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Introduction: Multiple factors can contribute to sub-fecundity, including

genetics, lifestyle, and environmental contaminants. PFASs are characterized as

“forever chemicals” due to their ubiquitous contamination and their persistence

in the environment, wildlife, and humans. Numerous studies have demonstrated

that PFAS exposure adversely affects multiple bodily functions, including liver

metabolism and gonadal function. It is unclear, however, how the disruption of

hepatic fatty acid metabolism affects testicular function.

Methods: In this study, male mice were administered 0.3 and 3 mg/g body weight

of PFOS for 21 days.

Results: Our data showed that PFOS exposure caused hepatic steatosis, as

evidenced by significant increases in triglyceride levels, expression of ATP-citrate

lyase, and fatty acid synthase, as well as fasting insulin levels. PFOS perturbed the

expression levels of hepatokines, of which fibroblast growth factor-21 (Fgf-21),

leukocyte cell-derived chemotaxin-2 (Lect-2), and retinol-binding protein-4 (Rbp-

4) were significantly reduced, whereas angiopoietin-like 4 (Angptl4) was noticeably

increased. While Rbp-4 and Fgf-21 are known to contribute to spermatogenesis and

testosterone synthesis. In PFOS-exposed groups, testicular ATP, and testosterone

decreased significantly with a significant increase in the expression of peroxisome

proliferator-activated receptor-coactivator 1a. Mass spectrophotometry imaging

revealed the localization of PFOS in testes, along with significant increases in fatty

acid metabolites. These included arachidonic acid, dihomo-a-linolenic acid,

dihomo-g-linolenic acid, oxidized ceramide, diacylglycerol, phosphatidylcholine,

and phosphatidylethanolamine, which are associated with inflammation and post-

testicular causes of infertility.

Discussion: This study revealed potential links between PFOS-elicited changes in

hepatic metabolism and their impacts on testicular biology. This study provides

insights into alternative targets elicited by PFOS that can be used to develop

diagnostic and therapeutic strategies for improving testicular dysfunction.
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Introduction

Lifestyle, environment, and genetic factors all contribute to sub-

fecundity (1). Increasing evidence suggests that environmental

chemical contaminants (e.g., heavy metals and anthropogenic

chemicals) disrupt testicular physiology. Among different

environmental chemical pollutants, per- and poly-fluoroalkyl

substances (PFASs) are one of the prioritized family, known to

perturb metabolic and reproductive health (2, 3). PFASs are coined

as “forever chemicals” that contaminate public water systems, and

linger in the environment, wildlife, and humans (4). The legacy PFAS,

including PFOA, PFOS, PFNA, PFHxS share in common the

lipophobic C-F chain and hydrophilic functional groups (5). PFASs

are used in industrial and consumer products and have unique

physicochemical properties, including heat and oil resistance, water

repellence, and surfactant properties. They exhibited proteinophilic

attraction toward albumin and various fatty acid binding proteins,

resulting in their long biological half-lives and bioaccumulation in

humans (6, 7). In recent decades, the direct effects of PFOS on testicular

physiology have been studied in animal and cell culture models,

revealing that it disrupted hormonal signaling in the testicles and

perturbed the dynamics of tight junctional protein during

spermatogenesis, which significantly affected males’ fertility and

health (8–10). Even so, little is known about how the systemic

impact of PFASs affects testicular function.

Over the past few years, patients seeking reproductive health care

increasingly suffer from metabolic disorders, including obesity and

insulin resistance (11–13). Since nutritional and hormonal factors

influence energy metabolism and reproductive activity, to improve

fertility rates, it is crucial to understand the underlying correlation of

metabolic syndrome (14). The liver is a primary metabolic tissue that

maintains energy and nutrient balance. Further, the liver metabolizes

hormones and chemical contaminants, which may be degraded for

excretion or bio-activated for more significant toxicity (15). Changes in

metabolism affect hormone signals and nutrient flow, which can

directly or indirectly affect gonadal function (16). One of the most

notable effects of PFOS is the disruption of hepatic liver energy

homeostasis, particularly fatty acid metabolism and the signaling of

nuclear receptors (17–19). It is unclear how the disruption is related to

the perturbing effect of testicular function. It was hypothesized that the

disruption in fatty acid metabolism caused by PFASs could affect

systemic energy metabolism and fatty acid metabolites in the testes. An

integrated approach involving mass-spectrometry imaging, gene

expression analysis, and biochemical testing were used in this study

to investigate how PFAS affects the mammalian liver and testes. An

analysis of the association between PFAS-induced metabolic

perturbations and testicular dysfunction was conducted.
Materials and methods

Animals

Male CD-1 mice (8-10 weeks old) were kept in polypropylene

cages at 23-24°C and 12 hours of light/dark cycle. The procedure for

animal handling was followed according to guidelines and regulations
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approved by the animal ethics committee (REC/20-21/0234) of Hong

Kong Baptist University. Perfluorooctane sulfonate (PFOS, CAS 1763-

23-1, Sigma-Aldrich, 98% purity) was dissolved in dimethyl sulfoxide

(Sigma-Aldrich) before mixing with corn oil. In the treatment regime,

mice with body weights were randomly divided into three groups

(control, low, or high-dose PFOS treatment groups) using a random

number generator. The animals were provided access to food (LabDiet,

5001, Laboratory Rodent Diet) and water (in glass bottles). The

exposed groups received either 0.3 or 3 mg/g of body weight (bw)/

day of PFOS for 21 days by oral gavage (Cadence Science). Corn oil was

administered to the control group. The low exposure dose is equivalent

to human occupational exposure (20). Overnight fasting was

performed on day 20. In the next morning, cervical dislocations were

performed, and blood samples were drawn. Livers and testes were

collected, snap-frozen in liquid nitrogen, and stored at -80°C.
RNA extraction and real-time quantitative
PCR (qPCR)

Total RNAwas extracted from tissue samples using TRIzol reagent

(Invitrogen) according to the manufacturer’s instruction. RNA

concentration and quality were measured by BioDrop (Biochrom)

and then reverse transcribed to cDNA using SuperScript VILO cDNA

Synthesis Kit (Applied Biosystems). Gene expression was analyzed by

real-time PCR using Fast SYBR™ Green Master Mix (Applied

Biosystems) with StepOnePlus PCR system (Life Technologies) using

gene-specific primers (Supplementary Table 1A). Relative expression

was calculated by normalizing to actin using the 2-DDCt method. The

specificity of the amplicon was verified using melting curve analysis

and agarose gel electrophoresis.
Western blot

Tissues were homogenized in RIPA buffer (50 mM Tris-HCl, pH

7.4, 150 mM NaCl, 2 mM EDTA, 0.1% SDS, and 1% NP-40)

containing Halt™ Protease and Phosphatase Inhibitor Cocktail

(Thermo Fisher Scientific). Tissue homogenates were then sonicated

for 8 sec, 5 cycles on ice, followed by centrifugation at 13000 xg, at 4°C

for 15min. Protein concentration was determined using the DC Protein

Assay Kit II (BioRad). Protein samples were separated by SDS-PAGE

and transferred to a PVDF membrane (BioRad). Membranes were

blocked with 5% non-fat milk in PBST for 1 hr at room temperature,

incubated with primary antibody (Supplementary Table 1B) overnight

at 4°C and then incubated with the HRP-conjugated secondary

antibody (BioRad) for 1 hr at room temperature. SuperSignal™

West Pico PLUS chemiluminescent substrate (Thermo Scientific)

was used to develop the signals.
Testosterone ELISA Kit, blood insulin,
glucose and ATP determination

Adult male mouse were killed by cervical dislocation. Blood

samples were collected and centrifuged at 1000 xg at 4°C for 10 min
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to collect sera, which were then stored at -80°C. Testosterone level

in serum was measured using testosterone ELISA kit (Cayman

Chemical). Briefly, 25 ml of serum sample or standard was mixed

with 25 ml of testosterone AChE Tracer and 25 ml of testosterone
ELISA antiserum in the mouse anti-rabbit IgG coated-well. The

reaction mixture was discarded, and the wells were washed at room

temperature on an orbital shaker (Thermo Fisher Scientific).

Ellman’s Reagent (200ml) was added in each well and incubated

for 90 minutes at room temperature in dark on the orbital shaker.

Absorbance at 412 nm of each wells were measured using EnSight

Multimode Plate Reader (PerkinElmer). The fasting blood glucose

levels were measured using an Accu-check Glucometer (Roche,

US). Serum was prepared by centrifugation of clotted blood at 1000

xg at 4°C for 10 min. Insulin level was measured with Ultrasensitive

Insulin ELISA kit (10-1132-01, Mercodia, Sweden) according to the

manufacturer’s instruction.

Testis samples were homogenized in luciferase cell culture lysis

5X reagent (Promega) and centrifuged at 13,000 ×g at 4°C for

15 min. The supernatants were collected for ATP measurement,

using ATP Determination Kit (Invitrogen) according to the

manufacturer’s instruction. Luminescence was measured by

EnSight Multimode Plate Reader (PerkinElmer). ATP level was

then normalized with the protein concentration of each sample

using DC Protein Assay Kit II (BioRad).
AFADESI-mass spectrophotometry imaging

Testes were isolated from adult male mice and snap-frozen in

liquid nitrogen. The testis was mounted on a cryostat specimen

chunk (Thermo Fisher Scientific, U.S.) and sliced at 14 mm in

thickness using the Cryostar NX70 (Thermo Fisher Scientific).

AFADESI-MSI (air-flow assisted desorption electrospray

ionization) was applied to a frozen section mounted on a

microscopic slide (Citotest, Jiangsu, China). The images were

analyzed using an Orbitrap Exploris™ 120 mass spectrometer

(Thermo Fisher Scientific, Bremen, Germany) and the AFAI-MSI

image platform (Viktor, Beijing, China). A negative ion mode

analysis was performed, with signals ranging from 100-1000m/z

at a resolution of 60000. A spray solvent mixture of acetonitrile and

dimethylformamide (3:1, v/v), was applied at 2 ml/min, with

sprayer voltages at -2500V. The X- and Y-direction scanning

speeds were 430 mm/s and 150 mm/s. A 140-psi gas flow and

350°C ion transfer tube temperature were used. MSConvert (Nature

Biotechnology Commentary) and imzMLConverter (Thermo

Fisher Scientific, U.S.) were used to convert MS data to mzML

and imzML formats. SCiLSTM Lab (Bremen, Germany) was used to

visualize data. The sections fixed in 4% PFA were then stained

with hematoxylin.
Statistical analysis

A statistical mean and standard deviation were used to present

the data. The GraphPad Prism version 8.0 was used for statistical

analyses. Students’-tests were used to evaluate the physiological and
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gene expression data. A p-value < 0.05 was considered

statistically significant.
Results

The exposure regime revealed a significant increase of liver

weights and relative liver weights at the high-dose (3mg/g) of PFOS
exposure while there was no noticeable effect on the changes of

body weights among the control and PFOS treatment groups

(Figure 1A). Additionally, hepatic triglyceride levels were found

to be significantly increased at the high-dose exposure (Figure 1B).

To underpin the underlying process of PFOS-elicited perturbation

to hepatic lipid metabolism, western blot analysis of key metabolic

enzymes for lipogenesis were conducted. The data revealed

significant upregulation in the expression levels of ATP citrate

lyase (ACLY), acetyl CoA carboxylase (ACC), phosphorylated

ACC, and fatty acid synthase (FASN) at the high-dose PFOS-

exposed groups (Figure 1C). The expression of ACLY and the

ratio of pACC to ACC (Supplementary Figure 1A) did not

change significantly.

As the liver is the primary metabolic tissue, PFOS-induced

disruptions in energy metabolism are likely to have a systemic effect.

Fasting insulin and glucose levels were measured on day 21 of post-

PFOS exposure. A significant increase in serum insulin levels was

observed in the high-dose PFOS group, but no significant changes

were observed in fasting blood glucose levels (Figure 2A). In

western blot analysis, high-dose PFOS treatment significantly

reduced hepatic expression levels of insulin receptor (IR) but not

the insulin-like growth factor-1 receptor (IGF-1R) (Figure 2B).

Considering the liver’s role in regulating systemic energy

homeostasis, the expression levels of hepatokines, the major liver-

to-tissue messengers that responds to perturbed energy metabolism,

were investigated. Upon PFOS exposure, there was a dose-

dependent reduction in the expression levels of the hepatokines,

fibroblast growth factor-21 (Fgf-21), leukocyte cell derived

chemotaxin-2 (Lect-2), retinol binding protein-4 (Rbp-4), but a

significant induction of angiopoietin-like 4 (Angptl4) (Figure 2C).

The expression levels of the other measured hepatokines, Angptl-3,

Angptl-6, Selenop, and Smoc-1 showed no noticeable differences

(Supplementary Figure 1B).

Due to PFOS’ effects on hepatic metabolism and serum insulin

levels, it likely perturbed testicular functions. Western blot analysis

showed that there were no significant changes in the expression

levels of IR and phosphorylated IR in testes (Supplementary

Figure 1C). However, PFOS-exposed groups showed a significant

dose-dependent decrease of testicular ATP, associated with a

significant increase in the expression of peroxisome proliferator-

activated receptor g coactivator 1a, Pgc1a (Figure 3A), a

transcription coactivator in the regulation of cellular energy

metabolism. Additionally, there was a significant reduction in

testosterone levels in the high-dose PFOS exposed groups

(Figure 3B, left panel). Yet, no significant change in testicular

weight and epididymal sperm counts were noted (Figure 3B, right

panel). Nonetheless, in testing the expression levels of endocrine

and paracrine factors, there were no significant changes in the
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testicular gene expression of follicle-stimulating hormone receptor

(Fshr) and luteinizing hormone receptor (Lhr) (Supplementary

Figure 2A), growth hormone receptor (Ghr), insulin-like growth

factor (Igf) and its receptor, Igfr (Supplementary Figure 2B),

hepatocyte growth factor (Hgf) and its receptor, Hgf-r

(Supplementary Figure 2C), and the steroidogenic enzymes (Star,

Cyp11a1, Cyp17a1, Hsd-3b, & Hsd-17b) (Supplementary Figure 3)

as compared with the control. Interesting, a significant reduction in

the expression levels of Srd5a2 was noted in the high-dose group vs

low-dose group.

PFOS is known to perturb fatty acid metabolism via PPARs and

fatty acid-mimicry pathways. To unravel the possible impact of PFOS

on fatty acid metabolites in testes, we examined PFOS uptake and its
Frontiers in Endocrinology 04
perturbation to lipid profiles using MS-imaging. Figure 4A showed a

significant increase of PFOS levels in the testes of low- and high-dose

exposed mice. MS-imaging data identified significant increases in the

levels of the poly-unsaturated fatty acids, eicosa-5, 8, 11-trienoic acid

(ETA), eicosa-5, 11, 14-trienoic acid (arachidonic acid, AA), dihomo-

a-linolenic acid (DALA), and dihomo-g-linolenic acid (DGLA)

(Figure 4B right panel, Supplementary Table 2), oxidized ceramide

(CER) (Figure 4C; Supplementary Table 3), diacylglycerol (DAG)

(Figure 4D; Supplementary Table 4), and the phospholipids

(phosphatidylcholine & phosphatidylethanolamine) (Figure 4E;

Supplementary Table 5). The ion signal of phosphatidylinositol,

which is a common and stable component of cell membranes

(Figure 4B, left panel), was used for data normalization.
A

B

C

FIGURE 1

Effect of PFOS exposure on liver fat metabolism at day 21. Mice were administered 0.3 mg/g/day (L-PFOS) and 3 mg/g/day (H-PFOS) of PFOS by
gavage for 21 days, and the liver was dissected and assessed. (A) The absolute and relative liver weights were significantly increased in H-PFOS mice
compared to control and L-PFOS mice. (B) The triglyceride content was increased in H-PFOS compared to control, and (C) the protein expression
of lipogenesis enzymes, including ATP citrate synthase (ACLY), phosphorylated ACLY (6X active), acetyl-CoA carboxylase (ACC), phosphorylated ACC
(inactive form), and fatty acid synthase (FASN), were significantly upregulated in the PFOS-exposed groups. Actin served as the endogenous control.
Graphs show the mean ± S.D. (*p<0.05, **p<0.01).
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Discussion

With hindsight, the effects of PFOS on both PPAR-dependent

and PPAR-independent fatty acid mimicry pathways disrupt

multiple metabolic pathways in multiple tissues, resulting in

dyslipidemia, insulin resistance, and inflammation (21–24). This

study showed that PFOS exposure at the high-dose (3mg/g b.w.)

induced hepatic lipid accumulation which exhibited the early sign

of non-alcoholic fatty liver disease (NAFLD). The observation is

consistent with the previous studies, showing PFOS perturbed lipid

metabolism and induced hepatotoxicity (22, 25). The hepatic liver

accumulation was associated with the significant increase in the

expression levels of ACLY and FASN. A combination of elevated

expression of these enzyme activities promoted fatty acid synthesis
Frontiers in Endocrinology 05
from cytosolic acetyl-CoA. Despite this, the expression level of

phosphorylated ACLY (pACLY) with reported 6-fold higher

activity of ACLY (26) remained unchanged. The expression levels

of both total ACC (active form) and pACC (inactive form)

increased significantly with high-dose PFOS treatment. There was

no significant change in the ratio of pACC to ACC, presumably no

significant alteration in ACC activity. Nonetheless, it was

unanticipated to see a significant increase in pACC with a

functional outcome of hepatic lipogenesis in the group receiving

high doses of PFOS. In retrospect, AMP-activated protein kinase

(AMPK) is the major kinase known to phosphorylate ACC to

promote fatty acid oxidation (27). In a recent study, PFOS-induced

deranged hepatic metabolism stimulated both lipogenesis and lipid

catabolism, as well as an activation of AMPK pathway (28).
A

B

C

FIGURE 2

PFOS exposure perturb insulin signaling and expression of hepatokines in liver. (A) Serum insulin levels were significantly increased in H-PFOS
compared to control, with no noticeable changes observed in fasting blood glucose levels. (B) The expression of insulin receptor (IR) was
significantly downregulated. (C) A significant decrease in gene expression of the hepatokines, fibroblast growth factor 21 (Fgf-21) and leukocyte cell-
derived chemotaxin 2 (Lect-2) were noted in PFOS-exposed groups, and a decrease of retinol binding protein 4 (RBP-4) was noted among L-PFOS
and H-PFOS groups in livers. Conversely, the gene expression of angiopoietin-like 4 (Angptl-4) was increased in the H-PFOS compared to control.
Actin served as the endogenous control. Graphs show the mean ± S.D. (*p<0.05, **p<0.01, ***p<0.001).
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Therefore, in this study the observation of an increased

phosphorylation of ACC might be associated with the

dysregulation of hepatic metabolism induced by PFOS. The

dysregulation was further demonstrated with a significant

reduction in hepatic IR expression and a significant increase in

blood insulin levels. This shows that PFOS perturbed insulin

signaling in the liver and systemically.

Further illustrating the liver’s effect on bodily function, the

secreted hepatic metabolic factors (hepatokines) were measured. In

the PFOS-exposed groups, the expression levels of the four

hepatokines (Fgf-21, Lect-2, Rbp-4, and Angptl4) were significantly

altered. The four hepatokines were found to be associated with the

progression of NAFLD (29–33). Apart from being a metabolic

regulator, Fgf-21 was also found to play roles in promoting

spermatogenesis, protecting germ cells from diabetes-induced

apoptosis (34, 35), and increasing sperm motility (36). Lect-2 was

linked to tissue inflammatory responses (37), coherent with the

early sign of PFOS-elicited liver steatosis (22). Another perturbed

hepatokine, Rbp-4 regulated the physiological functions of

testosterone receptors in the testicles, including the production of

testosterone and spermatogenesis (38). In obese adolescents, Rbp-4

expression was associated with gonadal functions (39). The

decreased expression levels of Fgf-21 and Rbp4 imposed negative

influence on testicular functions. In fact, fatty liver disease has also
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been linked to impaired testicular function (40, 41). There were

reports indicating an association between NAFLD and low blood

levels of testosterone, which caused accumulation of visceral

adipose tissues, elevated free fatty acid levels, inflammation, and

increased insulin resistance (42, 43). The observations suggest that

s y s t em i c m e t a b o l i sm a n d g o n a d a l f u n c t i o n a r e

mutually interdependent.

In testes, metabolic perturbation was evidenced with significant

reduction in ATP levels and the increased expression of Pgc-1a,
which was reported to protect against oxidative stress and energy

metabolism dysfunction in the testes (44). Previous studies had

shown that men with fatty liver disease exhibited lower levels of

testosterone and sperm count (41, 45, 46). In this study, our data

only showed the reduction of blood testosterone levels at the high-

dose group. In our previous studies, a higher dose of PFOS exposure

(5 mg/g b.w. for 21 days) in mice, caused significant reduction in

testosterone levels, sperm count, and sperm swimming activities (8,

9, 47). To decipher the underlying process of the reduced

testosterone levels in the high-dose group, the analysis of the

steroidogenic enzymes did not reveal noticeable changes, except a

significant reduction of Srd5a2 (steroid 5a-reductase 2, a

membrane enzyme catalyzes testosterone to dihydrotestosterone).

From a pharmacological perspective, an inhibition of Srd5a2
activity might be linked to an increase in serum testosterone
A

B

FIGURE 3

Impact of PFOS on testicular activity, energy metabolism and testosterone expression. (A) Testicular ATP levels were significantly decreased in PFOS-
exposed groups. There was an increase in the gene expression of peroxisome proliferator-activated receptor gamma coactivator 1-a (Pgc1a) in H-
PFOS groups compared to control. Actin served as the endogenous control. (B) Serum testosterone levels were significantly decreased in H-PFOS
compared to control with no noticeable changes observed in testis weight and number of epididymal sperm counts. Graphs show the mean ± S.D.
(*p<0.05, **p<0.01).
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levels (48). This may explain an increase in serum testosterone in

the high-dose group of our study. In order to further investigate the

impact of PFOS on testicular physiology, we focused on the

notorious action of PFOS in perturbing fatty acid homeostasis,

which may negatively impact testicular functions (49, 50).

The PFOS exposure increased the testicular levels of the poly-

unsaturated fatty acids (ETA and AA), the important metabolites in

regulating gonadal functions (51, 52). This observation is related to
Frontiers in Endocrinology 07
our previous study showing an increase of hydroxyeicosatetraenoic

acids in neonatal testes upon PFOS exposure (49). Additionally,

PFOS-induced an increase of the poly-unsaturated fatty acids

(DGLA and DGLA), which were reported to be directly

associated with the sign of tissue inflammation (53, 54).

Moreover, our data showed a significant increase in oxidized

ceramides and DAG, the important messengers for

spermatogenesis, and apoptosis (55, 56). Furthermore, significant
A

B

D E

C

FIGURE 4

AFADESI-Mass Spectrophotometry Imaging of PFOS and metabolite distribution in testis. (A) Left panel: Ion image of PFOS distribution in testes with
overlayed haematoxylin and eosin staining. Right panel: a corresponding graph shows the relative coneceantration of PFOS in the control, L-PFOS
and H-PFOS samples. (B) Left panel: The levels of the phosphatidylinositol served for data normalization. Right panel: There was a significant
increase in summated levels of the polyunsaturated fatty acids (eicosa-5, 8, 11-trienoic acid, eicosa-5, 11, 14-trienoic acid, dihomo-a-linolenic acid,
dihomo-g-linolenic acid), (C) oxidized ceramides (CER), (D) diacylglycerol (DAG) and (E) phosphatidylcholine (PC) & phosphatidylethanolamine (PE) in
PFOS-exposed groups. Graphs show the mean ± S.D. (*p<0.05, **p<0.01, ***p<0.001).
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increases in total phospholipids, especially phosphatidylcholine,

and phosphatidylethanolamine, were associated with the post-

testicular causes of infertility (57). Overall, the data suggest that

PFOS disrupted fatty acid metabolites’ homeostasis, altering the

fatty acid signaling pathway in testes.

This study aimed to better understand the pleiotropic effects of

PFOS on tissue functions. As shown by our data, PFOS affects

hepatic lipid metabolism, hepatokine expression, blood insulin,

testosterone levels, and testicular fatty acid metabolism. This

study provided a mechanistic link between disrupted lipid

metabolism and perturbed testicular physiology. These findings

may help identify PFOS disregard targets and develop targeted

interventions to restore and protect testicular function in mammals

exposed to these pollutants. As a result of this study, we have gained

a better understanding of the pathology, the molecular mechanisms,

and the biochemical changes resulting from PFAS-induced

testicular toxicity.
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