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Introduction: The retrospective analysis of continuous glucosemonitoring (CGM)
timeseries can be hampered by colored and non-stationary measurement noise.
Here, we introduce a Bayesian denoising (BD) algorithm to address both
autocorrelation of measurement noise and temporal variability of its variance.

Methods: BD utilizes adaptive, a-priori models of signal and noise, whose
unknown variances are derived on partially-overlapped CGM windows, via
smoothing approach based on linear mean square estimation. The CGM signal
and noise variability profiles are then reconstructed using a kernel smoother. BD is
first assessed on two simulated datasets, DS1 and DS2. On DS1, the effectiveness of
accounting for colored noise is evaluated by comparison against a literature
algorithm; on DS2, the effectiveness of accounting for the noise variance
temporal variability is evaluated by comparison against a Butterworth filter. BD
is then evaluated on 15 CGM timeseries measured by the Dexcom G6 (DR).

Results: On DS1, BD allows reducing the root-mean-square-error (RMSE) from
8.10 [6.79–9.24] mg/dL to 6.28 [5.47–7.27] mg/dL (median [IQR]); on DS2, RMSE
decreases from 6.85 [5.50–8.72] mg/dL to 5.35 [4.48–6.49] mg/dL. On DR, BD
performs a reasonable tracking of noise variance variability and a satisfactory
denoising.

Discussion: The new algorithm effectively addresses the nature of CGM
measurement error, outperforming existing denoising algorithms.
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1 Introduction

The use of continuous glucose monitoring (CGM) sensors is rapidly growing in diabetes
therapy management and research. This is due to the capability of CGM sensors to provide
almost continuous glucose concentration measurements (e.g., every 5 min) over prolonged
periods, such as days or weeks (Kumar Das et al., 2022). In the past years, the retrospective
analysis of CGM timeseries proved to be important for tuning/refining diabetes therapies
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and, in turn, for improving the overall glycemic control (Klonoff,
2005; Scheiner, 2016). For example, the offline analysis of trends and
patterns in the post-prandial CGM profiles can help optimizing
insulin dosages (Battelino et al., 2022), suggesting strategies for
taking rescue carbohydrates (Camerlingo et al., 2019), evaluating
glucose variability (Service, 2013), quantifying the effectiveness of
therapies through, e.g., the computation of time-in-ranges indices
(Battelino et al., 2019; Camerlingo et al., 2021), and visualizing
clinically-relevant CGM patterns (Danne et al., 2017).

Despite the advancements in sensors technology that have led to
increased accuracy, CGM measurements are inevitably impacted by
random non-stationary measurement noise, which typically dominates
the true signal at high frequencies (Breton and Kovatchev, 2008; Lunn
et al., 2011; Laguna et al., 2014; Vettoretti et al., 2019a; Vettoretti et al.,
2019b). As a non-stationary randomprocess, the statistical properties of
the CGMmeasurement noise vary over time, or in response to different
conditions (both internal mechanisms, such as electromagnetic
interferences, electrode degradation, chemical contamination of the
sensor surface, and related to the sensor-user interface, such as physical
activity, compression, or site insertion inflammation), thus hampering
data interpretation.

The signal-to-noise ratio (SNR) in CGM measurements can be
improved by utilizing appropriate denoising algorithms. This would
enhance the reliability of the clinical conclusions that can be derived
from the retrospective analysis of CGM data. To address this issue, a
variety of digital filtering and smoothing techniques have been proposed
in the literature (Lee et al., 2021; Zhang et al., 2021). Low-pass digital
filters, such as Butterworth filters have been often used in the literature
(Sparacino et al., 2007; Pérez-Gandía et al., 2010; Mhaskar et al., 2017),
as they represent a straightforward way to separate noise bands.
However, since signal and noise spectra of CGM measurements
normally overlap, it is not possible to remove the random
measurement noise without distorting the true glucose values.
Kalman filters (Knobbe and Buckingham, 2005; Bequette, 2018),
instead, benefit of a maximum likelihood estimation step to
determine the parameters of a state space system, modelling the true
glucose signal and themeasurement noise but, notably, prior knowledge
about their statistical properties is needed. In offline setting, the Kalman
smoother can be used to get further improvement of the estimates (Staal
et al., 2019; Rabby et al., 2021). However, in the above-mentioned
methods, the key parameters of the algorithms (e.g., the cutoff
frequency for the Butterworth filter) are fixed once for all. This
constraint makes such filters unable to adapt their “aggressiveness”
to the temporal variations of the CGM measurement error statistical
properties (e.g., the variance or the autocorrelation), which have been
recently observed on CGM data (Facchinetti et al., 2014; Biagi et al.,
2017; Vettoretti et al., 2019b), thus resulting in suboptimal denoised
profiles, with oversmoothed or undersmoothed portions.

Despite several adaptive filtering/smoothing algorithms have
been proposed in different research fields (Dixit and Nagaria, 2017;
Sharma and Pachori, 2018), to the best of our knowledge only few
attempts have been made to account for the variability of the SNR in
CGM data (Facchinetti et al., 2010; Facchinetti et al., 2011; Zhao
et al., 2018; Yadav et al., 2020).

For example, Facchinetti et al. (Facchinetti et al., 2010;
Facchinetti et al., 2011) proposed the use of Bayesian estimation
approach, where the a priori models of measurement error and
glucose concentration time course are given by white noise with

unknown variance and multiple integration of a white noise with
unknown variance, respectively. Both the aforementioned unknown
variances can be estimated, with once for all during a burn in interval
(Facchinetti et al., 2010), or at specific times (Facchinetti et al., 2011),
by using appropriate probabilistic smoothing criteria. Once the
values of the models’ variances are determined, the denoised
profile can be obtained through linear mean square estimation.
While the algorithm of Facchinetti et al. allows to update the filter
parameters at user-specified time points, Zhao et al. (2018) proposed
later a strategy to update the filter parameters only after a significant
change in the noise level, as quantified by an expectation-
maximization algorithm, resulting in a significantly shorter
computational time. While these adaptive algorithms update the
parameters of a state space system to account for the SNR variability,
Yadav et al. (2020) proposed an adaptive Savitzky-Golay filter,
which can automatically adjust the parameters of a polynomial
model (i.e., model order and length of frame), in accordance with the
changes in the sampling or cut-off frequency. However, compared to
the optimization of the nonparametric models used in (Facchinetti
et al., 2010; Facchinetti et al., 2011; Zhao et al., 2018), the
optimization of the parametric polynomial model might be
computationally expensive, especially if the underlying signal is
approximated by a high-order polynomial. Finally, to note, all
the above-mentioned algorithms assumed a white Gaussian
measurement noise.

Optimality of Bayesian approaches, of course, relies on how
accurate the used a priori information on the signals into play is.
While the expected regularity of glucose time-course is well described
by the multiple integration of a white noise (with an unknown
variance to be determined from the data), recent research has
shown that for certain CGM sensors, the measurement noise
cannot be assumed as white, but should be assumed as colored
instead. Indeed, a temporal correlation between consecutive
samples of CGM measurement noise has been identified in (Biagi
et al., 2017; Vettoretti et al., 2019a; Vettoretti et al., 2019b). Specifically,
Vettoretti et al. (Vettoretti et al., 2019a) focused on a recent factory-
calibrated CGM sensor, the Dexcom G6 (Dexcom, Inc., San Diego,
CA), and described its random measurement noise using a second
order autoregressive (AR) model, which is consistent with findings
reported in (Vettoretti et al., 2019b) for the Dexcom SEVEN Plus
(Dexcom, Inc. San Diego, CA) CGM sensor, and in (Biagi et al., 2017)
for the Medtronic Paradigm Veo Enlite (Medtronic, Inc., Northridge,
CA) CGM sensor. As far as we know, there are no denoising
approaches in the literature that can effectively handle colored,
non-stationary, measurement error in CGM data. The goal of this
paper is to present and evaluate a Bayesian denoising algorithm for
retrospective use on CGM data (off-line) which:

1. explicitly accounts for the temporal correlation among
measurement noise samples;

2. iteratively estimates the CGM measurement variance in order to
adapt its “aggressiveness” to the temporal variability of the SNR.

The proposed algorithm will be thoroughly evaluated against
existing algorithms in a simulated environment, where the true
underlying signal is known. The performance of the algorithm will
be also demonstrated through its application to real-world data,
using 15 traces acquired with the Dexcom G6 CGM sensor.
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2 Materials and methods

2.1 The new Bayesian denoising algorithm

In this section, a step-by-step description of the proposed
Bayesian Denoising (BD) algorithm is provided. First, a
mathematical formulation of the problem is given, and the
notations introduced. Then, the prior information used for the
Bayesian estimation is documented, and the estimation step is
described. Finally, the flowchart of the algorithm is explained.

2.1.1 Problem statement
Let us assume that the CGM measurements are collected in n

equally-spaced time instants kTs, with Ts being the sampling period
and k� 1, 2, . . . , n, and that the generic CGM sample y(k) is
given by:

y k( ) � u k( ) + w k( ) (1)
where u(k) is the true (unknown) glucose concentration level, and
w(k) is the measurement noise. Signal and noise are assumed to be
mutually uncorrelated.

Let us define the vectors y � [y(1), y(2), . . . , y(n)]T,
u � [u(1), u(2), . . . , u(n)]T, and w � [w(1), w(2), . . . , w(n)]T,
containing samples of CGM measurements, unknown glucose
concentration, and measurement noise, respectively.

In the Bayesian framework, if u and w are zero-mean random
vectors with a priori covariance matrices denoted by Σu and Σw ,
respectively, then the linear mean square estimate of u given y is (De
Nicolao et al., 1997):

û � Σ−1
w + Σ−1

u( )−1Σ−1
w y (2)

Obtaining the linear mean square estimate thus requires
knowledge of the a priori covariance matrices Σu and Σw . These
can be obtained, in turn, from the corresponding a priori model of
process variability.

2.1.2 A priori models of signal and noise
As far as the model of u(k) is concerned, in smoothing/denoising

problems, a commonly used approach to describe a regular signal on a
uniformly spaced grid is the m-time integration of white noise. For
CGM processing purposes, expertise shows that glucose
concentration can be well described using m� 2 (De Nicolao et al.,
1997; Palerm et al., 2005; Mahmoudi et al., 2019), which leads to the
so-called integrated random-walk model:

u k( )� 2u k−1( ) − u k−2( ) + v k( ) (3)
where v(k) is a zero-mean Gaussian noise with unknown variance
equal to λ2.

From Eq. 3, Σu can be easily obtained as:

Σu � λ2 FTF( )−1 (4)
where F is the square n-dimensional lower-triangular Toeplitz
matrix, whose first column is [1,−2, 1, 0, . . . , 0]T. Although very
simple, the integrated random-walk model was shown to be able to
describe a wide range of signals in a variety of domains, see e.g.,
(Sparacino et al., 2002; Yue et al., 2020; Kulemann et al., 2021). Its
only unknown parameter is λ2, which, as shown later in this

paragraph, can be estimated from the data through a criterion
consistent with the Bayesian embedding.

As far as the CGMmeasurement errorw(k) of Eq. 1 is concerned,
previous works assumed its whiteness, which would bring Σw to be
diagonal (Facchinetti et al., 2010). However, for several CGM sensors
this assumption is unrealistic, as it has been proven that there is a
temporal correlation between consecutive noise samples. To account
for it, an AR model of order p can be used:

w k( )� −∑p

i�1aiw k − i( ) + ϵ k( ) (5)

where ϵ(k) is a white noise process with zero-mean and an unknown
variance equal to σ2. Note that the model of Eq. 5 is general, and the
model order p, as well as the values of the model parameters
ai, i� 1, . . . , p might be specific to the CGM sensor used. These
values need to be identified on a suitable dataset via an appropriate
estimation procedure (see, e.g., that proposed in Vettoretti et al.
(Vettoretti et al., 2019a)).

From Eq. 5, Σw can be obtained as:

Σw � σ2 ATA( )−1 (6)
where A is the square n-dimensional lower-triangular Toeplitz
matrix, whose first column is [1,−a1,−a2, . . . ,−ap, 0, . . . , 0]T.
Notably, Σw is no longer diagonal, as it happened in the work by
Facchinetti et al. (Facchinetti et al., 2011).

2.1.3 Estimate determination
Once defined Σu and Σw , Eq. 2 turns into:

û � ATA + γFTF( )−1ATAy (7)
where, as discussed in (De Nicolao et al., 1997), γ � σ2

λ2
acts as a

parameter which balances the fidelity to the data with the
roughness of the estimate, i.e., which regulates the “smoothing
aggressiveness”. The value of γ is unknown, because both σ2 and λ2

are unknown. Given the inter-individual variability, γ should be
personalized. To do so, according to the Bayesian smoothing
criteria suggested in (De Nicolao et al., 1997), the problem of
Eq. 7 can be solved for several trial values of γ, until the following
condition is satisfied:

WRSS γ( )
n − q γ( ) � γ

WESS γ( )
q γ( ) (8)

whereWRSS(γ) � (y − û)TATA(y − û) is the weighted residual sum
of squares, WESS(γ) � ûTFTFû is the weighted estimates sum of
squares, and q(γ) � trace[AT(ATA + γFTF)−1A)] are the so-called
equivalent degrees of freedom. As reported in the aforementioned
references, once γ is determined, the estimate σ2 can be obtained by:

σ2 � WRSS γ( )
n − q γ( ) (9)

while the estimate of λ2 can be obtained by dividing the result of
Eq. 9 by γ.

2.1.4 Accounting for non-stationarity of noise
To account for the intra-individual variability of the SNR, the

algorithm is applied to consecutive partially-overlapped CGM
windows. An optimal “smoothing aggressiveness” is automatically
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determined for each window, based on the estimated level of noise
accounted by γ. Finally, an additional kernel smoother (KS) is put on
cascade. A flowchart of the enhanced algorithm is reported in
Figure 1, and described step by step below.

Step 1: The algorithm partitions a CGM timeseries into windows of
2+1 equally-spaced 5-min samples, where neighboring
windows overlap by 2 samples.

Step 2: For each window, the mean square estimation is computed, as
illustrated in Section 2.1.3. The algorithm estimates û as in Eq.
7, and determines the parameters σ2 and λ2 (or, similarly γ) by
solving Eq. 8. Note that the parameters of themodel describing
the CGM measurement error (i.e., the order p, and the
coefficients ai, i� 1, . . . , p, of Eq. 5) are assumed to be
known and available from the literature (e.g., for the
Dexcom G6 sensor can be used those present in Vettoretti
et al. (Vettoretti et al., 2019a)). Let us denote the signal
estimated from data of window i as
û(i)(k), k� 1, 2, . . . , 2+1, and the estimated noise variance
as σ2(i). For example, û(1)(k) is obtained by denoising the
samples y(k), k� 1, 2, . . . , 2+1, while û(2)(k) is obtained
considering the samples y(k), k� 2, 3, . . . , 2+2.

Step 3: Once noisy data in all windows have been smoothed, the
algorithm reconstructs the estimated signal in the overlapped
regions by implementing a KS. This strategy effectively
eliminates any jumps or discontinuities around the
boundaries of neighboring windows. Let us consider a
kernel K having the same dimension of the CGM
window, i.e., 2+1 equally-spaced 5-min samples. The
final smoothed signal at time c� 2+1, 2+2, . . . , n−2 is
given by the weighted average of the smoothed signals in the
neighborhood windows, where the weights are determined by
the kernel K:

û c( ) � ∑2+1
i�1 û c−i+1( ) i( )K i( )

∑2+1
i�1

K i( )
(10)

For example, the first point of the smoothed signal û(2+1)
is obtained by weighting the samples û(1)(2+1), û2(2),. . .,
û(2+1)(1).

Step 4: Step 3 is repeated to reconstruct a continuous profile of σ2 at
time c� 2+1, 2+2, . . . , n−2, that allows tracking the
intra-individual noise variability:

σ2 c( ) � ∑2+1
i�1 σ2 c−i+1( )K i( )∑2+1

i�1 K i( ) (11)

Since the signals estimated in windows centered in point c
should be weighted more than the signals in the neighbor
windows, K was selected as Gaussian kernel centered in
c� 2+1, 2+2, . . . , n−2, with standard deviation Λ.

The strategy proposed so far does not allow to obtain the final
estimates û and σ in the very beginning and the very final portions of
data of duration 2. To overcome this problem, the new algorithm
performs the so-called “data mirroring”. The first 2 data samples in y

are duplicated, flipped and put before the first sample y(1); similarly,
the last 2 data samples in y are duplicated, flipped and put after the last
sample y(n). Doing so, a sufficient amount of data points (i.e., 2+1
samples) statistically similar to the actual measurements, are available to
feed the KS also at the very beginning/final portions of the CGM
timeseries. Once the denoising is completed, the mirrored portions are

FIGURE 1
Flowchart of the proposed algorithm. A noisy CGM timeseries is
given as input to the algorithm. After mirroring the input data and
partitioning it in consecutive windows, a Bayesian estimation is
performed for each window, providing the denoised signal with
its confidence interval, and the noise variance. Once all windows have
been processed, a Gaussian kernel smoother recombine the
estimated signals. The algorithm gives as output the noise-free CGM
timeseries and the noise level timeseries.
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removed, and the final estimate û has the same size (n) as the original
CGM timeseries y. While a mirroring window size of 2 samples is
selected as theminimum size which allows all the ymeasurements to be
denoised, a sensitivity analysis on the mirroring window size has been
performed, and described in the Supplementary Material.

The proposed BD algorithm, presents two hyperparameters that
need to be set: , which is the duration of each window the CGM
timeseries is partitioned, andΛ, which is the standard deviation of the
kernel K. To find suitable values of both parameters, we performed a
sensitivity analysis in simulation, testing different values of  ranging
in [5:5:25] samples, and different values of Λ ranging in [2:2:14]
samples. The values providing the lowest median RMSE over a
training set extracted from a synthetic dataset (different from that
used to assess the performance of the algorithm) were  � 20 samples,
and Λ � 10 samples. For sake of space, details of this analysis are
reported in the Supplementary Material.

2.2 Assessment on synthetic and real CGM
data

The proposed BD methodology is first assessed on two synthetic
datasets of 100 traces each, namely, DS1 and DS2, generated using the
UVa/Padova simulator (Vettoretti et al., 2018). A great advantage of
working in a simulated environment is the availability of both the
“ground-truth” noise-free glucose traces, that can be used to assess the
denoising effectiveness, and the true value of σ2, that can be used to
assess the accuracy in the determination of the actual SNR.Note that the
UVa/Padova simulator does not generate glucose signals as in Eq. 3, but
it leverages numerous differential equations derived from experimental
data. Therefore, the structure used to model u (an integrated random
walk) could be unsuitable to describe some portions of data with a
higher variability (e.g., during rapid glucose rises following meal
consumptions), reflecting what eventually happens on real data.

The assessment pipeline implemented therein is incremental. The
first dataset DS1 simulates CGM data with correlation among noise
samples and stationarity of the measurement noise. DS1 is used to
evaluate the effectiveness of the new BD algorithm to account for the
correlation among noise samples. As a comparator, we chose the
algorithm of Facchinetti et al. (Facchinetti et al., 2011), which was
designed assuming the measurement noise to be white. The second
datasetDS2 simulates CGMdata with correlation among noise samples,
but with non-stationary of the measurement noise, which is practically
implemented by assuming a temporal variability of the noise variance.
DS2 is used to evaluate the effectiveness of the new BD algorithm to
estimate the variability of the noise variance by adapting the “smoothing
aggressiveness” to the SNR. As a comparator, we chose two literature
Butterworth filters. For bothDS1 andDS2, the simulated measurement
noise is that of the Dexcom G6 CGM sensor (Dexcom, Inc., San Diego,
CA), as it is the only CGMdevice available on themarket with a publicly
available statistical model of the measurement noise. Indeed, the order
of the ARmodel in Eq. 5 is p � 2, and the values of a1, and a2 are set to
the median values reported in Vettoretti et al. (Vettoretti et al., 2019a),
and equal to −1.30, and 0.42, respectively.

Finally, the proposed BD methodology is evaluated on the real
datasetDR, which consists of 15 CGM traces (extracted from a larger
study), collected over adult subjects with type 1 diabetes, wearing a
Dexcom G6 CGM sensor (Dexcom, Inc., San Diego, CA) providing

1 sample every 5 min, for up to 10 days. The dataset, courtesy of
Dexcom, Inc., is a subset of the dataset collected during the Dexcom
G6 Pivotal trial (Wadwa et al., 2018), including 262 participants
(53% females, mean ± sd age: 28.0 ± 18.3, diabetes duration: 15.1 ±
13.8, glycated hemoglobin: 8.0% ± 1.3%).

2.2.1 Dataset DS1: time-correlated and stationary
measurement noise

A set of 100 reference noise-free 1-min sampled glucose profiles
of 1-day duration were first generated.

A time-correlated noise profile w1(k) was then generated as in Eq.
5. To simulate the inter-individual variability of SNR, the value of σ2

was sampled from a uniform distribution in [4.00–16.00] mg2/dL2.
The final synthetic datasetDS1 was obtained by adding up the noise-

free glucose traces and the noise profiles. Thus, this dataset included
100 glucose traces corrupted by stationary time-correlated measurement
noise. A representative profile with σ2 = 13.33 mg2/dL2 is shown in
Figure 2A (gray curve), together with the noise-free trace (green curve).

The new BD algorithm is compared against the literature
algorithm of Facchinetti et al. (Facchinetti et al., 2011), that
assumes white measurement noise (i.e., the matrix Σw is diagonal).
Besides visualizing the smoothed traces of a representative virtual
subject, for each glucose trace of the synthetic dataset, two quantitative
performance metrics are calculated: the root-mean-squared-error
(RMSE) computed as

RMSE �
�����������������
1
n
∑n

i�1 û i( ) − u i( )( )2
√

, (12)
and the mean-absolute-relative-difference (MARD) computed as

MARD� 100 · 1
n
∑n

i�1
û i( ) − u i( )

u i( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣. (13)

Finally, a Wilcoxon signed rank test with significance level of 1%
is performed to test statistical difference among RMSE and MARD
distributions.

2.2.2 Dataset DS2: time-correlated and non-
stationary measurement noise

A set of 100 reference noise-free 1-min sampled glucose profiles
of 14-day duration were first generated, as performed for the dataset
DS1. Then, a noise profile w2(k) was generated as in Eq. 5, with
a1� −1.30, and a2� 0.42, according to (Vettoretti et al., 2019a).
Unlike the dataset DS1, tomimica possible variability of CGM noise
variance, σ2 was modelled as a sinusoid,

σ2 k( ) � A0 + A sin
2π
60T

k + ϕ( ) (14)

with amplitude A randomly sampled from a uniform distribution in
(0, 12)mg2/dL2, offsetA0 � A+1 (i.e., in case ofA� 10mg2/dL2, the
sinusoid ranges within (1, 21) mg2/dL2), period T randomly
sampled from a uniform distribution in (6, 24) hours, and phase
ϕ randomly sampled from a uniform distribution in (−π, π). These
values were selected according to (Facchinetti et al., 2011). However,
similar estimation performance was achieved when using different
shapes, including square wave and triangular wave.

The final synthetic dataset DS2 was obtained by adding up the
noise-free traces and the noise profiles. Thus, this dataset included
100 glucose traces corrupted by non-stationary time-correlated noise.
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A representative glucose profile is shown in Figure 4A, obtained with
σ2(k)� 8 + 7 sin( 2πk

12*60 + π)mg2/dL2, depicted in Figure 4B.
The new BD algorithm is compared against two literature

Butterworth filters: the first is the one used in Sparacino et al.
(Sparacino et al., 2007), that will be referred to as BW1, and the
second is that employed in Perez-Gandia et al. (Pérez-Gandía et al.,
2010), that will be referred to as BW2. Both BW1 and BW2 are first-
order low-pass filters, with BW1 more aggressive than BW2 (cutoff
frequency normalized to half sampling rate equal to 0.05 for BW1 and
0.1 for BW2). Note that the comparison against the algorithm of
Facchinetti et al. (Facchinetti et al., 2011) onDS2 has not been reported
in this manuscript, as we anticipate that the analysis conducted onDS1

will show the superiority of BD when dealing with colored noise.
To evaluate the reliability of BD in denoising the traces of the

dataset DS2 and in tracking the measurement noise variability, the
resulting glucose and σ2 traces are compared against the “ground-
truth” simulated profiles. In addition, to quantitatively assess the
performance of the algorithms, RMSE and MARD are computed for
each glucose trace of the synthetic dataset DS2, and a Wilcoxon
signed rank test is performed to test statistical difference.

3 Results

3.1 Results on DS1

Figure 2B shows the smoothed traces obtained with the literature
algorithm (red) and BD (dashed blue), for a representative simulated
profile. It is well visible that the literature algorithm performs
undersmoothing, reducing only slightly the noise fluctuations, while
the new algorithm provides a reliable estimate of the noise-free profile
(reported in green). This happens because the literature algorithm
underestimates the noise variance (σ2 = 2.197 mg2/dL2), while the new
BD allows estimating its value almost perfectly (σ2 = 13.26 mg2/dL2).

Similar considerations can be drawn considering the overall
synthetic dataset DS1. The RMSE computed between noisy and
noise-free traces is, on median [25th, 75th percentiles], 8.10 [6.79,
9.24] mg/dL, while MARD equals to 4.56 [3.84, 5.29]%. The literature
algorithm allows reducing these values only slightly, providing RMSE
of 7.89 [6.62, 9.16] mg/dL (p-value = 0.02), and MARD of 4.49 [3.79,
5.42]% (p-value = 0.06). Instead, BD substantially reduces RMSE to
6.28 [5.47, 7.27] mg/dL (p-value<0.0001) and MARD to 3.58 [3.00,
4.26]% (p-value<0.0001), thus providing smoothed tracesmuch closer
to the “ground-truth” noise-free profiles.

Figure 3 displays the comparison between true and estimated σ

values in the whole dataset DS1, together with the correlation
coefficient R2, using the literature algorithm (gray stars, with
linear fit in red), and BD (black circles, with linear fit in blue).
The new algorithm is able to estimate the measurement noise
variance accurately (R2 = 0.927), notably better than the literature
algorithm (R2 = 0.659), that substantially underestimates σ, because
of its wrong assumption of white measurement noise.

The percent absolute relative error in the estimation of σ is, on
median [10th, 90th percentiles], 67.31% [60.22%, 75.19%] for the
literature algorithm, 6.74% [2.45%, 14.79%] for the new algorithm.
In addition, the estimation of the autoregressive process noise variance
λ2 for the dataset DS1 returned an average value of 1.37 mg2/dL2, with
10th and 90th percentile of 0.25 and 3.83 mg2/dL2, respectively.

3.2 Results on DS2

Figure 4A reports the smoothed profile obtained with BD
(dashed blue) and the Butterworth filter BW2 (orange solid line).
BD performs a satisfactory denoising, being the estimated profile
very close to the reference noise-free trace, while BW2 performs

FIGURE 2
A representative simulated glucose profile with stationary
measurement noise. Panel (A): noise-free (green) and noisy CGM data
(gray). Panel (B) smoothed traces obtained with the literature
algorithm (Facchinetti et al., 2011) (red) and BD (blue).

FIGURE 3
True vs. estimated σ values with the linear fit, for the literature
algorithm (Facchinetti et al., 2011) (gray stars and red line) and the new
BD algorithm (black circles and blue line). Dashed black line is the
bisector, representing the perfect fit.
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undersmoothing for most of the trace. The time course of the
estimated σ2 is reported in Figure 4B, together with the true
simulated profile. Notably, the estimated noise variance is very
similar to the true one, demonstrating the capability of BD to
correctly estimate the intra-individual variability of the SNR.

To quantify the improvement given by BD, in Table 1 we report,
for the 100 simulated traces of the dataset DS2, the median [25th,
75th percentiles] values of RMSE and MARD, computed between
the “ground-truth” glucose profiles and the smoothed traces
obtained with the Butterworth filters BW1 (second column) and
BW2 (third column), the algorithm of Facchinetti et al. (fourth
column), and the new algorithm (fifth column). In addition, the
metrics are computed also between the simulated noisy and noise-
free profiles (first column).

The Butterworth filter BW1 provides higher RMSE and MARD
values. This happens because it is too aggressive (i.e., too low cutoff
frequency), thus performing oversmoothing in almost all the traces.
Instead, the Butterworth filter BW2 provides acceptable RMSE and
MARD values. Finally, the new BD algorithm provides the lowest RMSE
and MARD values, thus outperforming all comparator algorithms, and
resulting significantly different from those provided by the Butterworth
filter BW2 (p-value<0.0001 for both RMSE and MARD).

Figure 5 reports a comparison between the smoothed traces
obtained with the new BD algorithm and the filter BW2, in two

different portions of the dataset DS2. Since BW2 has fixed-
parameters, it cannot cope with the intra-individual variability of
the SNR. Indeed, it is prone to undersmoothing (in case of low SNR
portions), as shown in Figure 5A, and to oversmoothing (in case of
high SNR portions), as shown in Figure 5B. On the other hand, in
both examples, BD performs a satisfactory denoising, since it is able
to adapt its “smoothing aggressiveness” to the estimated SNR.

3.3 Results on DR

Figure 6 illustrates the application of the new BD algorithm to two
representative portions of the traces of DR: one with a high SNR (left
side), and the other with a visibly low SNR (right side). Figures 6A, B
display original CGM timeseries (gray), and the smoothed traces
obtained with both BD (solid blue) and the literature approach
(dashed red) (Facchinetti et al., 2011). As visible by eye inspection,
the Dexcom G6 CGM sensor is confirmed to be affected by colored
noise, as originally documented in Vettoretti et al. (Vettoretti et al.,
2019a). In this situation, the literature algorithm, which assumes that
themeasurement noise samples are uncorrelated, struggles to effectively
filter the noise out. This results in denoised timeseries that are heavily
contaminated by noise, with only small and isolated portions of data
being acceptably filtered out, in correspondence of the rare instances

TABLE 1 RMSE [mg/dL] and MARD [%] computed between the noise-free “ground-truth” profiles and the noisy simulated traces (first column), the traces provided
by the filter BW1 (second column), BW2 (third column), and BD (fourth column), for 100 simulated traces.

Noisy BW1 BW2 Facchinetti 2011 BD

RMSE 6.85 [5.50–8.72] 8.93 [6.93–10.81] 6.15 [5.22–6.95] 6.77 [5.45–8.62] 5.35 [4.48–6.49]

MARD 3.85 [2.89–4.45] 4.32 [3.58–5.34] 3.26 [2.77–3.86] 3.82 [2.85–4.39] 2.94 [2.29–3.44]

FIGURE 4
A representative simulated glucose profile with non-stationary
measurement noise. Panel (A): noise-free data (green), noisy CGM
data (gray), smoothed trace obtained with the new BD (dashed blue),
and the Butterworth filter BW2 (orange). Panel (B) simulated σ2

(green) and estimated σ2 (dashed blue), reflecting the measurement
noise variance.

FIGURE 5
Two representative simulated noise-free (green) and noisy (gray)
profiles, with non-stationarymeasurement noise, filteredwith the new
algorithm (dashed blue) and the Butterworth filter BW2 (orange). Panel
(A): example of undersmoothing of BW2; Panel (B): example of
oversmoothing of BW2.
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where the autocorrelation of themeasurement noise tends towards zero.
Remarkably, the literature algorithm estimates a constant σ2, which is
proximal to zero, confirming that it is unable to disentangle noise from
glucose fluctuations. On the contrary, the CGM timeseries obtained
with the proposed BD algorithm are significantly smoother than the
original data. The new approach performs a satisfactory denoising in
both cases thanks also to the continuous estimation and update of the
measurement noise variance, as visible in Figures 6C, D, where the
estimated σ2 profiles are reported. Observing in detail these figures, BD
proves to correctly identify a low noise variance for the CGM trace with
high-SNR (left panels) and a high noise variance for the CGMtrace with
low-SNR (right panels), confirming what can be perceived by eye
inspection. The estimated noise variance varies in time, confirming the
need to cope with the intra-individual variability of SNR. Specifically, in
Figure 6C, σ2 ranges from aminimum of 0.4 mg2/dL2 to a maximum of
12 mg2/dL2, with an average of 4.08 mg2/dL2. In Figure 6D, the
estimated σ2 ranges within 0.6 mg2/dL2 and 25 mg2/dL2, with an
average of 10.48 mg2/dL2.

These considerations outlined for the representative data hold
for the entire real dataset.

4 Limitations

The simulation analysis performed in this paper to assess the
performance of the proposed algorithm involved simulated data
mimicking the measurement noise corrupting the DexcomG6 CGM
device, as it is the only CGM device available on the market with a

publicly available statistical model of the measurement noise. While
statistical models of old generation CGM devices are available in the
literature (e.g., for the Dexcom SEVEN Plus (Facchinetti et al.,
2014), the Medtronic Paradigm Veo Enlite (Biagi et al., 2017), the
Dexcom G4 (Facchinetti et al., 2015)), these devices are outdated,
and the proposed algorithm should be adapted to cope with other
limitations of older technologies, for instance the manual
calibration, which would create periodic discontinuities in the
CGM traces, affecting the reconstruction of the denoised signal.
Statistical models of the measurement noise for other new
generation CGM devices (such as Medtronic Guardian Connect,
Abbott FreeStyle Libre 3, Ascensia Eversense E3) are not publicly
available, and their development would require ad hoc datasets with
frequently sampled blood glucose values collected in clinic.
Although the proposed methodology has not been designed for a
specific CGM model, and it is expected to work properly with any
colored and non-stationary measurement noise, its assessment on
different CGM devices will be performed when the statistical models
of their measurement noise will become available.

In addition, the model used in this work assumes the measurement
noise to be additive, and signal and noise to be mutually uncorrelated.
While these assumptions have been widely used in the literature for
biological signals (Facchinetti et al., 2010; Facchinetti et al., 2011;
Bequette, 2018; Zhao et al., 2018; Yadav et al., 2020), removing
them would require the algorithm to be redesigned.

Finally, the proposed algorithm is retrospective, as it denoises a
CGM measurement using data collected before and after that
measurement. For this reason, it cannot be applied in real-time.

FIGURE 6
Two representative real profiles from DR . Panels (A,B): CGM data (gray), smoothed trace with the new algorithm (blue), and with the literature
algorithm (Facchinetti et al., 2011) (dashed red), for high-SNR [panel (A)] and low-SNR [panel (B)] profiles. Panels (C,D): estimated σ2 profiles, reflecting the
measurement noise variance, according to the two algorithms.
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However, in the future we will explore the advantages of
implementing the algorithm periodically, for example, every night
to denoise the CGM measurements collected in the previous 24 h.

5 Conclusion

The retrospective analysis of CGM timeseries is useful to
evaluate the effectiveness of diabetes treatments and, in turn, to
design personalized therapies. However, the presence of
measurement noise may complicate this evaluation. To
improve the quality of CGM signals, denoising approaches can
be employed. Unfortunately, most approaches exploit digital
filters with fixed parameters that cannot cope with neither the
inter- nor the intra-individual variability of the SNR in CGM
timeseries. In addition, recent investigations showed that, for
several CGM sensors, the measurement noise is not only non-
stationary, but also colored.

In the present paper we proposed an algorithm which accounts
for both autocorrelation and non-stationarity of CGMmeasurement
noise, by leveraging the Bayesian theory. The performance of the
new algorithm was assessed on both simulated and real data.
Simulation results proved the effectiveness of the method and its
superiority versus literature approaches, being effective in correctly
estimating the measurement noise variance and tracking its time-
variability. Application on real data showed that the measurement
noise variance determined by the new algorithm over time was in
agreement with the SNR qualitatively perceivable by eye inspection.
In summary, the new algorithm can be used to effectively perform
retrospective denoising of CGM timeseries, providing a reliable
estimate of both the glucose profile and the measurement noise
variance time-variable pattern.

Notably, being the proposed algorithm devised in a Bayesian
framework, it is theoretically and practically possible to obtain also
the confidence interval of the estimated CGM denoised profiles.
Future work will explore the use of confidence intervals as a measure
of reliability and how this feature could be exploited in practical
challenges related to CGM sensors, such as identifying pressure-
induces artifacts. Finally, we will also investigate how to adapt the
proposed algorithm to smooth different biological signals, such as
heart rate or blood pressure, and to quantify the amount of
measurement noise present on these timeseries.

In conclusion, we contend that the algorithm presented in this
work represents a significant advance in the field of retrospective
denoising of CGM timeseries. Indeed, as opposite to the literature
algorithms accounting for the non-stationarity of CGM timeseries
(Facchinetti et al., 2011; Zhao et al., 2018; Yadav et al., 2020), which
assumed the measurement noise to be white, the proposed algorithm
represents the first attempt to simultaneously account for both the
non-stationarity and the time-correlation of the measurement noise.
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