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The most common lymphodepletion regimen used prior to infusion of chimeric

antigen receptor-T cells (CAR-T) is cyclophosphamide (CY) in combination with

fludarabine (Flu) (CY-FLU). While cyclophosphamide (CY) possesses lymphotoxic

effects, it concurrently preserves regulatory T cell activity, potentially affecting

the efficacy of CAR-T cells. Moreover, the use of fludarabine (FLU) has been

linked to neurotoxicity, which could complicate the early detection of immune

effector cell-associated neurotoxicity syndrome (ICANS) observed in CAR-T cell

therapy. Given the ongoing shortage of FLU, alternative lymphodepleting agents

have become necessary. To date, only a limited number of studies have directly

compared different lymphodepleting regimens, and most of these comparisons

have been retrospective in nature. Herein, we review the current literature on

lymphodepletion preceding CAR-T cell therapies for lymphoid hematologic

malignancies, with a specific focus on the use of bendamustine (BEN). Recent

evidence suggests that administering BEN before CAR-T cell infusion yields

comparable efficacy, possibly with a more favorable toxicity profile when

compared to CY-FLU. This warrants further investigation through randomized

prospective studies.

KEYWORDS

fludarabine, cyclophosphamide, bendamustine, lymphodepletion, CAR (chimeric
antigen receptor) T cells
Introduction

Chimeric antigen receptor-T cell (CAR-T) therapy has demonstrated remarkable

efficacy in treating relapsed/refractory B-cell malignancies, including but not limited to

diffuse large B-cell lymphoma (DLBCL) and B-cell acute lymphoblastic leukemia (B-ALL)

(1). More recently the development of anti–B-cell maturation antigen (BCMA) CAR-T cell
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therapy, has shown promise in patients with multiple myeloma

(MM) (2). Lymphodepletion is consistently applied prior to

infusion of CAR-T cells to facilitate their expansion and

persistence (3). The most common lymphodepleting regimen for

commercially approved CD19-CAR-T cell therapy in young adults

and children has been cyclophosphamide (CY) (500 mg/m2× 2

days) and fludarabine (FLU) (30 mg/m2 × 4 days) (CY-FLU) (4).

Although several dosage alterations have been tested, the selection

of this lymphodepletion approach has not undergone prospective

investigation, raising the question of whether there may be more

advantageous alternatives (5–7). Due to the extended shortage of

FLU in the United States, numerous institutions, including ours,

have turned to Bendamustine (BEN) as a viable alternative to CY-

FLU, with promising results (8, 9).
Effects of cyclophosphamide
on immune function:
immunomodulatory,
immunosuppressive, and
lymphodepletion aspects

CY is an inactive prodrug that requires enzymatic and chemical

activation by CYP450 enzymes in the liver. The resultant nitrogen

mustard promotes the interstrand and intrastrand DNA crosslinking

that account for its cytotoxic properties (10). CY is associated with a

range of common adverse effects, including bone marrow

suppression, gonadal toxicity, and carcinogenesis. Additionally, it

can lead to more distinct complications such as hemorrhagic cystitis,

cardiomyopathy and interstitial lung disease (10). CY is deactivated

mainly by the isoform 1 of cellular aldehyde dehydrogenase

(ALDH1), which is highly expressed in cells with high proliferative

potential such as hematopoietic stem cells. Significantly, ALDH1 is

minimally expressed in lymphocytes which provides a rationale for

the use of CY as a lymphodepleting agent (11). Saida et al,

investigated the use of CY in lymphodepletion and found that it

eradicated lymphocytes efficiently; however, the percentage of

regulatory T cells (Tregs) was significantly increased (12). Terao

et al. indicated that an early rise in Tregs following Tisagenlecleucel

infusion is linked to a reduced risk of cytokine release syndrome

(CRS) and could potentially serve as a predictive marker.

Nevertheless, despite this Treg increase, there was no discernible

improvement in the overall survival (OS) of these patients (13).

Indeed, it is widely recognized that Tregs suppress anti-tumor

responses and have the capacity to inhibit CAR-T cell activity (14).

As such, one of the intended advantages of lymphodepletion is the

simultaneous reduction of all lymphocytes including Tregs (15–20).

CY given following hematopoietic cell transplantation (PT-CY)

preserved Tregs during the early immune reconstitution period

(21). The same group also reported that PT-CY led to rapid

recovery of CD4+Foxp3+ T regulatory cells, which were later found

to be resistant to CY via upregulation of ALDH (22). Similarly, in

murine hematopoietic cell transplant models they confirmed that PT-

CY preferentially recovered Tregs at day +21 while restraining the

proliferation and the differentiation of alloreactive CD4+
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conventional T-cells (23). While these effects ameliorate graft

versus host disease (GvHD), they may simultaneously reduce the

efficacy of graft versus leukemia (GvL) responses. In addition to its

effects on lymphoid populations CY also influences myeloid subsets

including myeloid derived suppressor cells (MDSCs), which are

highly immunosuppressive and impeding their effects may improve

the efficacy of adoptive immunotherapy (24). Mechanistically,

MDSCs reduce the levels of l-arginine and l-tryptophan by

expressing arginase-I and indoleamine 2,3-dioxygenase (IDO),

thereby suppressing T cell function (25). Interestingly, the CY-

derived MDSCs possessed immunosuppressive properties (15, 18).

CY was reported to induce spleen colonization with an heterogenous

myeloid population, including CD11b+Ly-6G+CD31+, which were

found to inhibit proliferation of T cells (15, 24). In another study,

conducted in tumor-bearing mice, CY was found to induce the

production of CD11b+ Gr-1loLy6ChiCCR2hi monocytic MDSCs

(M-MDSCs) that suppress antitumor CD4+ effector cells through

the PD-1/PD-L1 axis (25). Taken together, while lymphodepletion

with CY may attenuate the risk of CRS it may also dampen the anti-

cancer effects of CAR-T due to its preservation of Tregs and

induction of MDSC.
Effectiveness and safety of
lymphodepletion with
cyclophosphamide and fludarabine

The addition of Flu to CY appears to be beneficial, improving the

expansion and the persistence of CAR-T-cells (6, 26). Moreover, FLU

increased disease-free survival, rate and depth of response, OS and

relapse-free survival (RFS) as well as the duration of B-cell aplasia

compared to CY alone (6, 27–29). In fact, as evidenced by Jiang et al.,

absence of FLU in lymphodepletion as well as high lactate

dehydrogenase (LDH) levels and low platelet counts pre-

lymphodepletion were associated with higher relapse after CAR-T-

cell therapy (30). Fludarabine is a purine analog prodrug that is

rapidly converted in plasma to F-araA and accumulates in cells where

it is phosphorylated to its active metabolite F-araATP by

deoxycytidine kinase, an enzyme that is highly expressed in human

lymphocytes (31). F-araA has a half-life of approximately 20 h in vivo,

and its clearance depends on adequate renal function (32). In fact,

creatinine clearance [CrCl(est)] below 80 ml/min was found to

correlate with time to toxicity, independently of age (33). The main

dose-limiting toxicities of FLU are those of other chemotherapy

agents, namely myelosuppression and risk of infection. However,

neurotoxicity is also of concern especially in patients with advanced

disease or elderly patients with reduced renal function (34). Thus,

these patients require careful monitoring and might need appropriate

dose reduction. Somnolence and peripheral neuropathy occur

frequently, immediately following fludarabine infusion, but are

reversible and non-specific (35). Of particular importance are the

late-onset (20–250 days) neurological symptoms such as progressive

visual disturbances, peripheral neuropathy, ataxia, hemiparesis and

dementia (34). Attention should be given not to confuse the latter

with the CAR-T-cell-related immune effector cell associated
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neurotoxicity syndrome (ICANS), which usually occurs within 1

week following therapy, and is often associated with CRS (34). This

highlights the importance of careful consideration of the fludarabine

concentration used for lymphodepletion in patients receiving CD19-

specific CAR-T-cell therapy. Fabrizio et al. found that the use of

suboptimal fludarabine concentration (Area Under the Curve - AUC

<13.8 mg × h/L) for lymphodepletion in patients with relapse-

refractory (R/R) B-ALL significantly increased the risk of disease

relapse however they cautioned that this should be weighed against

the risk of development of toxicities with higher AUC doses (36).

Analogous results were reported by Dekker et al. with the leukemia-

free survival (LFS) and the duration of B cell aplasia being shorter in

the FLU-underexposed (37). Similarly, Scordo et al. found that

patients with aggressive B-cell NHL who received commercial

axicabtagene ciloleucel (Axi-cel) an optimal AUC was associated

with a lower risk of relapse/progression, however, a high AUC was

associated with an increase incidence of any-grade ICANS (38).

Unfortunately, the current method of FLU-dosing administration

based on linear body surface area (BSA) has been found to result in

variable medication exposure (39). FLU levels are not readily

available in most institutions making FLU pharmacokinetics

impractical for optimizing lymphodepletion whilst reducing relapse

and ICANs. The ongoing global shortage of fludarabine has

compelled the exploration of alternative lymphodepleting

regimens (8).
Introduction and assessment of
bendamustine as a lymphodepletion
strategy for CAR-T cell therapies

BEN is an alkylating agent that was designed to have both

antimetabolite and alkylating properties (40). Apart from creating

DNA interstrands, thus impairing DNA synthesis, it has also been

found to induce apoptosis and inhibit mitotic checkpoints (41, 42).

Another action that separates BEN from other alkylating agents is

its activation of a base excision DNA repair pathway (42). It is

metabolized by the liver and not excreted by the kidneys, which

makes it ideal for patients with suppressed renal function. BEN has

a short half-life of only 40 min, which is much shorter compared to

that of CY and FLU (~ 8.88 h and ~ 10 h respectively) (32, 43, 44).

Bone marrow suppression and particularly lymphopenia are

frequently seen after BEN use, with CD4+ T cells being the most

affected cell population (45). A significant body of literature has

emerged recently, largely from the research efforts of our group,

with a primary focus on the immunomodulatory properties of BEN

(46). Our investigations have delved into BEN’s effects in the pre-

allogeneic hematopoietic cell transplant (HCT) conditioning

setting, and as a post-transplant therapy for GvHD, specifically

targeting alloreactive T-cells and Tregs (47–55). PT-BEN exhibits a

higher degree of lymphodepletion, which includes the elimination

of Tregs, in contrast to PT-CY, and thus may also offer a distinct

advantage over CY in the sett ing of pre-CAR-T cell

lymphodepletion. We have reported that the suppressive effect of

BEN in GvHD is partially due to its effects in expanding the CD11b
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+Gr-1+ myeloid cells (52). However, despite the BEN-induced

upregulation of MDSCs, which may raise concerns about its use

in lymphodepletion, we have seen an advantage in its ability to

preserve GvL effects (54).

Although enhanced lymphodepletion intensity with CY-FLU

may be associated with higher probability of a favorable cytokine

profile (LDH, MCP-1 and IL-7), increased CAR-T expansion as well

as efficacy and durability of CAR-T cell therapy, it may also increase

the frequency of severe CRS and ICANs (56, 57). In fact, a post-

lymphodepletion upregulation of MCP-1 and IL-7 and decrease in

LDH are associated with increased probability of complete remission

(58, 59). In the JULIET2 trial, BEN was used in some patients at 90

mg/m2 daily for 2 days for lymphodepletion prior to Tisagenlecleucel

administration in adult patients with relapsed or refractory DLBCL.

No difference in efficacy or safety was observed between patients that

received BEN compared to CY-FLU (60). In another study, Ramos

et al. showed that the addition of FLU 30 mg/m2/day to BEN 70 mg/

m2/day given for 3 days, in patients with R/R Hodgkin lymphoma,

increased the homeostatic cytokines IL-7 and IL-15 and was

associated with higher CD30 CAR-T persistence and longer 1 year

disease-free survival compared to BEN 90mg/m2/day for 2 days alone

(61). Moreover, they found that, CRS was significantly higher in CY-

based lymphodepletion compared to their BEN- based regimen with

or without FLU (61). Similar results favoring the use of BEN over CY-

FLU were reported by Ghilardi et al, in patients with relapsed or

refractory DLBCL that received Tisagenlecleucel (62). Specifically,

FLU/CY significantly reduced lymphocyte counts at the time of CAR-

T infusion and was associated with higher post-lymphodepletion

CRP and ferritin levels. Patients treated with CY-FLU also exhibited

decreased hemoglobin levels and platelet counts when compared to

those receiving BEN, resulting in a higher requirement for platelet

and packed red blood cell transfusions following tisagenlecleucel

infusion. Furthermore, patients in the CY-FLU group exhibited lower

median neutrophil counts when compared to BEN and more Grade

≥3 neutropenia requiring more frequent administration of

granulocyte colony-stimulating factor (GCSF). Conversely, patients

who underwent BEN-based lymphodepletion experienced fewer

occurrences of neutropenic fever, infections, and hospitalizations.

BEN was also associated with reduced rates of any-grade CRS, any-

grade ICANs, as well as severe ICANS when contrasted with CY-

FLU. These differences were also linked to the more frequent usage of

tocilizumab in CY-FLU recipients. When patients were stratified into

groups with similar characteristics, it was observed that BEN-based

lymphodepletion exhibited comparable efficacy to CY-FLU in terms

of overall response rate and progression-free survival (PFS).

Moreover, it resulted in prolonged OS. The investigators also drew

the conclusion that there exists an optimal threshold level for

lymphodepletion, beyond which further reduction in lymphocyte

counts does not enhance CAR-T efficacy but may elevate the risk of

toxicities (62). In another recent study, Garcia-Calvo et al. compared

different lymphodepleting regimens as bridging therapies before

either Axicabtagene Ciloleucel (axi-cel) or Tisagenlecleucel infusion

in patients with R/R DLBCL (63). No difference in efficacy or safety

was observed between the BEN and non-BEN-containing regimens

in either CD19 CAR-T cell regimen. The rates of ICANS and CRS, all

grades or grade ≥3 were similar as was non-relapse mortality.
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Moreover, peak CAR-T-cell expansion after infusion and area under

the curve between day of infusion and day 28 were similar in BEN

and non-BEN subgroups. While BEN did not provide an additional

benefit in median PFS and OS, patients in the BEN subgroups were

found to have a trend toward an increased complete response to

CAR-T-cell therapy (63). Ahmed et al. assessed the feasibility and the

efficacy of outpatient Tisagenlecleucel administration in adults with

B-cell lymphoma with BEN being the most common outpatient and

CY-FLU the most common inpatient lymphodepletion used. They

found that outpatient lymphodepletion was associated with lower

any-grade CRS and ICANS versus the inpatient while PFS and OS

were similar in the two groups (64). Similar findings were observed by

Ong et al. in patients with R/R aggressive B-cell lymphoma treated

with Axicabtagene Ciloleucel (65). BEN was the most common

lymphodepleting agent used in the outpatient setting resulting in

comparable incidence of CRS, and severe ICANs, to CY-FLU, except

for the occurrence of any grade ICANS, which was lower in the BEN

group. In fact, patients that received BEN required lower dose of

dexamethasone, supporting the finding that BEN lymphodepletion is

associated with a reduced risk of neurotoxicity. Additionally, there

were no significant differences in hazard ratios for disease

progression, relapse, or mortality, or in the rates of severe

infectious complications, despite observing higher rates of grade ≥3

neutropenia in CY-FLU-treated patients. Consequently, outpatient

lymphodepletion using BEN, appears to be equally effective to CY-

FLU and may represent a cost-effective, safe, and efficient alternative

(65). In a recent investigation, Sidana et al. compared the two-day use

of BEN 90 mg/m2/day with a three-day course of CY-FLU (300mg/

m2/day and 30mg/m2/day respectively) before the administration of

two different BCMA CAR-T cell regimens [ciltacabtagene autoleucel

(cilta-cel) and idecabtagene vicleucel (ide-cel)] in patients with

multiple myeloma. CAR-T cell expansion and lymphocyte recovery

were found to be comparable between the lymphodepletion groups.

However, both nadir absolute lymphocyte count (ALC) and ALC

before the CAR-T cell infusion were found to be significantly lower in

the CY-FLU group. The incidence of ICANS, CRS and ICU

admissions were similar between the two regimens. Comparable

rates of neutropenic fever, infections as well as use of G-CSF, IVIG,

steroids, and tocilizumab were observed. Overall response rate (ORR)

and PFS were not different, irrespective of the CAR-T cell product

used. These investigators concluded that the use of BEN for

lymphodepletion before BCMA CAR-T cell therapy demonstrates

comparable safety and efficacy as CY-FLU (9). Due to the FLU

shortage over the past year, we also adopted a single-agent

lymphodepletion strategy using BEN at a dose of 90 mg/m²

administered over two consecutive days prior to infusing

commercial CAR-T products in all patients. Importantly, no

unexpected adverse effects were observed in the fifteen patients

treated in this manner.
Summary

In summary, recent retrospective reports suggest that

employing BEN lymphodepletion prior to CAR-T cell infusion
Frontiers in Immunology 04
may be associated with a reduction in adverse events, including

CRS, ICANS, cytopenias and infections when compared to the use

of CY-FLU. Importantly, this approach seems to maintain the

effectiveness of CAR-T cell therapy. Additionally, BEN can be

administered in an outpatient basis within a shorter timeframe,

offering a cost-effective alternative. Its use has become particularly

relevant during the recent period of nationwide FLU shortage.

BEN’s unique immunomodulatory effects support its application

as a lymphodepleting agent and merits a prospective comparison to

CY-FLU through randomized clinical trials.
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