorded by specialized instruments to analyze and decode

brain function. EEG decoding is the separation of task-relevant

components from the EEG signals. The main method of decoding

is to describe task-related components using feature vectors, and

then use classification algorithms to classify the relevant features

of different tasks. The accuracy of decoding depends on how

well the feature algorithm represents the relevant tasks and the

discriminative precision of the classification algorithm for different

tasks. The EEG signals record the electrical wave changes in brain

activity, making them the most direct and effective reflection

of fatigue state. Based on the amplitude and frequency of the

waveforms, EEG waves are classified into five types: δ(1-3Hz), θ(4-

7Hz), α(8–13Hz), β(14–30Hz), γ (31–50Hz) waves (Song et al.,

2020). It is worth noting that, during the awake state, EEG signals

are mainly characterized by α and β waves. As fatigue increases,

the amplitude of α and β waves gradually diminishes, and they

may even disappear, while δ and θ waves gradually increase,

indicating significant variations in EEG signals during different

stages of fatigue (Jia et al., 2023). Therefore, many scholars regard

EEG signals as the gold standard for measuring the level of

fatigue (Zhang et al., 2022). Lal and Craig (2001) tested non-drivers’

EEGwaves and analyzed the characteristics of EEGwave changes in

five stages: non-fatigue, near-fatigue, moderate fatigue, drowsiness,

and anti-fatigue. They concluded that EEG is the most suitable

signal for evaluating fatigue. Lal and Craig (2002) collected EEG

data from 35 participants in the early stage of fatigue using 19

electrodes. The experimental results indicated a decrease in the

activity of α and β waves during the fatigue process, while there

was a significant increase in the activity of δ and θ waves. Papadelis

et al. (2006) introduced the concept of entropy in a driving fatigue

experiment. The study found that under severe fatigue conditions,

the number of α waves and β waves exhibited inconsistent changes,

and shannon entropy and kullback-leibler entropy values decreased

with the changes in β waves.

In recent years, thanks to the rapid development of sensor

technology, information processing, computer science, and

artificial intelligence, a large number of studies have proposed

combining fatigue driving detection based on EEG signals with

machine learning or deep learning methods. Paulo et al. (2021)

proposed using recursive graphs and gramian angular fields to

transform the raw EEG signals into image-like data, which is then

input into a single-layer convolutional neural network (CNN)

to achieve fatigue detection. Abidi et al. (2022) processed the

raw EEG signals using a tunable Q-factor wavelet transform and

extracted signal features using kernel principal component analysis

(KPCA). They then used k-nearest neighbors (KNN) and support

vector machine (SVM) for EEG signal classification. Song et al.

(2022) proposed a method that combines convolutional neural

network (CNN) and long short-term memory (LSTM) called

LSDD-EEGNet. It utilizes CNN to extract fe atures and LSTM for

classification. Gao et al. (2019) introduced core blocks and dense

layers into CNN to extract and fuse spatial features, achieving

detection. In the study (Wu et al., 2021), designed a finite impulse

response (FIR) filter with chebyshev approximation to obtain four

EEG frequency bands (i.e., δ, θ , α, β), and constructed a new deep

sparse contracting autoencoder network to learn more local fatigue

features. Cai et al. (2020) introduced a new method referred to as

graph-time fusion dual-input convolutional neural network. This

method transforms each EEG epoch of sleep stages into limited

penetration visible graph (LPVG) and utilizes a new dual-input

CNN to assess the degree sequences of LPVG and the original

EEG epochs. Finally, based on the CNN analysis, the sleep stages

are classified into six states. Gao et al. (2021) were the first to

explore the application of complex networks and deep learning in

EEG signal analysis. They introduced a fatigue driving detection

network framework that combines complex networks and deep

learning. The network first calculates the EEG signals for each

channel and generates a feature matrix using a recursive rate. Then,

this feature matrix is fed into a specially designed CNN, and the

prediction results are obtained through the softmax function.

The above deep learning and convolutional neural network

(CNN) methods mainly focus on the features of individual

electrode EEG signals and overlook the functional connectivity of

the brain, that is the correlation between EEG channels. Due to the
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non-Euclidean structure of EEG signals, CNN based on Euclidean

space learning is limited in handling the functional connections

between different electrodes. Therefore, using CNN to process EEG

signals may not be an optimal choice.

In recent years, the emergence of graph convolutional neural

networks (GCN) has been proven to be the most effective method

for handling non-Euclidean structured data (Jia et al., 2021; Zhu

et al., 2022). Using GCN to process EEG signals allows to represent

the functional connections of the brain through topological data.

In this case, each EEG signal channel is treated as a node in

the graph, and the connections between EEG signal channels

serve as the edges of the graph. Jia et al. (2023) proposed a

model called MATCN-GT for fatigue driving detection, which

consists of a multi-scale attention time convolutional neural

network block (MATCN) and a graph convolution-transformer

(GT) block. The MATCN directly extracts features from the raw

EEG signals, while the GT processes the features of EEG signals

from different electrodes. Zhang et al. (2020) introduced the

PDC-GCNN method for detecting driver’s EEG signals, which

uses partial directed coherence (PDC) to construct an adjacency

matrix, and then employs graph convolutional neural network

(GCN) for EEG signal classification. Song et al. (2020) proposed

a multi-channel EEG emotion recognition method based on

dynamic graph convolutional neural network (DGCNN). The basic

idea is to use graphs to model multi-channel EEG features and

then perform EEG emotion classification based on this model.

Jia et al. (2020) proposed a novel deep graph neural network

called GraphSleepNet to classify EEG signals. This network can

dynamically learn the adjacency matrix and utilizes a spatio-

temporal graph convolutional network (ST-GCN) to classify EEG

signals. Themethod demonstrated excellent classification results on

theMASS dataset. Zhang et al. (2019) designed a graph convolution

broad network (GCB-net) to explore deeper-level information in

graph-structured data. It utilizes graph convolutional layers to

extract features from the input graph structure and stacks multiple

regular convolutional layers to capture more abstract features.

Additionally, a broad learning system (BLS) is employed to enhance

the features and improve the performance of GCB-net.

Although GCN is proficient at learning the internal structural

information of EEG signals, it relies on the connectivity between

nodes provided by the adjacency matrix. Most methods obtain

functional connectivity of EEG signals by using predefined

fixed graphs such as PLI, PLV, PDC, or spatial relationships,

which prevents the model from adaptively constructing adjacency

graphs simultaneously related with subjects, fatigue states and

samples, thereby overlooking the data-driven intrinsic correlations.

However, constructing a suitable graph representation for the

adjacency matrix of each data in advance requires time and

effort. Additionally, GCN faces challenges in learning dependencies

between distant nodes (long-range vertices). Increasing the depth

of GCN to expand the receptive field remains difficult and may lead

to over-smoothing of nodes.

To address the above problem, we propose a new fatigue

driving detection network, referred to as the attention-based multi-

semantic dynamical graph convolutional network (AMD-GCN).

First, the network utilizes a channel attention mechanism based

on average pooling and max pooling to assign weights to the

fused EEG input features. This helps the model focus on the

crucial information parts related to fatigue detection. Next, the

adjusted EEG input features are fed into the GCN, we determine the

adjacency matrix using spatial adjacency relationships, Euclidean

spatial distances, and self-attention mechanism to construct data-

driven intrinsic topology under multiple semantic patterns, thereby

enhancing the spatial feature extraction capability of GCN.

Furthermore, a spatial attention mechanism based on average

pooling and max pooling is employed to calculate the weights

of spatial nodes in the output of GCN, which helps in removing

redundant node information and reducing interference in fatigue

detection. Finally, the prediction results are output by softmax.

2 Dataset description and EEG
pre-processing

2.1 Public dataset SEED-VIG

We validated the proposed method on the publicly available

dataset SEED-VIG (Zheng and Lu, 2017) for driving fatigue

detection researches. SEED-VIG adopt the international 10-20

electrode system standard, and the EEG signals were collected from

6 channels in the temporal region of the brain (FT7, FT8, T7,

T8, TP7, TP8) and 12 channels from the posterior region (CP1,

CPZ, CP2, P1, PZ, P2, PO3, POZ, PO4, O1, OZ, O2), where CPZ

channel serves as the reference electrode, and the specific electrode

placement is shown in Figure 1. The experiment simulated a

driving environment by creating a virtual reality scenario, in which

23 participants engaged in approximately 2 hours of simulated

driving during either a fatigue-prone midday or evening session.

The subjects comprised 12 females and 11 males, with an average

age of 23.3 years and a standard deviation of 1.4. All subjects had

normal or corrected vision.

The SEED-VIG dataset was vigilantly annotated using eye-

tracking methods, capturing participants’ eye movements with the

assistance of SMI eye-tracking glasses. These glasses categorized

eye states into fixation, blink, and saccade, and recorded their

respective durations. The "CLOS" state, referring to slow or long-

duration eye closure, is undetectable by the SMI eye-tracking

glasses. In such cases, fixation and saccade represent normal states,

while blink or CLOS indicates fatigue in participants. Therefore,

PERCLOS represents the percentage of time in a specific period

when participants were in a fatigued state (Dinges andGrace, 1998).

The calculation of PERCLOS is as follows:

PERCLOS = blink+ close

interval
,

interval = blink+ fixation+ saccade+ close

(1)

Where blink, close, fixation, and saccade denote the duration

of eye states (blink, close, gaze, and sweep, respectively) recorded

by the eye tracker within the 8-second intervals. PERCLOS is a

continuous value between 0 and 1, with smaller values indicating

higher vigilance. The standard procedure for using this publicly

available dataset for research is to set two thresholds (0.35 and 0.7)

in order to classify the samples into three types:

• Awake class: PERCLOS < 0.35;

• Tired class: 0.35 ≤ PERCLOS < 0.7;
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FIGURE 1

Electrode placements for the EEG setups. 12-channel and

6-channel EEG signals were recorded from the posterior region (red

color) and the temporal region (green color), respectively.

• Drowsy class: PERCLOS ≥ 0.7.

In addition, we validated our proposed method on the SEED-

VIG dataset, dividing each subject’s 885 samples into 708 samples

for training and 177 samples for testing by a way that preserves

the temporal order, then we trained the model separately on

each subject and evaluated it on the testing samples of the same

subject. Finally, in order to mitigate the impact of data imbalance

within one subject on the model performance evaluation as much

as possible, the average classification accuracy and individual

variation of 23 subjects were computed as evaluation metrics.

It is worth noting that SEED-VIG adopts an 8-second non-

overlapping sliding window to sample data, and we split the dataset

by preserving the temporal order. Therefore, training is based on

past data, and testing is based on future data. This ensures that the

model is evaluated on unseen data, thereby alleviating the risk of

data leakage (Saeb et al., 2017).

2.2 EEG pre-processing

The signal preprocessing method is consistent with other

works (Zheng and Lu, 2017; Ko et al., 2021; Peng et al., 2023; Shi

and Wang, 2023), we directly used the clean EEG signals provided

by the study (Zheng and Lu, 2017), which has removed eye blinks,

and the raw EEG data was downsampled from 1000 Hz to 200 Hz to

reduce computational burden. Subsequently, it is bandpass filtered

between 1-50 Hz to remove irrelevant components and power line

interference. For SEED-VIG, there are two different methods to

segment the frequency range into different bands. One widely used

TABLE 1 Summary of the overall properties of SEED-VIG.

Dataset Samples Channels Frequency bands

SEED-VIG-5band 885 17 5

SEED-VIG-2Hz 885 17 25

PERCLOS-labels 885 N / A N / A

NA, Not Applicable.

approach is to divide the frequency range into bands as follows: δ(1-

3Hz), θ(4-7Hz), α(8-13Hz), β(14-30Hz), γ (31-50Hz). The other

method is to uniformly divide the range into 25 bands with a 2-Hz

resolution.

For each frequency band, the computation of the extracted

differential entropy (DE) feature is as follows:

h(X) = −
∫

X
f (x) ln f (x)dx (2)

Here,X is a random variable whose probability density function

is defined by f (x). Assuming that the probability density function

f (x) of the EEG signal follows the Gaussian distribution N(µ, δ2),

the DE feature can then be computed as:

h(X) = −
∫

f (x)(−1

2
ln(2πδ2)− (x− µ)2

2δ2
)

= 1

2
ln(2πδ2)+ Var(X)

2δ2
= 1

2
ln(2πeδ2)

(3)

Here, we used the facts that
∫

f (x)dx = 1 and Var(x) =
∫

f (x)(x− µ)2dx = δ2. DE features were extracted by short-term

Fourier transformwith an 8-second non-overlapping time window.

The overall properties of SEED-VIG are summarized in Table 1.

In our study, we concatenate the DE features extracted based on

5 frequency bands and the DE features extracted based on 25

frequency bands within the same time window as one sample input

to the neural network. This allows us to fully utilize the information

contained in the original EEG signal and thereby enhance the effect

of fatigue driving detection. The overall data form of one subject

can be expressed as R885×17×30.

3 Method

Our proposed AMD-GCN model consists of three functional

modules: channel attention mechanism based on average pooling

and max pooling (AM-CAM), multi-semantic dynamical graph

convolution (MD-GC), and spatial attention mechanism based

on average pooling and Max pooling (AM-SAM). The AMD-

GCN model enables end-to-end fatigue state assessment of drivers

based on the extracted DE features from EEG signals. The AMD-

GCN model retains crucial input features through AM-CAM,

performs multi-semantic spatial feature learning through MD-GC,

and eliminates redundant spatial nodes information through AM-

SAM. The overall architecture of fatigue driving detection based on

AMD-GCN is illustrated in Figure 2.
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FIGURE 2

Overall schematic diagram of fatigue driving detection based on AMD-GCN. AMD-GCN consists of three modules: AM-CAM module, MD-GC

module, and AM-SAM module. The input to the model is the fused feature of DE features extracted based on 5 frequency bands and DE features

extracted based on 25 frequency bands. The output is the predicted label with probabilities.

FIGURE 3

Schematic diagram of AM-CAM. As illustrated, the channel attention sub-module utilizes both the max pooling output and average pooling output

with a shared network.

3.1 Preliminary

In our paper, we designed the AMD-GCN model adopting

graph convolutional neural networks to process spatial features. To

facilitate reader comprehension, we first elucidate the fundamental

concepts and relevant content of GCN before introducing AMD-

GCN.

Consider a graph G = (V , ε,A), which represents a collection

of all nodes and edges. Here, V = (v1, v2, ..., vn) signifies that the

graph has N nodes, vn denotes the n-th node, and E is a set of edges

representing relationships between nodes. A ∈ RN×N stands for

the adjacency matrix of graph G, denoting connections between

two nodes. It’s worth noting that GCN (Kipf and Welling, 2016)

employs graph spectral theory for convolutional operations on

topological graphs. It primarily explores the properties of the graph

through the eigenvalues and eigenvectors of the graph’s Laplacian

matrix. The Laplacian matrix of a graph is defined as follows:

L = D− A (4)

where D ∈ RN×N is the degree matrix of the vertices (diagonal

matrix), that is, the elements on the diagonal are the degrees of each

vertex in turn. L denotes the Laplacian matrix, whose normalized

form can be expressed as:

L = In − D− 1
2AD− 1

2 = UAUT (5)

Where In is the identity matrix. UAUT represents the

orthogonal decomposition of the Laplacian matrix, where U =
[u0, u1, ..., un−1] ∈ Rn×n is the orthogonal matrix of eigenvectors

obtained through the singular value decomposition (SVD) of the

graph Laplacian matrix, and 3 = [λ0, λ1, ..., λn−1] ∈ Rn×n is the

diagonal matrix of corresponding eigenvalues. For a given input

feature matrix X, its graph Fourier transform is:

X̂ = UTX,X = UX̂(inverse) (6)

The convolution of the graph for input X and filter K can be

expressed as:

Y = X ∗ GK = U((UTX)⊙ (UTG)) = UK̂UTX (7)
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Here, ⊙ denotes the element-wise Hadamard product.

However, directly computing the Eq.7 would require a substantial

amount of computational resources. To mitigate energy

consumption, Kipf and Welling (2016) proposed an efficient

variant of convolutional neural networks that directly operate on

graphs, approximating the graph convolution operation through

a first-order Chebyshev polynomial. Supposing a graph G with

N nodes, each node possessing its own features, let these node

features form a matrix X ∈ RN×D. With an input feature matrix X

and an adjacency matrix A, we can obtain the output:

Y = σ (D̂− 1
2AD̂− 1

2XW) (8)

Where σ represents the nonlinear activation function.

3.2 Channel attention mechanism based
on average pooling and max pooling

Firstly, we employ an autoencoder layer to perform re-

representation of the input data, creating inputs with richer

semantic information, as depicted in Figure 2, where the input

channels are 30 and the output channels are 128. Then, in order

to focus the model on crucial parts of the input related to the

fatigue detection category, we generate channel attention maps by

exploiting inter-channel relationships of features. This is achieved

through the design of a channel attention mechanism based on

average pooling and max pooling (AM-CAM) layer. The channel

attention mechanism focuses on determining "what" in the input

is meaningful, treating each channel of the feature map as a

feature detector (Zeiler and Fergus, 2014). To compute channel

attention effectively, we compress the spatial dimensions of the

input feature maps. To gather spatial information, we employ an

average pooling layer to gain insights into the extent of the target

object effectively, utilizing it in the attention module to compute

spatial statistics. Additionally, we use a max pooling layer to

collect salient information about different object features, enabling

the inference of finer channel attention. Figure 3 illustrates the

computation process of channel attention maps, and the detailed

operations are described as follows.

Given an intermediate feature map F ∈ RC×H×W as input,

we first utilize average pooling and max pooling operations to

aggregate spatial information from the feature map, generating two

distinct spatial context descriptors: Fcavg and Fcmax, representing

average-pooled features and max-pooled features, respectively.

Subsequently, both of these descriptors are fed into a multilayer

perceptron (MLP) with a hidden layer to generate the channel

attention map Mc ∈ RC×1×1. To reduce parameter overhead, the

hidden activation size is set to R
C
r ×1×1, where r is the reduction

ratio and is set to 16 in our study. After applying the shared

network to each descriptor, we merge the output feature vectors

using element-wise summation. In short, the channel attention is

computed as:

Mc(F) = σ (MLP(AvgPool(F))+MLP(MaxPool(F)))

= σ (W1(W0(F
c
avg ))+W1(W0(F

c
max)))

(9)

Where σ denotes sigmoid function, W0 ∈ R
C
r ×C and W1 ∈

RC×
C
r , Note that the MLP weights,W0 andW1, are shared for both

FIGURE 4

A schematic diagram illustrating the connections between the 17

EEG channels based on spatial adjacency relationships is used to

construct the adjacency matrix for SRGC. CPZ serves as the

reference electrode and is not involved in the construction of the

adjacency matrix.

inputs and the ReLU activation function is followed by W0. The

output Fout of AM-CAM can be formulated as:

Fout = Mc(F)⊙ F (10)

3.3 Multi-semantic dynamical graph
convolution

In this study, we propose a multi-semantic dynamical

graph convolution (MD-GC) for extracting spatial features

from the input. It determines the adjacency matrix based on

spatial adjacency relationships, Euclidean spatial distance, and

self-attention mechanism. Our approach constructs data-driven

intrinsic topology under various semantic patterns, enhancing the

spatial feature extraction capability of graph convolution. Overall,

given an intermediate feature map X ∈ RC×V as input, the output

of MD-GC can be computed as:

MDGC(X) = σ (BN(SRGC(X)+ EDGC(X)

+ SAGC(X)))
(11)

Where σ is sigmoid function, BN is batch normalization, SRGC

represents spatial relationship-based graph convolution, EDGC

represents Euclidean distance-based graph convolution, and SAGC

stands for self-attention-based graph convolution.
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FIGURE 5

Schematic diagram of AM-SAM. As illustrated, the spatial attention sub-module utilizes both the max pooling output and average pooling output with

a shared network.

3.3.1 Graph convolution based on spatial
relationship

Intuitively, the correlation between EEG electrodes is

constrained due to the distribution of nodes on the brain (Song

et al., 2020), which represents inherent connections. To capture

this relationship, we developed a spatial adjacency graph, denoted

as GSR(V ,ASR). ASR represents the spatial adjacency matrix

between brain nodes, as shown in Figure 4, where adjacent nodes

are connected by solid blue lines. ASR considers the adjacency

relationships of 6 channels from the temporal region of the brain

and 12 channels from the posterior part of the brain. We first

normalize the spatial adjacency matrix ASR using

ÃSR = D−1
SR ASR (12)

D−1
SR ∈ RN×N is a diagonal degree matrix of ASR. ÃSR

provides nice initialization to learn the edge weights and avoids

multiplication explosion (Brin and Page, 1998; Chen et al., 2018).

Given the computed ÃSR, we propose the spatial relationship-based

graph convolution (SRGC) operator. Let X ∈ RV×C and YSRGC ∈
RV×Cout be the input and output features of SRGC, respectively. The

SRGC operator can be formalized as:

YSRGC = SRGC(X) = ÃSRXW
T
SR (13)

Where WSR ∈ RCout×C is the trainable weight used to facilitate

feature updating in the SRGC.

3.3.2 Graph convolution based on
Euclidean-space distance

Considering that SRGC can only capture relationships between

nodes connected by physiological connections, here we introduce

a Euclidean distance-based graph convolution (EDGC) operator to

capture potential relationships between physically non-connected

nodes, thereby imposing higher-order positional information.

Specifically, we define a Euclidean space distance adjacency matrix

for the potential sample dependencies in EDGC, where the

adjacency weight between nodes i and j is calculated as:

ai,j = max(E)− ei,j (14)

where ei,j is an element at row i and column j in the matrix

E ∈ RV×V that represents the distance between every pair of

nodes. To calculate ei,j, we first assume the input takes the form

of X ∈ RV×C . Then, we have ei,j = ‖x̄i − x̄j‖2, where ‖x̄i − x̄j‖2
represents the Euclidean spatial distance between nodes i and j inX.

Finally, subtracting ei,j from themaximum value inmatrix E defines

the adjacency relationship between nodes i and j, implying that

nodes closer together have higher adjacency weights. Let YEDGC ∈
RV×Cout be the output features of EDGC, the EDGC operator can

be formulated as:

YEDGC = EDGC(X) = AEDXW
T
ED (15)

WhereWED ∈ RCout×C is the trainable weight used to facilitate

feature updating in the EDGC.

3.3.3 Graph convolution based on self-attention
mechanism

In addition to EDGC, we also propose a novel module based

on the self-attention mechanism for graph convolution (SAGC)

to derive context-dependent intrinsic topology. Specifically, SAGC

employs self-attention (Vaswani et al., 2017) on node features

to infer intrinsic topology and uses topology as neighborhood

vertex information for graph convolutions. A self-attention is

an attention mechanism that relates different brain nodes.

Considering all possible node relations, SAGC infers positive

bounded weights, termed self-attention map, to represent the

strength of relationships. For a given SAGC input X ∈ RV×C, we

linearly project node representations X to the query and key of D

dimensions with learnable matrices WO,WK ∈ RC×D to obtain a

self-attention map, as shown in Eq.16.

ASA = softmax
(

XWK (XWQ)
T

√
D

)

(16)

Where softmax is used to normalize the self-attention map, D

is the output channel size and D = C
8 . The scaling factor 1√

D

is used to ensure even distribution of data and avoid elements

with large values in the self-attention map having small gradients

during backpropagation, which could hinder the training of neural

network. Then, let YEDGC ∈ RV×Cout be the output features of

SAGC, the SAGC operator can be formalized as:

YSAGC = SAGC(X) = ASAXW
T
SA (17)

Where WSA ∈ RCout×C is the trainable weight used to facilitate

feature updating in the SAGC.
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3.4 Spatial attention mechanism based on
average pooling and max pooling

After extracting spatial features, to retain crucial spatial node

information and eliminate redundancy, we generate a spatial

attention map based on the inter-spatial relationships between

features.We design a spatial attentionmechanism based on average

pooling and max pooling (AM-SAM) to achieve this. Different

from the channel attention, the spatial attention focuses on “where”

is an informative part, which is complementary to the channel

attention. Given an intermediate feature map F ∈ RC×H×W

as input, to compute the spatial attention map, we first apply

average pooling and max pooling operations along the channel

axis of F and concatenate them to generate an efficient feature

descriptor. On the concatenated feature descriptors, we apply a

multilayer perceptron (MLP) to generate the spatial attention map,

which encodes emphasis or suppression of locations. The schematic

diagram of AM-SAM is illustrated in Figure 5, and the detailed

operational description of AM-SAM is as follows.

We aggregate channel information of a feature map by using

two pooling operations, generating two 2D maps: Fsmax ∈ R1×H×W

and Fsavg ∈ R1×H×W , which denotes average-pooled features and

max-pooled features across the channel respectively. Fsmax and Fsavg
are first concatenated and flattened into Fs

fla
∈ R2HW×1×1, which is

then passed through a multilayer perceptron (MLP) with a hidden

layer. To reduce computational resource consumption, the hidden

layer size is set to D
r , where D = 2 × H × W and r is a reduction

factor, set to 4 in our study. After obtaining the MLP’s output, we

use unflatten and nonlinear activation operation to transform the

output into a two-dimensional spatial attention map. In short, the

spatial attention is calculated as:

Ms(F) = σ (MLP([MaxPool(F);AvgPool(F)]))
=σ (W1(ReLU(W0([MaxPool(F);AvgPool(F)]))))

(18)

Where [·] denotes concatenation operation, σ is sigmoid

function, W0 ∈ R
D
r ×D and W1 ∈ R

D
2 ×

D
r . It is worth noting

that [·] and W1 are followed by flatten and unflatten operations,

respectively. The output Fout of AM-SAM can be formulated as:

Fout = Ms(F)⊙ F (19)

4 Experiment

4.1 Method comparison

To better demonstrate the advancement of the AMD-GCN

model, we compared it with the state-of-the-art methods on the

SEED-VID dataset. Since the codes for these models was not

publicly available, we followed the descriptions provided in the

original papers for replication, so the final test results might differ.

Here, PSD, DE, and WPCA represent different types of features

extracted from the raw EEG signals. For the KNN classifier, we set

the number of neighbors to 3. The SVM classifier utilized a radial

basis function (RBF) kernel for training. EEGNet (Lawhern et al.,

2018) is a single CNN architecture capable of accurately classifying

EEG signals from various brain-machine interface paradigms.

FIGURE 6

Fatigue detection accuracy of 23 subjects in the SEED-VIG dataset.

TABLE 2 Comparison with accuracy and individual variation of

state-of-the-art methods on the SEED-VIG dataset.

Method Accuracy (%) IV (Individual
variation)

DE-KNN 77.37 15.45

PSD-SVM (Barua et al., 2019) 77.64 20.41

DE-SVM (Barua et al., 2019) 78.60 19.10

WPCA-SVM (Dong et al., 2019) 79.71 17.69

EEGNet (Lawhern et al., 2018) 84.50 13.24

ESTCNN (Gao et al., 2019) 86.55 11.23

SAT-IFDM (Hwang et al., 2021) 85.28 11.50

LPCCs + R-SCM (Chen et al., 2022) 87.10 8.07

PDC-GCN (Zhang et al., 2020) 89.42 10.22

GCNN-LSTM (Yin et al., 2021) 89.31 10.45

AMD-GCN (Ours) 89.94 6.14

The bold values represent the best accuracy and individual variation.

ESTCNN (Gao et al., 2019) is a spatio-temporal CNN model

that emphasizes the temporal dependencies of each electrode and

enhances the ability to extract spatial information from EEG

signals. SAT-IFDM (Hwang et al., 2021) is a subject-independent

model for classifying driver fatigue states, aimed at mitigating

individual differences among subjects. LPCCs + R-SCM (Chen

et al., 2022) is a novel psychological fatigue detection algorithm

based on multi-domain feature extraction and fusion. It employs

linear prediction to fit the current value with a set of past samples to

calculate linear predictive cepstral coefficients (LPCCs) as temporal

features. PDC-GCN (Zhang et al., 2020) has been introduced in

the section slowromancapi@. GCNN-LSTM (Yin et al., 2021) is a

model that combines GCN and LSTM. The model uses GCN for

feature extraction and processes the obtained features using LSTM,

followed by classification using dense layers. The chosenmodels for

comparison are relatively representative and reproducible. Figure 6

presents the fatigue detection accuracy of all subjects using the

AMD-GCN model on the SEED-VIG dataset, and the results of

model comparisons are reported in Table 2.
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TABLE 3 Experimental results of ablation study on the SEED-VIG dataset,

where w/o indicates the removal of specific functional module.

Method Accuracy (%) IV (Individual
variation)

w/o SEED-VIG-5band 87.19↓2.75 7.06↑0.92

w/o SEED-VIG-2Hz 86.28↓3.66 7.61↑1.47

w/o AM-CAM 86.47↓3.47 7.56↑1.42

w/o MD-GC 82.64↓7.30 9.44↑3.30

w/o AM-SAM 87.98↓1.96 6.81↑0.67

w/o SRGC 88.03↓1.91 6.75↑0.61

w/o EDGC 86.65↓3.29 7.33↑1.19

w/o SAGC 85.92↓4.02 7.89↑1.75

AMD-GCN 89.94 6.14

The down and up arrow indicates a decrease in accuracy and an increase in individual

variation after the removal of specific functional modules, respectively. The bold values

represent the best accuracy and individual variation.

Obviously, Figure 6 shows that the detection accuracy is

77.74% for 21-th subject, while the detection accuracy for

the remaining participants is all above 80%, and even 19-

th subject achieved 100% accuracy. This indicates that the

AMD-GCN model possesses great generalization capabilities

and has the potential to achieve fatigue detection for a wide

range of drivers. As can be seen in Table 2, our proposed

AMD-GCN model has an accuracy improvement of about

10.23 ∼ 12.57% compared to the traditional machine learning

methods (KNN, SVM). Compared to CNN-based methods, the

accuracy improvement is about 2.84 ∼ 5.44%. Compared

with the GCN-based method, the accuracy improvement is

about 0.52 ∼ 0.63%. The experimental results prove that

the performance of the AMD-GCN model outperforms existing

detection methods.

4.2 Ablation study

In this section, to further validate the impact of fused features

and the role of each module in AMD-GCN, we performed

a series of ablation studies, and the experimental results are

documented in Table 3. From rows 2, 3, 10 of Table 3, it can

be observed that the detection accuracy decreases by 2.75% and

3.66%when SEED-VIG-5band or SEED-VIG-2Hz is removed from

the fused features, respectively. This indicates that both SEED-

VIG-5band and SEED-VIG-2Hz are indispensable for enhancing

the performance of EEG-based driver fatigue detection, and their

effects are complementary. Furthermore, the detection accuracy

of SEED-VIG-2Hz is higher by 0.91% compared to SEED-VIG-

5band, indicating that DE features extracted from 25 frequency

bands can better capture the heterogeneity of different fatigue

states.

Rows 4, 5, and 6 of Table 3 shows the detection accuracy

of the AMD-GCN without the AM-CAM, MD-GC, and AM-

SAM functional modules, respectively. Firstly, the AM-CAM

module is beneficial to aid the model in focusing on important

information related to fatigue detection, and removing the AM-

CAM module could introduce noise and confusion to fatigue

state detection. The experimental results indicate that AM-

CAM contributes to a 3.47% accuracy improvement for the

model. Secondly, MD-GC can establish adjacency topologies of

numerous semantic patterns, enabling rich non-Euclidean spatial

feature learning. Removing MD-GC would disregard functional

connections and inherent relationships between EEG nodes, thus

weakening the performance of AMD-GCN and reducing the

model accuracy by 7.3%. Furthermore, the AM-SAM module can

eliminate redundant spatial node information from the output

of MD-GC, aiding in enhancing the network’s capability to

differentiate data from different fatigue states. The experimental

results show that AM-SAM contributes to a 1.96% accuracy

improvement for the model. In summary, the designed modules

successfully enhance the performance of EEG-based driving fatigue

detection.

To validate the effectiveness of the adjacency topologies for

the three semantic patterns in MD-GC, we obtained the detection

accuracy of AMD-GCN without SRGC, EDGC, and SAGC, as

described in rows 7, 8, and 9 of Table 3. Apparently, AMD-

GCN without SRGC, EDGC, SAGC achieve 88.03%, 86.65%,

85.92%, underperforming the vanilla one by 1.91%, 3.29%, 4.02%

respectively. The intrinsic topologies of these semantic patterns

are crucial for AMD-GCN to learn category-dependent and

data-dependent spatial features, which enhance the performance

of AMD-GCN significantly. Moreover, it is evident that the

improvements brought by these graph convolutions based on

different semantic patterns can be superimposed, implying their

roles are complementary to each other.

4.3 Supplement experiment

To verify the reliability of our algorithm, we conducted

10 repeated experiments on the SEED-VIG dataset. In each

experiment, the dataset was randomly divided into 5 folds, with

one fold used for testing and the remaining four for training, the

results are depicted in Figure 7. It can be found that the accuracy

varies from 89.62% to 90.37%, and individual variations range from

5.94 to 6.25, this indicates the stability of our method in terms of

both detection accuracy and individual variation metrics. Figure 7

presents an average accuracy of 89.94% and an average individual

variation of 6.14 for the AMD-GCN, both of which surpass the

state-of-the-art methods reported in Table 2. Note that the values

reported in Table 2 are average accuracy and average individual

variation.

Then, we visualize the channel attention map and spatial

attention map of first layer for the first subject under three fatigue

states, as shown in Figure 8. Obviously, AM-CAM can achieve

channel filtering for inputs with richer semantic information,

allowing the model to capture essential parts of the input related

to fatigue detection category, and AM-SAM is able to retain crucial

spatial node information associated with fatigue states to mitigate

interference from redundant information. It can be summarized

that our proposed AM-CAM and AM-SAM effectively enhance

the feature representation ability of neural network on input data,

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1275065
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Liu et al. 10.3389/fnins.2023.1275065

FIGURE 7

Results of 10 repeated experiments. The orange diamond points represent the mean value, the deep blue dashed lines represent the median value,

the red and blue scattered points denote the accuracy and individual variations of the repeated experiments, respectively.

FIGURE 8

The visualization of attention map for the first subject under di�erent fatigue states. (A) Channel attention map. (B) Spatial attention map of first layer.

thereby improving the performance of EEG-based fatigue detection

task.

Furthermore, we visualize the adjacency matrices of the three

semantic patterns constructed by AMD-GCN for different subjects,

fatigue states, and samples, as shown in Figure 9. This can

be concluded that due to SRGC containing a predetermined

fixed adjacency graph, it remains consistent for all input data,

thereby representing the inherent adjacency between brain nodes.

In contrast, EDGC and SAGC construct intrinsic adjacency

graphs based on the input data. They exhibit heterogeneity for

different subjects, fatigue states, and samples, which benefits AMD-

GCN in capturing potential data-dependent intrinsic adjacency

relationships between brain nodes. This facilitates AMD-GCN

in learning discriminative features for different fatigue states,

thus enhancing the performance of driver fatigue detection.

Additionally, from the adjacency matrices formed by SRGC, EDGC

and SAGC, it can be observed that the adjacency weights among the

6 channels in the temporal region of the brain or the 11 channels in
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FIGURE 9

In the first layer of AMD-GCN, adjacency matrices for the three semantic patterns corresponding to samples of di�erent fatigue states from two

subjects. Sample 0 and Sample 1 represent two samples from the same category of the same subject. (A) First subject. (B) Second subject.

the posterior region of the brain are significantly stronger than the

adjacency weights between the temporal and posterior regions. This

consistency aligns with the brain tissue structure. Creating suitable

adjacency matrices specifically for the temporal and posterior brain

regions is crucial for efficient driver fatigue detection.

5 Conclusion

In this work, we have designed a driving fatigue detection

neural network, referred to as the attention-based multi-semantic

dynamical graph convolutional network (AMD-GCN), which

integrates a channel attention mechanism, a spatial attention

mechanism and a graph convolutional network. It aims to classify

fused features extracted from EEG signals, where the fused

features are obtained by concatenating DE features extracted

from 5 frequency bands and DE features extracted from 25

frequency bands. In simple terms, we designed a channel attention

mechanism based on average pooling and max pooling (AM-

CAM), the mechanism helps the network retain crucial features in

the input data that are relevant to driving fatigue detection. We

introduced a multi-semantic dynamical graph convolution (MD-

GC) that constructs intrinsic adjacency matrices for numerous

semantic patterns based on input data., this enhancement improves

the GCN’s ability to learn non-Euclidean spatial features. We

established a spatial attention mechanism (AM-SAM) based

on average pooling and max pooling, enabling the network

to eliminate redundant spatial node information from MD-GC

outputs. Ultimately, we evaluated the performance of AMD-

GCN on the SEED-VIG dataset, and the experimental results

demonstrated the superiority of our algorithm, outperforming

state-of-the-art methods in driving fatigue detection.

The limitations of the proposed AMD-GCN model are

summarized from two aspects.

1) Although AMD-GCN model showed superior performance

over existing deep learning models on the SEED-VIG dataset,
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its network architecture is still a shallow one which limits

its feature learning ability in characterizing the underlying

properties of EEG data.

2) We find significant differences in the recognition results

of different subjects, indicating the existence of individual

differences in the driving fatigue detection task. This has not

yet been considered by AMD-GCN.

3) The outstanding performance of AMD-GCN is only evident

in the subject-dependent experiments, but its performance has

not been assessed in the subject-independent experiments.

As our future work, first, we intend to extend AMD-GCN into

a deeper architecture to further enhance its data representation

learning capacity. Second, we will investigate knowledge transfer

strategies to mitigate cross-subject discrepancies in EEG-based

driving fatigue detection. Third, we will utilize the leave-one-

subject-out cross-validation strategy to evaluate the performance of

AMD-GCN in subject-independent experiments on the large-scale

fatigue detection dataset. Moreover, we plan to collect EEG fatigue

data from numerous subjects and generate simulated volume

conduction effect data for each subject, which aims to construct a

novel fatigue detection dataset, to examine whether the learning

process of the adjacency matrix by AMD-GCN from the raw

EEG signals is influenced by spurious correlations introduced by

volume conduction effects. We will also apply AMD-GCN to

other physiological signals and adopt a combination of multiple

physiological signals to comprehensively assess the driver’s fatigue

state.
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