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Introduction: Major depressive disorder (MDD) is a prevalent mental illness, with

severe symptoms that can significantly impair daily routines, social interactions,

and professional pursuits. Recently, imaging genetics has received considerable

attention for understanding the pathogenesis of human brain disorders. However,

identifying and discovering the imaging genetic patterns between genetic

variations, such as single nucleotide polymorphisms (SNPs), and brain imaging data

still present an arduous challenge. Most of the existing MDD research focuses on

single-modality brain imaging data and neglects the complex structure of brain

imaging data.

Methods: In this study, we present a novel association analysis model based

on a self-expressive network to identify and discover imaging genetics patterns

between SNPs and multi-modality imaging data. Specifically, we first build the

multi-modality phenotype network, which comprises voxel node features and

connectivity edge features from structuralmagnetic resonance imaging (sMRI) and

resting-state functional magnetic resonance imaging (rs-fMRI), respectively. Then,

we apply intra-class similarity information to construct self-expressive networks

of multi-modality phenotype features via sparse representation. Subsequently,

we design a fusion method guided by diagnosis information, which iteratively

fuses the self-expressive networks of multi-modality phenotype features into a

single new network. Finally, we propose an association analysis between MDD

risk SNPs and the multi-modality phenotype network based on a fusion self-

expressive network.

Results: Experimental results show that our method not only enhances the

association between MDD risk SNP rs1799913 and the multi-modality phenotype

network but also identifies some consistent and stable regions of interest

(ROIs) multi-modality biological markers to guide the interpretation of MDD

pathogenesis. Moreover, 15 new potential risk SNPs highly associated with MDD

are discovered, which can further help interpret the MDD genetic mechanism.

Discussion: In this study, we discussed the discriminant and convergence

performance of the fusion self-expressive network, parameters, and

atlas selection.
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1 Introduction

Major depressive disorder (MDD) is one of the most
prevalent mental health disorders globally. It is characterized
by continuous sadness, anhedonia, and changes in appetite or
weight. Additionally, individuals with MDD may experience sleep
disruptions, feelings of worthlessness, and thoughts of suicide.
These symptoms can severely disrupt an individual’s routine life
and functioning (Abdoli et al., 2022). Due to its elevated incidence
and recurrence rates, MDD is anticipated to become the most
burdensome disease globally by 2030 (Zhang Y. et al., 2021).
Nevertheless, the specific etiology of MDD remains elusive, with
a non-unified pathogenic mechanism. Currently, the diagnosis of
depression mainly depends on clinical symptoms and the scoring
of the Hamilton Depression Rating Scale (Kennedy, 2022), which is
not enough objective.

With the rapid development of imaging genetics, such
as magnetic resonance imaging (MRI), functional magnetic
resonance Imaging (fMRI), diffusion tensor imaging (DTI), and
positron emission tomography (PET) are extensively employed
for predicting and diagnosing brain and neurological disorders
(Zhang et al., 2020; Li et al., 2023). Owing to its convenience and
potential in assessing brain circuits, rs-fMRI become pivotal in
MDD research (Liu et al., 2020b). Literature (Bondi et al., 2022;
Dai et al., 2022) suggested that using machine learning with rs-
fMRI could effectively diagnose MDD and pinpoint significant
features. Moreover, combining functional connectivity (FC) with
network attributes helped in distinguishing between MDDs and
healthy controls (HCs). Despite their promise to identify dynamic
FC changes, these methods often rely solely on a single imaging
modality, limiting their capacity to find consistent biomarkers
across multiple imaging data.

In recent years, imaging genetics provided vast opportunities
for examining the influence of genetic variations on brain structure
and function. Building on this concept, the primary objective in
this field was to measure the association between genetic variations,
such as SNPs, and neuroimaging biomarkers derived from various
imaging modes. These insights deepened our understanding of
the intricate pathogenesis of diseases (Hao et al., 2016). Given
that the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database encompassed multi-modality imaging and genotype data,
a significant portion of brain imaging genetic research was focused
on Alzheimer’s disease (Windon et al., 2022). However, few studies
employed machine learning techniques to explore neurogenetic
correlations specific to MDD. Zhang et al. (2023) proposed a
methodology that integrates multi-stage diagnosis status to unearth
associations between genetic risk variants and the multi-modality
phenotype network in MDD. This approach successfully identified
the risk SNP THP1 rs1799913 as being highly associated with
MDD. Nevertheless, it overlooked the intricate spatial structure of
multi-modality data, suggesting a potential for further refinement.

To address this, we introduced a self-expressive network
(Elhamifar and Vidal, 2013; Ji et al., 2017). To theorize, each
data point is distributed within a union of subspaces, and
these subspaces can effectively represent the linear or affine
combinations of samples in the dataset that belong to the same
subspace. These subspaces were determined by clustering samples,
where similar samples clustered in the same subspace, and

dissimilar samples were distributed in different subspaces. First,
we proposed a fusion self-expressive network that leveraged both
participant diagnosis information and local network structures
for correlation investigations. Then, we developed an imaging-
genetics analysis framework, calculating relationships among
subjects within the same class and constructing a self-expressive
network of imaging-genetics data through sparse reconstruction.
Finally, by incorporating participant diagnosis information,
different self-expressive networks were iteratively merged using a
fusion approach, forming a network capable of representing the
underlying data structure. Our method was validated using the
MDD genetic risk SNP TPH1 rs1799913. Experimental results
indicated that our method not only improved the performance of
correlation coefficient (CC) metrics but also identified a concise
set of common ROIs shared between two brain network features
closely associated with theMDD genetic risk SNP TPH1 rs1799913.
Furthermore, we successfully identified 15 new potential risk SNPs
associated with MDD, which also identified several MDD-related
ROIs.

The contributions of this paper are as follows:

1. To effectively extract similar structures within the data, we
introduced a self-expressive network for self-reconstruction of
the original data.

2. We proposed a fusion self-expressive network that incorporated
participant diagnosis information. This approach allowed for
iterative fusion, resulting in a unified network that captured the
comprehensive structure of the underlying data.

3. An association model based on the fusion self-expressive
network was developed to mine the risk SNPs and multi-
modality brain phenotype network. Using the risk SNP
rs1799913 to validate our method, experimental results
demonstrated its superiority over existing algorithms.

4. We also identified 15 new potential risk SNPs associated
with MDD, providing a foundation for researchers to further
investigate the mechanisms underlying MDD pathogenesis.

The subsequent sections of this paper are structured as follows:
Section 2 presents the demographic statistics of participants and the
pre-processing of multi-modality data. In Section 3, the proposed
methodology for the identification of risk-associated SNPs and the
construction of the multi-modal phenotype network is introduced.
The introduction and analysis of experimental results are found
in Section 4. Lastly, discussions and conclusions are respectively
presented in Sections 5 and 6.

2 Data source and preprocessing

2.1 Participants

This study utilized datasets obtained from two hospitals,
namely the Affiliated Zhongda Hospital of Southeast University
and the Second Affiliated Hospital of Xinxiang Medical University.
Patients were recruited from the inpatient and outpatient
departments of psychiatry in these hospitals, while HCs were
recruited through media advertising and community posting.
The research procedures followed the guidelines outlined in the
Declaration of Helsinki. All patients provided informed consent
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and met the following inclusion criteria: (1) met the diagnostic
criteria outlined in the Diagnostic and Statistical Manual of Mental
Disorders (Fourth Edition); (2) experienced their first depressive
episode andwere above 18 years old at onset; (3) obtainedHamilton
Depression Scale-24 (HAMD-24) scores ≥ 20; (4) had no history
of major psychiatric illness other than depression; (5) had no
primary neurodegenerative disorders such as dementia or stroke;
(6) had no history of substance abuse or dependence (including
drugs, caffeine, nicotine, alcohol, or others), head trauma, or loss of
consciousness; (7) had no cardiac or pulmonary diseases that could
influence the MRI scan. The HC subjects met criteria (4) to (7) and
were required to have a HAMD-24 score ≤ 8.

After excluding low-quality images affected by head motion
or ghost intensity artifacts, this study included a total of 26
HCs and 45 patients with MDD from the Affiliated ZhongDa
Hospital of Southeast University, as well as 38 HCs and 62 MDD
patients from the Second Affiliated Hospital of XinXiang Medical
University. The severity of depression was assessed using the
Hamilton Depression Scale-24 (HAMD-24) scores. Among the
107 MDD patients included in the study (with HAMD-24 scores
≥ 20), they were further categorized into two subgroups based
on their HAMD-24 scores: moderate depression (MD) for scores
ranging from 20 to 34, and severe depression (SD) for scores ≥ 35
(Tolentino and Schmidt, 2018). The demographic characteristics of
the participants are presented in Table 1.

2.2 Magnetic resonance imaging data
acquisition and preprocessing

All participants underwent baseline magnetic resonance
imaging (MRI) scans using a 3.0 T Siemens scanner (Siemens,
Erlangen, Germany) with a 12-channel head coil. Pads were
used to immobilize the heads of all subjects and minimize head
movements. High-resolution 3D T1-weighted scans were acquired
using a magnetization-prepared fast gradient echo (MPRAGE)
sequence with the following parameters: repetition time (TR) =
1,900 ms, echo time (TE) = 2.48 ms, flip angle (FA) = 9◦, acquisition
matrix = 256 times 256, field of view (FOV) = 250 × 250 m2, slice
thickness = 1.0 mm, no gap between slices, scan time = 4 min 18 s,
and a total of 176 volumes.

For the rs-fMRI scans, the following parameters were used: TR
= 2,000 ms, TE = 25 ms, FA = 90◦, acquisition matrix = 64 × 64,
FOV = 240 × 240 m2, slice thickness = 3.0 mm, no gap between
slices, axial slice orientation with 36 slices, a total of 240 volumes,

in-plane resolution parallel to the anterior-posterior conjunction
= 3.75 × 3.75 m2, and an acquisition time of 8 min. During the
scans, subjects were instructed to lie on their backs with their hands
naturally resting on their sides. Head movement was minimized
by using pads, and ear plugs were provided to reduce scanner
noise. Subjects were asked to relax their bodies, keep their eyes
open, stay awake, and avoid focusing on any specific thoughts to
prevent falling asleep. Image quality was checked immediately after
scanning, and repeat scans were performed if necessary.

For quality control, two experienced radiologists examined
all image data. The rs-fMRI images were preprocessed using
the Resting State Functional Data Processing Assistant (DPARSF
2.3 Advanced) MRI toolkit, which integrates the Resting State
Functional MRI Toolkit (REST) and the Statistical Parametric
Mapping Package (SPM) programs (Yan and Zang, 2010). The
first 10 time points were excluded to ensure stable longitudinal
magnetization and accommodate scanner noise. The remaining
230 images underwent sequential processing steps: (1) correction
for time differences and head motion using the 36th slice as
the reference slice for slice time correction (participants with
maximum head motion displacement >1.5 mm in any direction
or angular motion >1.5◦ were excluded); (2) co-alignment of
the T1-weighted image with the functional image and subsequent
reorientation; (3) spatial normalization, where the T1-weighted
anatomical images were segmented into white matter, gray matter,
and cerebrospinal fluid, and then normalized to the Montreal
Neurological Institute (MNI) space using a uniform segmentation
algorithm. The transform parameters from the segmentation were
applied to the functional images, which were resampled with 3 mm
isotropic voxels; (4) spatial smoothing with a 4 mm full-width at
half-peak (FWHM) isotropic Gaussian kernel; removal of linear
trends within each voxel time series; regression of interference
signals (white matter, cerebrospinal fluid signals, and head motion
parameters calculated using rigid body six corrections); removal of
spiked regression volumes; and application of a temporal bandpass
filter (0.01–0.08 Hz) to reduce low-frequency drift and filter out
high-frequency noise.

2.3 SNP genotype data sequencing and
processing

DNA genotyping was conducted by Tianhao Biotechnology
(Shanghai, China), following the standard protocol for DNA
extraction from blood samples. Illumina Next sequencing and array

TABLE 1 Demographic statics of subjects.

Hospital ZhongDa XinXiang

Subject HC MD SD HC MD SD

Number 26 34 11 38 44 18

Gender (M/F) 10/16 15/19 4/7 21/17 26/18 7/11

Age (mean± std) 36.69± 13.88 44.94± 14.51 44.09± 15.22 44.76± 12.25 42.16± 13.26 47.44± 14.11

Education (mean± std) 13.46± 3.96 11.09± 4.14 10.09± 5.99 10.74± 4.67 9.89± 4.25 9.44± 4.19

HAMD-24 (mean± std) 1.27± 2.16 27.65± 4.68 38.91± 2.26 1.13± 1.85 29.91± 3.66 39.22± 3.95

HC, healthy control; MD, moderate depression; SD, severe depression; M/F, male/female; HAMD-24, Hamilton Depression Scale-24.
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FIGURE 1

The overview of FSN-MM model.

technology (Illumina Inc., San Diego, CA, USA) were employed
to determine the genotypes of single nucleotide polymorphisms
(SNPs) in the genes of interest. Subsequently, we utilized the PLINK
(v1.9) software to perform the Hardy-Weinberg equilibrium
(HWE) test, assess linkage disequilibrium statistics, and calculate
allele and genotype frequencies (Purcell et al., 2007). After
excluding missing or erroneous values, a total of 5,897 SNPs were
retained for further analysis in this study.

Genetic risk variants can help researchers understand the
biological mechanisms of related diseases and provide valid
hypotheses for drug design. In this study, we focused on
thoroughly exploring the relationship between a given risk SNP
and quantitative traits at the level of brain structure and function.
Some studies have implicated a large number of genes associated
with depression, including HTR2A, CACNA1C, BDNF, CRHR1,
GSK3β , TPH1, among others, as detailed in a systematic review
(Flint and Kendler, 2014). However, unlike the well-known
risk SNP APOE rs429358 in Alzheimer’s disease, there was no
consistent genetic hypothesis for the pathogenesis of MDD.
Tryptophan hydroxylase (TPH) was the rate-limiting enzyme in the
biosynthesis of serotonin (5-HT). Haplotype analysis suggested a
connection between TPH-1 and MDD. In this study (Zhang et al.,
2023), TPH1 rs1799913 was found to have a strong correlation
with MDD. Gizatullin et al. (2006) discovered six SNPs that were
in linkage disequilibrium in both the patient and control groups.
However, only one SNP (rs1799913) was significantly associated
with MDD in their single-marker association analysis. This SNP
was also referenced as SNPA779C in other research. It was linked to
the cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA)
concentration, and multiple studies had indicated its association
with suicidal behavior (Jarienė et al., 2018; Nielsen et al., 2020).

Therefore, we first used TPH1 rs1799913 to validate our
proposed model. The values of TPH1 rs1799913 were encoded
additively as 0, 1, 2, where the alleles were divided into major and
minor alleles based on genotype frequencies, with the major allele

encoded as “0,” the minor allele as “2” and the heterozygotes as “1”
(Purcell et al., 2007). After validation, the remaining 5,896 SNPs
were encoded using the same method and subsequently analyzed
to determine their correlations with MDD.

3 Method

To simultaneously focus on brain structural imaging and
functional connectivity information between different brain
regions while considering the complex internal data structure,
we proposed the FSN-MM model by diagnosis information to
mine the relationship between MDD risk SNPs and the multi-
modality phenotype network. The overview of our proposed model
is depicted in Figure 1. We utilized the Automated Anatomical
Labeling (AAL) atlas to extract voxel node features from sMRI
data and network connectivity edge features from rs-fMRI data,
respectively. Subsequently, we employed intra-class similarity
information to construct novel self-expressive networks for the
multi-modality phenotype by sparse representation. These self-
expressive networks were then iteratively merged into a single
network guided by diagnosis information. Leveraging this fusion
self-expressive network model, we obtained a new restructured
multi-modality phenotype network and applied a multi-modality
associationmodel to investigate the relationship betweenMDD risk
SNPs and the multi-modality phenotype network.

3.1 Extracting the features of
multi-modality phenotype network

The node and edge features of each subject were integrated
to form a multi-modality brain phenotype network. The node
features were extracted from sMRI data, while the edge features
were extracted from rs-fMRI data.
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After preprocessing the sMRI data, voxel-based morphometry
(VBM) analysis was conducted on each subject. This analysis
utilized normalized gray matter density masks with voxel
dimensions of 2 × 2 × 2 mm3 in the MNI space. The resulting
VBM outputs were registered to the respective patient scans
for each participant, and the mean gray matter volume (GMV)
measurements were extracted for 116 ROIs based on the AAL
template. Each ROI was considered as an individual node within
the multi-modality brain network, enabling the derivation of a set
of node features for each subject.

A functional connectivity network was established for
each individual using rs-fMRI data, where nodes represented
predetermined ROIs and edges signified the functional
connections between these ROIs. The average time series of
each ROI, normalized to have zero mean and unit variance, were
extracted based on the AAL template. The functional connectivity
networks were derived using the Pearson correlation coefficient,
which captured the correlation between BOLD signals of paired
ROIs (Li et al., 2017). Graph theory-based methods played a
crucial role in the analysis of human brain disorders due to the
abnormal topological properties of brain networks in psychiatric
disorders. One of the most commonly used methods was clustering
coefficients, which reflected the local clustering properties of the
brain network (Liu J. et al., 2020; Li et al., 2022). The clustering
coefficient (CC) is a threshold-free metric used to measure the
degree of node aggregation in network graph theory and is one
of the most commonly used methods. The CC for each ROI is
determined by the functional connectivity between that ROI and
other ROIs.

3.2 Self-expressive network

The concept of self-expressiveness postulates that each data
point is distributed across multiple subspaces, and each subspace
can be accurately represented by a linear or affine combination
of samples from the same subspace. Within the multi-modality
phenotype network, a complex structure is formed, encompassing
several subspaces. Our methodology leverages this inherent self-
expressiveness property, which captures the similarity structure
of the data, to reconstruct the original input before performing
correlation analysis. By introducing a self-expressive network
for self-reconstruction, we can comprehensively describe the
similarities present within the data. To construct such a self-
expressive network, we utilize the self-expressiveness property
to create a subject-subject similarity relationship matrix. This
matrix serves as an equivalent representation of the self-expressive
network, where the weighted edges signify pairwise similarity
relationships.

In a self-expressive network SN = {V ,E,W}, V represents a
collection of nodes where each node corresponds to a subject. E
represents a set of edges, and W represents a weight matrix for
the edges. Specifically, given a set of data points {xi}i=1,··· ,N derived
frommultiple linear subspaces {Ri}i=1,··· ,K , it is feasible to express a
point in a specific subspace as a linear combination of other points
in the same subspace. For the data matrix X, the property of self-
expressiveness can be represented as X = WxX, with X = WxX

being the self-expressive coefficient matrix. As shown in Ji et al.
(2017), under the assumption of independence of the subspaces,
the minimization of certain norms ofWx ensures a block-diagonal
structure ofWx (up to some permutations). That is,Wx

ij 6= 0 only if
points xi and xj reside in the same subspace. Inmathematical terms,
this can be formulated as an optimization problem:

min
Wx

‖Wx‖p s.t.X = WxX, (diag(Wx) = 0) (1)

The weight matrix in the sparse representation reflects the
inherent geometric properties of the data and Wx should have a
block-diagonal structure under a certain permutation, where each
block corresponds to the data samples from the same subspace.

The aforementioned problem can also be approached as
identifying clustering structures or block structures within the
weight matrix Wx that correspond to the subspaces of the data.
This approach is equivalent to leveraging the self-expressive
property, which captures the similarity structure of the data,
for reconstructing the original data. In this study, we utilize
diagnosis information (i.e., HC, MD, SD) to perform the data
reconstruction. Specifically, given c classes of samples X̃ =[
x
(1)
1 , · · · , x(1)N1

, · · · , x(c)1 , · · · , x(c)Nc

]
∈ Rp×N , we reconstruct xi using

samples with the same label. Here, p represents the number of
ROIs, x(c)i represents the i-th sample in the c-th class, and it can
be expressed as a combination of samples with the same diagnostic
label, as shown in Equation 2:

min
(Wx

i )
(c)≥0

1

2

∥∥∥x(c)i − (X̃)(c)(Wx
i )

(c)
∥∥∥
2

2
+ λ

∥∥∥(Wx
i )

(c)
∥∥∥
1

(2)

where λ denotes a regularization parameter. (Wx
i )

(c) is a

vector in which the element corresponding to x
(c)
i is zero,

and we discard negative solutions. Specifically, (Wx
i )

(c) =[
0, · · · , 0,Wi,1, · · · ,Wi,i−1, 0,Wi,i+1, cdots,Wi,Nj , 0, · · · , 0

]T
.

Subsequently, we utilize the SLEP toolbox (Liu et al., 2009) to
optimize Equation 2. Once we obtain (Wx

i )
(c), the optimal solution

of Equation 2, we can express the sparse reconstructive weight
matrixWx as follows:

Wx =
[
(W̃x

1 )
(c), ..., (W̃x

N)
(c)

]
+

[
(W̃x

1 )
(c), ..., (W̃x

N)
(c)

]T
(3)

The reconstructive weight matrix Wx is an N × N symmetric
matrix, where each element represents the contribution of each
xj to the reconstruction of xi. The diagonal elements of the
constructed matrix Wx are set to zero. As shown in Figure 2,
the self-reconstruction data demonstrates some clustering effects
compared to the original data.

3.3 Fusion self-expressive network

The utilization of multi-modality brain imaging phenotypes is
widely accepted as it provides more comprehensive information
compared to single-modality biomarkers. With the availability of
multi-modality data, fusion methods based on sample similarity
have been extensively employed in various tasks such as
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FIGURE 2

The process of data self-reconstruction by self-expressive method.

classification, clustering, and prediction (Wang et al., 2014).
Drawing inspiration from these previous studies and enhancing
the clustering accuracy by bringing together data diagnosed
within the same class in the multi-modality phenotype network,
we introduce a fusion self-expressive network. This network
effectively leverages the local structure of the network and
diagnosis information between networks to facilitate efficient data
integration.

The fusion self-expressive network FSN =
{
V f ,Ef ,Wf

}
is

defined as the network that incorporates fusion self-expressiveness,
which includes high-weight edges, from one or more of these
networks. In this context, the self-expressiveness property can be
represented as Xm = WfXm, where Xm denotes the multi-modality
brain imaging phenotypes and Wf represents the fusion self-
expressive coefficient matrix. Specifically, given M self-expressive
networks SNm = {Vm,Em,Wm} derived from M multi-modality
brain imaging phenotypes Xm =

[
xm1 , · · · , x

m
n , · · · , x

m
N

]T
∈

RN×r (m = 1, 2, · · · ,M), r represents the number of ROIs. We aim
to obtain the fusion self-expressive coefficient matrix Wf from the
self-expressive network matricesWm. To accomplish this objective,
we compute the local affinity of the self-expressive network matrix
based on diagnosis information. This operation involves setting the
similarity (calculated as pairwise similarity values) between points
of different classes to zero. Essentially, we assume that pairwise
similarities with high weight values are within the same class
more reliable than similarities between different classes. Therefore,
we assign similarities to points of different classes through graph
diffusion on the network. The calculation of the local affinity (AL)

can be expressed as follows:

Am
L (i, j) =





Wm(i,j)∑
k∈Ci

Wm(i,k) j ∈ Ci

0 otherwise

(4)

where Ci represents the set of points in the same class as xi in
SNm. Subsequently, for M self-expressive networks, the updated
self-expressivematrix for themulti-modality data can be defined as:

Wm
t+1(i, j) =

∑

k∈Ci

∑

l∈Ci

Am
L (i, k)A

m
L (j, l)

∑
q 6=m

W
q
t (k, l)

M − 1
(5)

where Wm
t+1 represents the fusion self-expressive network matrix

after t iterations. The matrixW contains the complete information
about the similarity of each subject to all others in the dataset. In
contrast, the matrix AL focuses solely on encoding the similarity
between a given patient and others within the same class. Our
algorithm always starts with W as the initial state and utilizes AL

as the kernel matrix in the fusion iteration process to capture the
local structure of networks (Wang et al., 2021). The self-expressive
information between subjects of the same class is only propagated
through the common class. Furthermore, it is worth mentioning
that if xi and xj are dissimilar in one modality, the self-expressive
information can be expressed in other modalities. Thus, the self-
expressive information among subjects within the same class can
be obtained through fusion. Ultimately, after t iterations, the overall
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FIGURE 3

The process of data fusion self-reconstruction and fusion of self-expressive matrices.

fusion self-expressive network matrix can be formulated as:

Wf =

{
1
M

∑M
m=1 W

m
t (i, j) i 6= j

0 i = j
(6)

Equation 6 demonstrates that the fusion self-expressive
network effectively leverages the local structure within networks
and captures both common and complementary information
across multiple modalities.The self-expressiveness property is
expressed as Xm = WfXm, where Wf represents the fusion
self-expressive coefficient matrix.

Figure 3 illustrates the process of self-expressive network
fusion and the data fusion self-reconstruction process. Specifically,
the model iteratively integrates self-expressive networks from
the multi-modality phenotypes network into a single network,
guided by diagnosis information. During the fusion process,
weak similarities (low-weight edges) are eliminated, while strong
similarities (high-weight edges) emerge within one or more
networks and are incorporated into other networks. Additionally,
low-weight edges supported by all networks are preserved,
depending on their connectivity strength across classes spanning
multiple networks. In the fusion self-expressive matrix, the intra-
class similarity (high-weight edges) is enhanced, while the inter-
class similarity (low-weight edges) is significantly reduced. By

comparing with Figure 2, it is evident that the fusion self-
reconstruction data exhibits better clustering performance than the
self-reconstruction data.

3.4 Introduction fusion self-expressive
network into association model

Once the multi-modality phenotype network is constructed for
each subject, pathological changes can be identified as abnormal
alterations within the phenotype networks. These changes are
closely associated with relevant ROIs and significant connectivity
edges, as the features of the network nodes and edges are
derived from GMV data obtained from sMRI and clustering
coefficients from rs-fMRI. Here, let’s consider a scenario with
N subjects, and let each subject represent itself with a multi-
modality phenotype network. The input consists of M modalities
of phenotypes, denoted as Xm =

[
Xm
1 , · · · ,X

m
n , · · · ,X

m
N

]T
∈

RN×d, where d represents the dimensionality of node and edge
features. The corresponding output is represented by y =[
y1, · · · , yn, · · · , yN

]T
∈ RN , where y represents the response value

of SNP. In this context, let wm ∈ Rd denote the linear discriminant
function corresponding to the m-th modality. The multi-modality
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network phenotype association model can be formulated as:

min
W

1

2

M∑

m=1

∥∥y− Xmwm
∥∥2
2 + λ ‖W‖2,1 (7)

where W =
[
w1,w2, · · · ,wM

]
∈ Rd×M is the weight matrix, and

each row wj represents the vector of coefficients assigned to thej-th
feature across multi-modality. It is important to note that Equation
7 introduces the L2,1-norm regularization term, ‖W‖2,1 =∑d

j=1

∥∥wj

∥∥
2, which serves as a “group-sparsity” regularizer. This

regularization term penalizes all coefficients in the same row of
the matrix W, encouraging joint feature selection. In other words,
our proposed model aims to select only a small number of features
across multi-modality. The regularization parameter λ controls the
balance between the two terms in Equation 7. A larger value of λ

leads to the selection of fewer features.
Then, we incorporate the fusion self-expressive network into

the multi-modality association model by incorporating Equation 6
into Equation 7. The objective function of our proposed association
model, referred to as FSN-MM, can be formulated as follows:

min
W

1

2

M∑

m=1

∥∥∥y−WfXmwm
∥∥∥
2

2
+ λ ‖W‖2,1 (8)

where the parameter λ controls the regularization term, and its
value can be determined through inner cross-validation on the
training data. In the objective function (Equation 8), we replace
the original data with the fusion self-reconstructed data. With
this formulation, the FSN-MM model can jointly select a sparse
subset of common features from themulti-modality data while fully
leveraging the prior diagnosis information among subjects.

4 Experimental results and analysis

4.1 Experimental settings

In our experiments, we utilized the CC as an evaluation metric
to measure the association analysis between the predicted and
actual response values and employed the five-fold cross-validation
strategy to validate the effectiveness of our proposed method. To
determine the parameter λ in Equation 8, we tuned its values from
10−5, 3×10−5, 10−4, 3×10−4, · · · , 3 and selected the optimal value
through nested five-fold cross-validation on the training dataset.

In Table 2, we compared the performance of the single-
modality (SM) method, concatenate-modality (CM) method,
and multi-modality (MM) method with/without fusion self-
expressive network. The SM, CM, and MM methods represented
conventional approaches without incorporating the fusion self-
expressive network. We presented the FSN-SM and FSN-CM
methods, which were the improved versions of the SM and
CM methods incorporating the fusion self-expressive network,
respectively. The FSN-MM method simultaneously considered
the multi-modality images and fusion self-expressive network.
Additionally, we presented the SN-SM, SN-CM, and SN-MM
methods, which were the improved versions of the SM, CM,
and MM methods incorporating the self-expressive network,
respectively. Descriptions of the various comparisons were
presented in Table 2.

4.2 Identification of imaging-genetic
patterns in MDD using FSN-MM

4.2.1 Association between risk SNP and
multi-modality network phenotype

We validated the model using the MDD risk SNP rs1799913.
In our comparison, we evaluated the performance of our proposed
FSN-MM method and compared it with conventional methods
(including SM, CM, and MM) as well as improved methods that
incorporate the fusion self-expressive network (including FSN-
SM and FSN-CM). To ensure unbiased results, we performed
five independent and non-repetitive five-fold cross-validations. We
calculated the average CC results on the training and testing data
separately for the node and edge modalities. Table 3 presented the
average results.

As shown in Table 3, FSN-SM achieves CC values of 0.1934 and
0.2031 on the node and edge features, respectively, outperforming
the conventional SM method. FSN-CM achieves a CC value of
0.2354, which is an improvement over the CM method. FSN-MM
demonstrates the best performance with CC values of 0.3845 and
0.4037 on the two different features. These results highlight several
important findings:

1) MM-type methods, such as FSN-MM, outperform SM-type
methods by jointly selecting node and edge features, leading to
enhanced performance in association analysis.

2) The introduction of the fusion self-expressive network,
incorporating diagnosis information, consistently improves the
CC performance compared to conventional methods across
different feature types.

3) Functional connectivity edge features between different brain
regions, compared to voxel-based morphometry node features,
provide more insights for understanding the mechanisms of
MDD.

Moreover, CM-type and MM-type methods both utilize node
and edge features, but they employ different strategies to combine
these features, resulting in distinct performance. CM-type methods
directly concatenate node and edge features, which may lead to
the loss of relationship information between the modalities and
introduce more noise in the expanded feature space. On the other
hand, MM-type methods utilize the multi-task strategy with L2,1-
norm constraint to jointly select node and edge features, improving
the robustness of ROI detection.

In summary, the FSN-MM method demonstrates the best
performance in terms of CC measure. This indicates that
considering multi-modality imaging data and incorporating the
fusion self-expressive network with diagnosis information can
effectively enhance the performance of association analysis between
imaging phenotypes and genotypes.

4.2.2 Comparison with state-of-the-art
approach

Based on existing MDD research, this study utilizes multi-
modality data and compares the FSN-MM method with the state-
of-the-art imaging genetics algorithm for MDD, known as MSD-
MM (Zhang et al., 2023), as shown in Table 4. To ensure the
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TABLE 2 The detailed description of various comparisons.

Comparison Modality Diagnosis Description

SM Node No Employing the least absolute shrinkage and selection operator (LASSO)
technique, a sparse, yet significant, subset from either node or edge features is
identified

Edge No

SN-SM Node Yes

Edge Yes

FSN-SM Node Yes

Edge Yes

CM – No By concatenating node and edge features, a subsequent application of the LASSO
allows for the detection of a sparse yet significant subset within the merged
features

SN-CM – Yes

FSN-CM – Yes

MM Node No Identifying a sparse subset of shared ROIs derived from node and edge features

Edge No

SN-MM Node Yes

Edge Yes

FSN-MM Node Yes

Edge Yes

TABLE 3 Comparison of regression performance on risk SNP TPH1

rs1799913 by di�erent methods.

Method CC (mean ± SD)

Train Test

SM Node 0.0465± 0.0440 0.0121± 0.0045

Edge 0.0983± 0.0564 0.0488± 0.0027

SN-SM Node 0.2125± 0.0538 0.1558± 0.0571

Edge 0.2013± 0.0148 0.1347± 0.0777

FSN-SM Node 0.3055± 0.0370 0.1934± 0.0509

Edge 0.3156± 0.0982 0.2031± 0.0283

CM – 0.1258± 0.0415 0.0875± 0.0842

SN-CM – 0.2964± 0.0375 0.1603± 0.0065

FSN-CM – 0.3702± 0.0861 0.2354± 0.0175

MM Node 0.5416± 0.0412 0.1654± 0.0218

Edge 0.4645± 0.0561 0.1714± 0.0544

SN-MM Node 0.3885± 0.0079 0.2528± 0.0860

Edge 0.3678± 0.0093 0.2306± 0.0449

FSN-MM Node 0.5401± 0.0661 0.3845 ± 0.0040

Edge 0.5634± 0.0263 0.4037 ± 0.0095

The bold values are the values of the method we proposed.

validity and reliability of our proposed approach, the datasets, risk
gene SNP (TPH1 rs1799913), and processing framework (including
templates) used in this study are consistent with those in the
research (Zhang et al., 2023).

TABLE 4 Performance comparison with state-of-the-art approach on

SNP rs1799913.

Method CC (mean ± SD)

Node Edge

MSD-MM 0.2432± 0.0799 0.2697± 0.0910

FSN-MM 0.3845 ± 0.0040 0.4037 ± 0.0095

The bold values are the values of the method we proposed.

The CC values for FSN-MM on node and edge features are
0.3845 and 0.4037, respectively. In contrast, the CC values forMSD-
MMon these features are 0.2432 and 0.2697, respectively. The FSN-
MM method outperforms the MSD-MM algorithm in imaging
genetics association. This study provides a practical solution for
constructing and utilizing the fusion self-expressive network to
build an imaging genetics analysis framework.

4.2.3 Identification of the consistent ROIs from
multi-modality imaging data

To identify ROIs related to MDD, the FSN-MM method
identifies consistent ROIs in both node and edge features in our
experiments. Figure 4 shows the weight maps for the 116 ROIs
associated with the risk SNP TPH1 rs1799913 across multiple
modalities. The values of the weights are normalized, where the
depth of color in the colorbar represents the magnitude of the
ROI weight. In Figure 4, the SM-based and CM-based methods
select numerous ROIs, but these ROIs are inconsistent in terms
of the node and edge features. Such findings suggest that it might
be difficult for researchers to conduct further investigations using
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FIGURE 4

Weight maps for the multi-modalities on 116 ROI associations with THP1 SNP rs1799913 respect to di�erent methods.

these selected ROIs. However, the FSN-MM method can identify
sparse and consistent ROIs associated with THP1 rs1799913 by
multi-modality imaging data. These identified ROIs, such as the
left temporal, right hippocampus and right precuneus regions are
consistent with existing research findings and are highly correlated
with MDD (Li et al., 2018; Dvorak et al., 2019; Roddy et al., 2019;
Wang et al., 2020; Brosch et al., 2022).

In summary, the FSN-MM method tends to select consistent
ROIs associated with the risk SNP in multi-modality imaging
data, in contrast to methods like SM and CM. This is of
significant value for further exploration into the mechanisms
of MDD.

4.3 Discovery of imaging-genetic patterns
in MDD using FSN-MM

4.3.1 Discovery of new potential risk SNPs
The etiology of MDD arises from multiple genetic risk SNPs

rather than a single SNP. In the experiment, we examine the
relationship between two brain network features and the MDD
risk SNP (TPH1 rs1799913). The results show that the FSN-
MM method is an effective tool for uncovering novel risk SNPs
associated with MDD. In this study, the genotype data contain
5,897 SNPs, and we use the FSN-MM method for each SNP in the
entire genotype dataset. Table 5 presents the results. Besides TPH1
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TABLE 5 Regression performance on multiple SNPs.

Gene SNP Description References CC (mean ± SD)

Node Edge

TPH1 rs179995813 Model validation Jarienė et al., 2018 0.3845± 0.0040 0.4037± 0.0095

PIK3R1 rs3730089 Supported by literature on MDD and related brain
disorders, including schizophrenia and bipolar disorder

Huang et al., 2020 0.3246± 0.0169 0.3526± 0.0728

DISC1 rs3738401 Zhang et al., 2006 0.3722± 0.0024 0.3382± 0.0218

COMT rs4680 Stein et al., 2006 0.3562± 0.0398 0.3617± 0.0237

HTR2A rs6311 Smith et al., 2013 0.3255± 0.0382 0.3468± 0.0218

BDNF rs6265 Lisiecka et al., 2015 0.3703± 0.0383 03608± 0.1077

CACNA1C rs11832738 Liu et al., 2020a 0.3236± 0.0867 0.3397± 0.0625

CAMK2B rs11542227 Lacking literature support on MDD and related brain
disorders, such as schizophrenia and bipolar disorder

- 0.3204± 0.0627 0.3401± 0.0583

GALC rs73312836 – 0.2660± 0.0690 0.3166± 0.0845

NRG1 rs77493513 – 0.3119± 0.0048 0.3033± 0.0594

MAPK10 rs1201 – 0.3192± 0.0070 0.2601± 0.0067

KDSR rs1138488 – 0.2230± 0.0454 0.2158± 0.0788

DRD2 rs6279 – 0.2328± 0.0768 0.2560± 0.0608

LAMA2 rs2229848 – 0.2766± 0.0761 0.2867± 0.0804

GRIA3 rs550640 – 0.2471± 0.1027 0.2729± 0.0618

THY1 rs3138094 – 0.2432± 0.0288 0.2571± 0.0929

rs1799913, 15 other SNPs exhibit a strong relationship with both
node and edge features, suggesting that these 15 SNPs might be risk
genetic SNPs for MDD.

Among the 15 SNPs, rs3730089, rs3738401, rs4680, rs6311,
rs6265, and rs11832738 are potential candidates that might
be associated with MDD. Specifically, the literature (Huang
et al., 2020) showed that PIK3R1 rs3730089 was associated with
schizophrenia and bipolar affective disorder in the Han Chinese
population. Schizophrenia, bipolar affective disorder, and major
depressive disorder (MDD) often exhibit shared symptoms such
as anhedonia and lack of motivation. Systematic reports (Chen
et al., 2017) highlighted the familial aggregation of these three
psychiatric disorders, with co-occurrence of any two or even
all three disorders in some families. Moreover, evidence from
symptomatology and psychopharmacology suggested an intrinsic
connection between these three psychiatric disorders. Therefore,
PIK3R1 rs3730089 might have served as a risk SNP marker
in MDD research. Similarly, Zhang et al. (2006) indicated an
association between DISC1 rs3738401 and schizophrenia in the
Scottish population; Stein et al. (2006) demonstrated an association
between COMT rs4680 and schizophrenia; Smith et al. (2013)
suggested that HTR2A rs6311moderately influenced the severity of
depression; Lisiecka et al. (2015) revealed that the allelic variation
of BDNF rs6265 led to specific neuro correlates of MDD, which
might have been related to different mechanisms of MDD in
the two allelic groups and might have had potential implications
for patient screening and treatment. Liu et al. (2020a) suggested
that the CACNA1C rs11832738 gene variant affected the severity
of depression in MDD patients. The six SNPs are substantiated

in the literature to be associated with depression, schizophrenia,
and bipolar disorder. Consequently, these six SNP markers are
pertinent to MDD research and hold referential value (Stein et al.,
2006; Zhang et al., 2006; Smith et al., 2013; Lisiecka et al., 2015;
Huang et al., 2020; Liu et al., 2020a).

Furthermore, although CAMK2B rs11542227, GALC
rs733112836, NRG1 rs77493513, MAPK10 rs1201, KDSR
rs1138488, DRD2 rs6279, LAMA2 rs2229848, GRIA3 rs550640,
and THY1 rs3138094 exhibit good correlation coefficients through
the FSN-MM method, there is no direct medical or biological
research supporting the association of these nine SNPs with
MDD at this time. We anticipate future studies will validate
these findings. We hope that these novel MDD risk SNPs will be
confirmed in future research, providing further insights into the
etiology of MDD. In total, we have identified 15 new potential
SNPs associated with MDD, which may contribute to the study of
MDD.

4.3.2 ROI markers identification from sMRI data
Beyond enhancing the performance of correlation analyses, a

primary objective of this study is to identify significant imaging
phenotypes. For the sMRI data, we analyze six new SNPs with
literature support from Table 5. Using five-fold cross-validation
performed five times, we obtain average weight values. We select
the top five ROIs with the highest weights for each SNP as
significant ROI markers. Since the top five ROIs for each SNP are
not the same, a combination results in seven unique ROIs. Table 6
displays these seven ROIs and their average weight values.
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Figure 5 displays the visualization of these seven selected ROIs
mapped onto the human brain in all three planes (sagittal, coronal,
and axial). In each plane, the color of the labeled brain regions
reflects the location of a selected ROI. Notably, most of the selected
ROIs are consistent with earlier findings that focus on structural
images and identify several diagnostic markers of MDD. Roddy
et al. (2019) had shown that MDD patients exhibited bilateral
volume reduction in the major hippocampal substructures and had
identified the core hippocampal region as a potential marker of
MDD progression. Moreover, researchers had found that reduced
hippocampal gray matter volume was a common characteristic of
MDD patients (Brosch et al., 2022). The bilateral middle frontal
gyrus had been shown to exhibit significantly increased amplitude
of low-frequency fluctuation (ALFF) in patients with subthreshold
depression (Liu et al., 2020a; Zhang B. et al., 2021). As described in
the literature (Hagan et al., 2015; Lu et al., 2016), abnormalities in
the thalamic structure might have been potential feature markers
of early-stage MDD. Compared to healthy controls, MDD patients
exhibited reduced gray matter density in the bilateral temporal pole
and right superior temporal gyrus (Peng et al., 2011).

4.3.3 ROI markers identification from rs-fMRI
data

The functional connectivity between different regions of the
brain is represented using a brain network model, where nodes
and edges are defined as brain regions and their connections,

TABLE 6 The top five ROIs chosen based on the node features from sMRI

data for the six SNPs.

ID ROI Weight

38 Hippocampus.R 9.12

85 Middle Temporal Gyrus.L 8.97

68 Precuneus.R 7.52

8 Middle Frontal Gyrus.R 2.33

33 Middle Cingulate Gyrus.L 2.30

41 Amygdala.L 2.11

30 Insula.R 1.91

respectively. In this study, a brain functional connectivity network
is constructed using rs-fMRI data. Clustering coefficients are
then extracted as edge features and incorporated into each brain
region. Consequently, the dimensionality of the obtained edge
features is the same as the number of brain regions, with each
dimension corresponding to a specific brain region. This approach
allows for the identification of relevant ROI markers from rs-
fMRI data.

For the edge features in rs-fMRI data, the average weight
values are also obtained through five-fold cross-validation
with five repetitions, and the ROI with the highest weight
among the six SNPs with literature references, is selected as
a significant ROI marker, as shown in Table 7, focusing on
the prefrontal cortex and hippocampus. Previous research
using rs-fMRI data identified key brain region markers for
MDD, such as the prefrontal cortex, hippocampus, and
temporal gyrus. These markers coincide with the relevant
ROIs we’ve highlighted. MDD patients exhibited abnormal
patterns in the prefrontal cortex during rest before starting
treatment, suggesting this region could be a potential diagnostic
marker for MDD (Li et al., 2018). According to the literature
(Sambataro et al., 2014), MDD patients showed enhanced
connectivity in the default mode network, especially in the right
hippocampus.

Moreover, to analyze the functional connectivity of the selected
brain regions and visualize the differences between MDD and
HC on the functional connectivity network, the ROI with the
highest weight (right prefrontal cortex) and an ROI with a lower

TABLE 7 The top one ROI chosen based on the edge features from

rs-fMRI data for the six SNPs.

SNP ID ROI Weight

rs3730089 68 Precuneus.R 7.40

rs6311 68 Precuneus.R 8.73

rs6265 68 Precuneus.R 8.49

rs11832738 68 Precuneus.R 8.63

rs3738401 38 Hippocampus.R 7.93

rs4680 68 Precuneus.R 8.17

FIGURE 5

Visualization of the seven ROIs selected by node features in three planes. HIP.R, Hippocampus.R; MTG.L, Middle Temporal Gyrus.L; PCUN.R,

Precuneus.R; MFG.R, Middle Frontal Gyrus.R; DCG.L, Middle Cingulate Gyrus.L; AMYG.L, Amygdala.L; INS.R, Insula.R. All volumes of each brain figure

are plotted by BrainNet (Xia et al., 2013). (A) Axial plane. (B) Sagittal plane. (C) Coronal plane.
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FIGURE 6

The edges of the maximum weight ROI (A) and smaller weight ROI (B) on the MDD (left) and HC (right) group. The centroid red node represents the

selected ROI, and the blue node denotes the corresponding ROI linked by top seven average connection value edges. (A) PCUN.R, Precuneus.R;

SFGdor.R, superior frontal gyrus.R; DCG.L, Median Cingulate and Paracingulate Gyri.L; DCG.R, Median Cingulate and Paracingulate Gyri.R; PCG.R,

Posterior Cingulate gyrus.R; CUN.R, Cuneus.R; HIP.L, Hippocampus.L; PCUN.L, Precuneus.L; MOG.L, Middle Occipital Gyrus.L; (B) INS.R, Insula.R;

INS.L, Insula.L; HES.R, Heschl.R; ROL.L, Rolandic Oper.L; ROL.R, Rolandic Oper.R; STG.L, Temporal Sup.L; STG.R, Temporal Sup.R; TPOsup.R,

Temporal Pole Sup.R. In the figure, all edges of each brain figure are plotted by BrainNet.

weight (right insula) are selected from the highest weight ROIs
corresponding to the six SNPs in Table 7. The average edge
values of the functional connectivity networks for the MDD
and HC groups are computed separately. Specifically, functional
connectivity networks for each participant in the MDD and
HC groups are constructed, followed by the computation of
the average functional connectivity networks for each group.
Lastly, the seven edges with the highest connection values are
selected from all the edges within the given ROIs (Wang et al.,
2019). Figure 6 graphically displays the first seven edges with
the highest average connection values on the highest weight
ROI and lower weight ROI. As depicted in Figure 6, the MDD
group exhibits significant variations in the highest weight ROI
edges compared to the HC group, where the edge connecting
the right prefrontal cortex with the left hippocampus is replaced
by the edge connecting the right prefrontal cortex with the
left cingulate gyrus. The edges of the lower-weight ROI in
the MDD group are similar to those in the HC group. These
results indicate a strong association between the identified critical
brain regions (highest weight ROI) and the pathogenesis of
MDD.

4.3.4 Consistent ROI identification from
multi-modality imaging data

Figure 7 illustrates the weight maps of the multi-modality
data for the 116 ROIs associated with six SNPs. The FSN-
MM method successfully identifies sparse and consistent ROIs
associated with the six SNPs. ROIs highly correlated with MDD are
predominantly located in the left temporal, right hippocampus, and
right precuneus regions. These identified ROIs align with previous
findings, further validating the accuracy of our research (Li et al.,
2018; Dvorak et al., 2019; Roddy et al., 2019; Wang et al., 2020;
Brosch et al., 2022).

4.3.5 Consistent ROI identification from
multi-modality imaging data for SNPs without
literature support

We select an SNP (LAMA2 rs2229848) without literature
support from Table 5, presenting its weight maps (Figure 8) for the
multi-modalities on 116 ROIs. As depicted in Figure 8, the FSN-
MM method adeptly identifies sparse consistent ROIs associated
with rs2229848. ROIs showing a strong correlation with MDD
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FIGURE 7

Weight maps for the multi-modalities on 116 ROI associations with six SNPs using FSN-MM. (A) rs3730089. (B) rs6311. (C) rs6265. (D) rs11832738. (E)

rs3738401. (F) rs4680.

are still chiefly located in the left temporal, right hippocampus,
and right precuneus. This result is consistent with SNPs supported
by the literature. While direct medical or biological research

supporting the association of these 9 SNPs with MDD is currently
lacking, it is anticipated that forthcoming studies will validate these
findings, providing valuable insights into the etiology of MDD.

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1297155
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Pang et al. 10.3389/fnins.2023.1297155

5 Discussion

5.1 Discriminant and convergence
performance of fusion self-expressive
network

When comparing the fusion self-reconstructed data with the
original data and the self-reconstructed data in Figures 2, 3, we
observe a more scattered distribution among different classes and
a more concentrated distribution within the same class. This
indicates that the fusion self-expressive network generates more
discriminative features for the diagnosis information (i.e., HC, MD,
or SD).

To illustrate the convergence performance during the fusion
process, we monitor the relative change of parameters in each

iteration using the formula

∥∥∥Wf
t+1−W

f
t

∥∥∥
∥∥∥Wf

t

∥∥∥
, where W

f
t represents the

output of the fusion process after t steps. The initial iteration
t is set to 25, and a simple stopping criterion is applied by
setting a threshold of 10−6. If the relative change falls below the
threshold, the optimization procedure terminates. The convergence
performance of FSN-MM is illustrated in Figure 9. The relative
change value decreases rapidly within the first 10 iterations,
signifying the fast convergence of our proposed optimization
algorithm. Thus, we set the number of iterations to 10 in
our study.

5.2 Parameters selection

The proposed FSN-MM method has only one regularization
parameter: the sparsity parameter λ. This parameter is used to
balance the relative contributions of the two terms in Equation 8.

FIGURE 8

Weight maps for the multi-modalities on 116 ROI associations with LAMA2 SNP rs2229848 using FSN-MM.

FIGURE 9

Number of iterations.
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To investigate the impact of the regularization, the parameter λwas
set in the range of 10−4, 3× 10−4, 10−3, 3× 10−3, ..., 1, 3. Figure 10
shows the correlation coefficients of the parameter λ on node and
edge features. The performance in the region where 0.03 < λ < 0.3
is pretty good for both node and edge features. This region can be
helpful for quickly selecting the optimal value of the parameter λ in
future studies.

5.3 Atlas selection

The AAL atlas is widely used in many neuroimaging studies
due to its comprehensive coverage and clear demarcation of brain
regions. To maintain consistency with prior related studies and to
make our results comparable, we opted for the AAL atlas. However,
choosing different atlases might have a significant impact on the

FIGURE 10

Bar and line graph of correlation coe�cients for parameter λ on node and edge features.

FIGURE 11

Visualization of ROIs related to MDD in di�erent atlases (all volumes of each brain figure are plotted by BrainNet). (A) AAL. (B) BA. (C) HOA (cortical).

(D) HOA (subcortical).
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results. Consequently, we also utilized the Brodmann Areas (BA)
and the Harvard-Oxford Atlas (HOA) to delineate brain regions
and conduct experiments.

Three atlases were tested with SNP rs1799913 respectively.
We selected consistent ROIs in both node and edge features. As
depicted in Figure 11, in the AAL atlas, the left temporal, right
hippocampus, and right precuneus regions are highly correlated
with MDD. In the BA, Brodmann areas 7 and 21 are highly
correlated with MDD. These two areas largely correspond to
the right precuneus and left temporal in the AAL atlas. The
hippocampus is not delineated based on Brodmann’s divisions
since Brodmann’s categorizations are primarily based on the
cellular structure of the cerebral cortex. However, the hippocampus
is a subcortical structure, so it does not directly correspond to a
specific Brodmann area. In the cortical and subcortical sections of
the Harvard-Oxford Atlas, the regions of the left temporal, right
hippocampus, and right precuneus are again shown to be closely
correlated with MDD. These three brain regions align closely with
the locations identified in the AAL atlas. When experimenting with
three atlases, we observed a significant level of consistency in our
conclusions.

6 Conclusion

In this study, we proposed the FSN-MM method to optimally
utilize the internal structure of brain imaging data and diagnosis
information for correlation analysis. When we validated using the
SNP THP1 rs1799913, our method outperformed other approaches
in CC evaluations. Furthermore, we identified consistent and stable
ROI biomarkers from the multi-modality phenotype network’s
voxel node and connectivity edge features. We also identified 15
MDD-associated risk SNPs, of which, six including CACNA1C
rs11832738 were supported by the literature. The remaining nine
SNPs await future validation.

This study probed the association between a single MDD
genetic risk SNP and multi-modality neuroimaging data (sMRI
and rs-fMRI). However, this study had limitations. The samples
came from only two hospitals, and the sample size was not large
enough. Moreover, much of the SNP data was not provided to us
for research. We hoped that in the future, more MDD data would
be made publicly available for research purposes. Additionally,
future research could incorporate other brain imaging modalities
like DTI and assess the relationship with multi-locus risk SNPs.
Given the advancements in deep learning for biology andmedicine,
such techniques could tackle brain imaging-genetic associations
in depression, potentially enhancing our understanding and
treatment of the condition.
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