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Introduction: Salt stress in seed germination and early seedling growth is the

greatest cause of crop loss in saline-alkali soils. Microbial seed coating is an

effective way to promote plant growth and salt resistance, but these coatings suffer

from poor seed adhesion and low survival rates under typical storage conditions.

Methods: In this study, the marine bacterium Pontibacter actiniarum DSM 19842

from kelp was isolated and microencapsulated with calcium alginate using the

emulsion and internal gelation method.

Results: Compared to unencapsulated seeds, the spherical microcapsules

demonstrated a bacterial encapsulation rate of 65.4% and survival rate

increased by 22.4% at 25°C for 60 days. Under salt stress conditions, the seed

germination percentage of microcapsule-embedded bacteria (M-Embed) was

90%, which was significantly increased by 17% compared to the germination

percentage (73%) of no coating treatment (CK). Root growth was also

significantly increased by coating with M-Embed. Chlorophyll, peroxidase,

superoxide dismutase, catalase, prol ine, hydrogen peroxide and

malondialdehyde levels indicated that the M-Embed had the best positive

effects under salt stress conditions.

Discussion: Therefore, embedding microorganisms in suitable capsule materials

provides effective protection for the survival of the microorganism and this seed

coating can alleviate salt stress in wheat. This process will benefit the

development of sustainable agriculture in coastal regions with saline soils.
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Introduction

Biotic and abiotic stressors in the environment have become

major factors limiting global crop growth and production and

increased soil salinization has become a primary factor that

decreases growth and production (Tavakkoli et al., 2011; Abideen

et al., 2020). Saline environments harm plants through

physiological drought (Dantas et al., 2019), ion dysregulation

(Habib et al., 2016) and, oxidative stress (Yang and Guo, 2018)

and leads to a generated metabolic disorder (Zhang et al., 2021).

Seed germination and seedling growth are the most vulnerable

periods in the seed life process and germination is easily disturbed

by numerous stressors that in turn, affect seedling growth and final

yield and quality (Smolikova and Medvedev, 2022). Therefore,

successful seed germination and healthy seedling growth is a

necessity for sustained crop production.

Under salt stress, plants reduce the toxic effects of salt on

plants through numerous mechanisms including activation of

antioxidant enzymes and synthesis of antioxidant compounds,

ion homeostasis, biosynthesis of osmoprotectants and hormonal

regulation (Sharaya et al., 2023). Microorganisms in the soil can

also improve plant growth under salt stress via of the action of

phytohormones, osmotic regulators, antioxidant enzymes and

exopolysaccharide production (Choudhary et al., 2022).

Additionally, seeds can be coated with microorganisms to

improve performance and reduce production costs. This has

been an effective method to reduce damage from abiotic

stressors (Maity et al., 2019; Soumare et al., 2020). Microbial

seed coating can ensure healthy seeds, improve germination,

provide beneficial microorganisms that contributes to sustainable

agriculture (Pedrini et al., 2017; Rocha et al., 2019; Zvinavashe

et al., 2021). For instance, rhizobacteria such as Rhizobium tropici

CIAT 899 have been used with the bean (Phaseolus vulgaris) as a

model system to demonstrate that rhizobacteria delivered to the

soil after coating dissolution are able to infect seedling roots, form

root nodules, enhance yields, boost germination, and mitigate the

effects of soil salinity (Zvinavashe et al., 2019). However, these

coatings are insufficient to ensure microbial survival, are not stable

for long term storage and are susceptible to environmental

influences (Ma et al., 2010).

Microencapsulation is a novel technology to encapsulate

microorganisms on a microscopic scale for their immobilization

and protection. These provide a microenvironment that is less

disturbed by adverse external environmental factors and can

preserve viability (Kim et al., 2012). One such capsule material is

the non-toxic and biocompatible alginate (Krasaekoopt et al., 2003)

and improved microbial survival under salt stress was enhanced

when applied as a seed coating agent to encapsulate Pseudomonas

fluorescens VUPF506. This combination also successfully improved

disease resistance and yield of potatoes (Fathi et al., 2021). Cotton

seeds encapsulated with Bacillus subtilis SL-13 significantly

improved cotton growth indicators including germination rate,

fresh and dry weights and increased levels of the antioxidant

enzymes peroxidase (POD) and superoxide dismutase (SOD) and

accordingly, significantly decreased malondialdehyde (MDA)

content (Tu et al., 2016).
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The wheat (Triticum aestivum L) is one of the three major food

crops in the world and is sensitive to salt levels. High saline soils

retard its growth and delay development so that quality and yield

suffer (Huang et al., 2023). The marine kelp (Laminaria japonica) is

a widely distributed oceanic brown alga that is fast growing and

highly adaptable to changing environmental conditions.

Microorganisms associated with kelp are highly salt tolerant and

can adapt to saline areas in coastal regions. Kelp-associated bacteria

were able to mitigate the effects of salt stress on the growth and yield

of rice (Rima et al., 2018). Therefore, microorganisms from kelp

have potential uses as microbial seed coatings.

The objective of this study was to extract bacteria from kelp,

encapsulate them by endogenous emulsification and prepare them

as microbial seed coating. We then evaluated germination, biomass,

chlorophyll content and indicators of oxidative stress in plants

cultivated in the presence of 100 mM/L NaCl. This study provides

information for the successful application of microbial

microencapsulated seed coatings.
Materials and methods

Microorganisms and culture medium

Bacteria were isolated from fresh kelp as previously reported

with some modifications (Li et al., 2022). In brief, 10 g of fresh kelp

were cut into 0.5 cm2 pieces and added to 90 mL enrichment

medium (5 g (NH4)2SO4, 15 g NaCl/L pH 7.5) in a 500 mL

triangular bottle and incubated at 30°C with shaking at 180 rpm

for 3 d until the plant pieces were visibly degraded. Samples (10 mL)

were then transferred to another 500 mL bottle containing 90 mL of

the same medium and incubated under the same conditions. The

transfer and incubation process were again repeated for a total of 3

times. Dilutions of the enriched bacterial broth were plated on 1.5%

agar isolation plates containing 1 g peptone, 1 g yeast paste, 5 g

(NH4)2SO4, 15 g NaCl, pH 7.5 and incubated at 30°C for 1-2 d.

Colonies were picked and purified 3 × using streak-plating until a

single pure colony was obtained. The isolates were preserved and

submitted to the commercial company Allwegene (Beijing, China)

for 16S rDNA sequencing to identify the bacterial species.
Preparation of the microcapsules

Bacterial microencapsulation was performed by a modification

of the emulsion method as reported previously (Qi et al., 2019).

Briefly, 50 mL of sterile 2% (w/v) potassium alginate and 5 mL of

bacterial suspension (108 colony-forming units (CFU) mL-1) were

mixed with 0.5 g calcium carbonate and homogenized. The mixture

was dispersed into a 100 mL soybean oil phase that contained 1%

(w/v) Span 80 and then was emulsified by stirring at 400 rpm for 5

min. Glacial acetic acid (0.25 mL) in 50 mL soybean oil was then

added and stirring was continued for 10 min. After standing and

stratifying, the aqueous (lower) phase was removed and centrifuged,

washed with phosphate buffer and dried to obtain microcapsules.

The oil layer on the top phase was harvested by aspiration and
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centrifuged for the next use. Hollow microcapsules lacking bacteria

were harvested and dried in the same way and used as a

control (Figure 1A).
Calculation of bacterial embedding levels

1.0 g of microcapsules was weighed into 9 mL of NaH2PO4

solution (0.1 mol/L, NaH2PO4, pH 7.0) and shaken at a constant

temperature of 37°C for 1 h to dissolve the microcapsules and
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release the encapsulated bacteria. After a series of 10-fold

gradient dilutions, the appropriate dilution of the bacterial

suspension was spread on the agar growth medium and incubated

at 37°C for 48 h to determine the number of colony-forming units

(CFU). The embedding levels were calculated as follows (Fareez

et al., 2015):

Embedding(% )¼ Nu= Nt � 100

where Nu represented CFU following capsule breakage and Nt

the CFU of the bacterial solution prior to encapsulation.
FIGURE 1

(A) Schematic of the process of preparing microcapsules by emulsion and internal gelation. (B, C) SEM of microbeads loaded with P. actiniarum DSM
19842. (D) SEM of wheat seeds dipped in microcapsules. (E) Illustration of the seed coating protocol.
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Scanning electron microscopy

Microcapsule morphology was observed using a JSM-7401F

scanning electron microscope (SEM) (JEOL, Tokyo, Japan).

Aqueous dispersions of the samples were dropped onto clean

silicon wafers and air-dried and plated with platinum using an

ETD-800 sputter coater (Beijing, China). The sample area not

covered by the carrier was selected to observe the morphology of

the nanoparticles. Statistical particle sizes based on SEM images

were calculated using Nano Measurer (https :/ /nano-

measurer.updatestar.com/en) software.
Determination of microcapsule
particle size

Microcapsule particle sizes were measured using a Mastersizer

2000 laser particle size analyzer (Malvern Panalytical, Malvern,

UK). The magnitude of the span value indicated the degree of

dispersion of the particle size and was determined as follows (Lemos

et al., 2017):

Span  =  (D90 −  D10) = D50

where D10, D50 and D90 represented the particle size values

corresponding to 10%, 50% and 90% on the cumulative percent

particle size distribution curve.
Microcapsule storage stability

The microbial microcapsules prepared by emulsion and internal

gelation were placed at room temperature (20-25°C) for storage and

samples were taken every 10 d for CFU counting as per above.
Wheat planting experiments

The wheat (Triticum aestivum L., Jimai 22) seeds were sterilized

with 1% NaClO for 10 min and then rinsed 3 × with dH2O. Full-

grained seeds were planted in pots with 50 seeds per pot (diameter

15cm, height 13cm). The salt stress experiment utilized the same

concentration gradient of salt stress as that used in (Wahid et al.,

2021). In the experiment, one third height of the pots with substrate

were put into a solution of 100 mM/L NaCl (11.2 dS/m), through

capillary movement, the NaCl uniformly distributed in the pots.

The seeds were then planted. Seedlings were grown at 25°C or 20°C

(day or night) with a 12 h photoperiod at a light intensity of 240

mmol m-2 s-1.

The seed coating experiments included (i) Wheat seeds with

water (CK), (ii) Wheat seeds with bacteria (Bacteria), (iii) Wheat

seeds with microcapsules lacking bacteria (M-Lack) and (iv) Wheat

seeds with microcapsules embedded bacteria (M-Embed)

(Figure 1E). Four replicates were used for each treatment, all of

which were randomly arranged and rotated periodically to

minimize the effects of environmental heterogeneity.
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Plant growth indicators

Wheat germination rate (%) was recorded after 7 d treatment

under salt stress. The germination rate was calculated as:

G  =  a = b �  100

where G is the germination rate (%), parameter a is the number

of germinating seeds, and b is the total number of seeds from the

germination test.

4 plants were randomly selected from each treatment. The

plants were divided into above-ground and below-ground parts

from the rootstock union and the above-ground parts were

measured for fresh weight. Above-ground dry weight was

measured after drying the samples in an oven at 70°C for 48 h.

The intact wheat roots were scanned and analyzed using

WinRHIZO (Regent Instruments, Québec, Canada) to quantify

root morphology using the protocol of the manufacturer.
Plant physiological indicators

Following 7 d under salt stress, 4 plants were randomly selected

from each treatment to determine the physiological indicators. The

content of physiological indicators is calculated by measuring the

absorbance at the corresponding wavelength. Absorbance was

measured three times per sample. SOD (absorbance at 450 nm),

POD (absorbance at 470 nm), CAT (absorbance at 510 nm), PRO

(absorbance at 520 nm), MDA (difference between 600 and 520

absorbance) and H2O2 (absorbance at 415 nm) levels were

determined using commercial kits (Suzhou Grace Biotechnology,

Suzhou, China) (He et al., 2022). Seven days after planting, wheat

samples were collected, rapidly frozen in liquid nitrogen and

ground into fine powders (40 Hz, 1 min). A total of 100 mg of

each sample was dissolved in Kit-provided PBS. The mixture was

then vortexed for 10 min and centrifuged for 5 min (12000 rpm, at

4°C). The supernatants were used for enzyme activity assessments

using a 96-well Microplate Reader (Thermo Scientific, Pittsburg,

PA, USA) at specific wavelengths as described in the kit

instructions. Chlorophyll (Chl) was determined using a model

TYS-B portable chlorophyll meter (Zhejiang TOP Cloud-Agri

Technology, Zhejiang, China). Three replicates were carried out

for each treatment.
Statistical analysis

All the data were analyzed using SPSS 21 (IBM. Armonk, NY,

USA). The data were analyzed using two-tailed Student’s t test for

single comparisons. The differences between experimental

treatments were evaluated by the least significant difference test

(LSD) at p < 0.05. GraphPad (GraphPad, Software, USA) was used

to create the graphs. Mean values and standard errors (SE) are

presented in figures and tables. Structural equation modeling was

used to explore possible pathways for plant stress tolerance, plant

root growth, H2O2 and MDA effects (shoot/root ratios) on fresh
frontiersin.org
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and dry weight. We chose the model with the smallest AIC value

for comparisons.
Results

Strain identification and characterization

Bacteria associated with kelp plants were isolated by enrichment

and then purified on agar plates. One species was isolated and

selected and identified as the type strain (Pontibacter actiniarum

DSM 19842) originally identified in the Pacific Ocean in Rudnaya

Bay, Russia. P. actiniarum is an aerobic Gram-negative, pink-

pigmented marine bacterium with gliding mobility of the phylum

Bacteroides (https://doi.org/10.1099/ijs.0.63819-0).
Microencapsulation analysis

P. actiniarum microcapsules that were prepared using the

emulsion and internal gelation method were present as smooth,

spherical and individual microcapsules with no apparent pores

(Figures 1B, C). The microcapsule average particle size was 10.6

μm and concentrated in the range of 5.5-15.9 μm. The particle size

distribution range span was 1.04 and indicated a uniform particle

size distribution. The microcapsules were applied to wheat seeds by

dipping and adherence to the seeds was apparent in SEM

photomicrographs (Figure 1D).
Bacteria microcapsule embedding
and stability

The bacterial embedding score was examined by comparing

bacterial CFUs of solutions used for encapsulation with those

following bacteria release from the microcapsules. The

encapsulation rate reached 65.4%. Survival rate of P. actiniarum

in the microcapsules following 60 d of storage at room temperature
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(20-25°C) was 73.1%, while survival rate of those not

microencapsulated were 49.3%, and increased by 22.4%.
Germination and seedling development

Under salt stress, seed germination is considered the key point

throughout the plant growth period and after that, plants can cope

with salt stress in the environment through other strategies. Wheat

seeds treated with Bacteria, M-Lack and M-Embed all had higher

germination rates (84%, 82% and 90% respectively) than the

controls (average of 73%). We measured the response ratios for

the 4 experimental treatments (Figure 2). Bacteria, M-Lack and M-

Embed all displayed significant increases in germination compared

to the CK while M-Embed displayed a significant increase in

germination compared to group Bacteria. In addition, Bacteria

and M-Lack displayed a significant increase in dry and fresh

weight as well as in the root/shoot ratio compared to CK while

M-Embed possessed a significant increase in the dry weight and

root/shoot ratio compared with Bacteria (Figure 3).

The increases in the root/shoot ratio were correlated with the

presence of bacteria and microcapsules on the wheat root system. M-

Lack and Bacteria displayed significant increases in total root length

(TRL), total root area (TRA), total root volume (TRV) and root hair

length (RHL) compared to CK. In addition, M-Embed plants

displayed significant increases in TRL, TRA, TRV and RHL and a

significant decrease in mean root stem compared to Bacteria (Table 1).
Physiological activity

Our response ratio analysis indicated a significant increase in

the physiological indices Chl, POD, CAT and SOD in Bacteria and

M-Lack compared to CK as well as a significant increase in PRO in

Bacteria. There was also a significant decrease in MDA and H2O2 in

both Bacteria and M-Lack compared with CK. The physiological

index levels of Chl, POD, SOD and PRO were significantly higher in

M-Embed than in Bacteria while MDA and H2O2 were significantly
FIGURE 2

Photographs of wheat seedlings grown for 7 days. Wheat seeds with water (CK); Wheat seeds with bacteria (Bacteria); Wheat seeds with
microcapsules lacking bacteria (M-Lack); Wheat seeds with microcapsules embedded bacteria (M-Embed). (Scale bar is 5 cm).
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lower. (Figure 3). In addition, two-factor ANOVA tests indicated

significant interactions between M-Lack and Bacteria for

SOD (Table 2).

The increased levels of POD, CAT, SOD and PRO indicated

that the plants were coping with adversity in a favorable way and the

root system indicators displayed a similar pattern. We therefore

used these factors to determine the plant stress tolerance using
Frontiers in Plant Science 06
principal component analysis. Structural equation modeling

indicated that bacteria and microcapsules had no direct effect on

shoot and root fresh weights. Bacteria addition increased plant

stress tolerance (0.84) and decreased oxidative makers content

(0.56) and microcapsules increased plant stress tolerance (0.50)

and decreased oxidative makers content (0.76). The plant stress

tolerance increased shoot fresh weight (0.86) (Figure 4A). The
TABLE 1 Mean and SD of root growth factors under different coating treatments of wheat seeds.

Treatments TRL (cm) TRA (cm2) ARD (mm) TRV (cm3) RHL (cm)

CK 97.04 ± 2.99a 9.86 ± 0.62a 0.2132 ± 0.0071a 0.0797 ± 0.0074a 31.49 ± 1.38a

Bacteria 137.44 ± 3.82b 14.24 ± 0.44b 0.2541 ± 0.0403ab 0.1175 ± 0.0055b 43.59 ± 3.58b

M-Lack 135.48 ± 5.02b 13.94 ± 0.44b 0.2919 ± 0.0015b 0.1140 ± 0.0030b 44.11 ± 1.35b

M-Embed 160.32 ± 5.58c 17.92 ± 0.79c 0.2330 ± 0.0040c 0.1593 ± 0.0094c 56.98 ± 1.24c
TRL, Total root length; TRA, total root area; ARD, average root diameter; TRV, total root volume; RHL, root hair length. a-c Different letters indicate significant statistical differences (p < 0.05,
Tukey’s test).
A

B

D

E

FC

FIGURE 3

Response ratio calculations for root/shoot, germination (%), dry/fresh weights for plants for the groups (A) Bacteria, (B) M-Lack and (C) M-Embed.
Response ratios for Chl, POD, SOD, CAT, PRO H2O2 and MDA for (D) Bacteria, (E) M-Lack and (F) M-Embed. Superoxide dismutase (SOD),
peroxidase (POD), catalase (CAT), proline (PRO), malondialdehyde (MDA), hydrogen peroxide (H2O2) and Chlorophyll (Chl). TRL, Total root length;
TRA, total root area; ARD, average root diameter; TRV, total root volume; RHL, root hair length. *p<0.05, ** p<0.01, *** p<0.001.
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A B

D

E F

G HC

FIGURE 4

Results of the structural equation modeling. (A, C, E, G) standardized total effects of bacteria and (B, D, F, H) microcapsules on shoot/root fresh and
dry weights. See Figure 3 for abbreviations. Red lines, negative correlations; blue lines, positive correlations. Standardized path coefficients are
described by the numbers on the lines. The proportions of variance explained for each dependent variable in the model are shown at the bottom
and details evaluating the models are shown in the boxes beside each figure. * p < 0.05, **p < 0.01, *** p < 0.001.
TABLE 2 Repeated measurement ANOVA for coatings for the indicated indices for wheat.

Variables Df Bacteria M-Lack Bacteria × M-Lack

Wheat growth indicators

Root shoot ratio 1 47.03*** 32.81** 15.18**

Germination rate 1 13.78** 5.29* ns

Dry weight 1 74.38*** 96.69*** ns

Fresh weight 1 77.76*** 27.31*** 6.00*

Wheat physiological indicators

Chl 1 111.73*** 12.92** ns

POD 1 101.68*** 33.46*** ns

SOD 1 344.97*** 308.29*** 86.67***

CAT 1 10.10** ns ns

PRO 1 56.09*** 6.49* ns

MDA 1 13.67** 23.61*** ns

H2O2 1 60.59*** 116.17*** ns

Wheat root growth

TRL 1 213.26*** 188.43*** 12.13**

TRA 1 202.28*** 173.98*** ns

ARD 1 ns 7.81* 23.47***

TRV 1 151.53*** 127.32*** ns

RHL 1 137.65*** 149.55*** ns
F
rontiers in Plant Science
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Effects of wheat seeds with bacteria (Bacteria), wheat seeds with microcapsules lacking bacteria (M-Lack) and wheat seeds with microcapsules embedded bacteria (M-Embed). Root shoot ratio,
Germination rate, Dry weight, and Fresh weight), wheat physiological indicators (Chl, POD, SOD, CAT, PRO, H2O2 and MDA), and wheat root growth (TRL, TRA, ARD, TRV, and RHL) for
repeated measures ANOVA results F values. See Figure 3 for abbreviations. * p < 0.05, **p < 0.01, *** p < 0.001.
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standardized total effects of bacteria and microcapsules on shoot

fresh weight were 0.72 and 0.42, respectively (Figure 4B). Overall,

the indirect effects of bacteria and microcapsules worked by altering

plant stress tolerance that explained 73% of shoot fresh weight

(Figure 4A). Bacteria increased plant root growth (0.68) and plant

stress tolerance (0.84) while microcapsules increased plant root

growth (0.70) and plant stress tolerance (0.50). The plant stress

tolerance increased root fresh weight (0.66) (Figure 4C). The

standardized total effects for bacteria and microcapsules on root

fresh weight were 0.75 and 0.54, respectively (Figure 4D). Overall,

the indirect effects of bacteria and microcapsules through altered

plant stress tolerance explained 85% of the root fresh weight

(Figure 4C). The inferences of this model were that bacteria and

microcapsules increased the fresh weight of wheat seedlings by

indirectly increasing the plant resistance via elevated levels of POD,

SOD, CAT and PRO.

Bacteria and microcapsules had no direct effect on the shoot dry

weight and root dry weight. Bacteria increased plant root growth

(0.54) and plant stress tolerance (0.84) and decreased oxidative

makers content (0.56). Microcapsules increased plant root growth

(0.61) and plant stress tolerance (0.50) and decreased oxidative

makers content (0.76) while plant root growth increased shoot dry

weight (0.58) (Figure 4E). The standardized total effects of bacteria

and microcapsules on shoot dry weight were 0.62 and 0.65,

respectively (Figure 4F). Overall, the indirect effects of bacteria

and microcapsules through altered plant root growth explained 85%

of the shoot dry weight (Figure 4E). Bacteria increased plant root

growth (0.68) and plant stress tolerance (0.84) while microcapsules

increased plant root growth (0.70) and plant stress tolerance (0.50).

The standardized total effects of bacteria and microcapsules on the

root dry weight were 0.68 and 0.63, respectively (Figure 4H).

Overall, the indirect effects of bacteria and microcapsules that

acted via altering plant root growth explained 89% of the root dry

weight (Figure 4D). The bacteria and microcapsules treatments

indirectly increased plant root growth that included TRL, RHL,

ARD, TRV and TRA as well as plant dry weight.
Discussion

Germination and seedling stages are critical points in the crop

growth cycle and are vulnerable to environmental stressors (Nakhla

et al., 2021; Tarchoun et al., 2022). Seed coating is a technology that

covers the surface of seeds with a material that improves

germination, crop growth and yield and has become an effective

way to reduce production costs in precision agriculture by requiring

only a small amount of microbial coating (Sohail et al., 2022).

Bacteria seed coating can form a protective film on the surface of

seeds and enhances plant tolerance and promote plant growth

(Rocha et al., 2019). However, traditional microbial coating

agents suffer from poor adhesion, low survival and storage

stability resulting in reductions in bacteria numbers and activity

(Afzal et al., 2020).

In the current work, we found that seeds embedded with

microencapsulated bacteria under salt stress conditions performed

better than control counterparts in terms of growth and physiological
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indices. The encapsulated bacteria were thus present in a more

favorable microenvironment and a protective effect was achieved

using an alginate and bacterial coating. Microencapsulation of the

bacteria improved germination and conferred significant seedling

viability. The primary capsule material calcium alginate worked with

the bacteria for the best effect on plant growth although individual

action of each also promoted plant growth.

The bacterium (P. actiniarum DSM 19842) used in these

experiments was obtained from fermentation of kelp collected

from the ocean. The closely related Pontibacter actiniarum KMM

6156T used in previous studies possessed peroxidase and oxidase

activities that could minimize oxidative damage caused by salt stress

(Chhetri et al., 2019). It has been shown that alginate is a major

compound of macroalgae and as such an important carbon and

energy source for marine bacteria (Jouanneau et al., 2021).

Calcium alginate has a mitigating effect on plants grown in salt-

stressed environments. This compound can promote root

development and growth and increase root absorption area. These

effects increase water and nutrient absorption counteracting the

effects of salt stress (Xu et al., 2003). Calcium ions in calcium

alginate also can act to regulate ionic balance in plants. Salt stress

will lead to an increase in Na+ content, thus reducing the absorption

of K+, Mg2+ and Ca2+. The addition of Ca2+ can attenuate the

cytotoxicity caused by Na+ ions under salt stress and promote ionic

homeostasis (Guo et al., 2021). In addition, calcium alginate has

antioxidant capacities. Salt stress can lead to excessive production of

reactive oxygen radicals in plants triggering oxidative damage

(Mangal et al., 2023). The natural oxidizing substance of calcium

alginate can assist plants in free radical scavenging to reduce

oxidative damage (Kumari and Bhatla, 2021). Alginate may also

contain small amounts of potassium alginate and K+ has equally

positive effects in maintaining ionic balance (Kumari and Bhatla,

2021), improving the antioxidant capacity of plants (Rady et al.,

2022) and promoting plant root development (Bojórquez-Quintal

et al., 2016).

Salt stress affects plant survival and crop yield by inhibiting seed

water uptake (Zhu et al., 2019), interfering with metabolic activities

within the seed (Zou et al., 2020) and inhibiting seed enzyme

activities (Gou et al., 2020) leading to decreased levels of

germination. In our experiments, M-Embed had significant

increases in germination under salt stress and these plants

displayed significantly increased values for TRL, TRA, TRV and

RHL compared to the other treatments. Salt stress can damage the

osmotic balance of plant cells and lead to water loss while these

significant changes in root-to-crown ratios and root structure can

increase the ability of plants to access available water and nutrients (Li

et al., 2021). Therefore, in terms of growth indicators, M-Embed

reduced the damage caused by salt stress on plant growth by

increasing germination and promoting root growth. The structural

equation modeling demonstrated that the use of bacteria and

microcapsules can play an important role in improving plant root

growth and increasing plant dry weight (Figure 4).

The protection of plant photosynthetic mechanisms contributes

to the ability of plants to resist the generation of reactive oxygen

species (ROS) radicals under salt stress as well as to participate in

the scavenging of preexisting ROS (Tian et al., 2022). The
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experiments demonstrated leaf chlorophyll content in M-Embed

under salt stress was greater than for the other treatments and

would assist plants in maintaining a normal metabolism. Previous

studies have indicated that bacteria promote photosynthetic activity

in plants under salt stress possibly due to increased levels of the

plant growth regulators indole acetic acid (IAA) (Cheng et al., 2022)

and 1-aminocyclopropane-1-carboxylate (ACC) deaminase

involved in ethylene regulation (Misra and Chauhan, 2020) as

well as with extracellular polymeric substances (EPS) (Amna

et al., 2019). These compounds can also increase chlorophyll

levels. Alginate therefore can play an important role in plant-

microbe interactions (Fathi et al., 2021).

Under salt stress, ROS accumulates and produces oxidative

damage to plant cells. H2O2 is one of the most abundant reactive

ROS in cells and H2O2 content plays an important role in plant salt

tolerance (Wu et al., 2018). SOD, CAT and POD improve plant

adaptation by reducing the oxidative damage to cells by

participating in ROS scavenging (Santos et al., 2018). We found

that antioxidant enzyme levels in wheat seedlings for M-Embed

were higher than for the other treatments while the H2O2 content

was lower than in the other treatments. Thus, wheat with microbial

microcapsules coating showed better performance than other

treatments in terms of antioxidant defense mechanisms.

Osmoregulation is a central part of the physiological mechanism

of plant response to salt stress. Under salt stress, osmoprotectants

such as free proline, glycine betaine and other amino acids are formed

(Suprasanna et al., 2016). These assist cells to maintain normal

osmoregulation and cell membrane stability, ultimately improving

plant growth and development (Suprasanna et al., 2016). Therefore,

PRO was one of the key factors in the osmoregulatory function of

plants. We found that M-Embed had the highest PRO content

compared to the other treatments. This could be a mechanism to

alleviate the problem of osmotic accumulation caused by salt stress.

Structural equation modeling indicated that bacteria and

microcapsules affect plant stress tolerance and indirectly increase

plant dry weight. Thus, the changes in antioxidant enzymes and

proline induced by M-Embed were important factors that increase

plant dry weight (Figure 4).

One of the main consequences of salt stress is excess ROS in

plant cells leading to lipid peroxidation that damages the cell

membrane and increases MDA in leaves (Sun et al., 2010). The

presence of bacteria can inhibit oxidative damage thereby

enhancing plant cell stability decreased levels of ROS under salt

stress conditions (Bharti et al., 2013). The lowest levels of the

oxidative markers (MDA and H2O2) in M-Embed were also an

indicator of decreased oxidative damage.
Conclusions

This promising seed coating improved germination, promoted

root growth, increased levels of enzymatic antioxidants and

osmoprotectants and reduced oxidative stress markers. Based on

these results, microencapsulation of P. actiniarum for use as seed

coatings can reduce the negative effects of salt stress on plant

growth. This study provides new insights into the application of
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microcapsules in functional seed coating. Moreover, future research

is needed to confirm the interaction process between the microbe

and plant relationship.
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