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Introduction: The gray-level co-occurrence matrix (GLCM) reduces the dimension
of an image to a square matrix determined by the number of gray-level intensities
present in that image. Since GLCM only measures the co-occurrence frequency of
pairs of gray levels at a given distance from each other, it also stores information
regarding the gradients of gray-level intensities in the original image.

Methods: The GLCM is a second-order statical method of encoding image
information and dimensionality reduction. Image features are scalars that reduce
GLCM dimensionality and allow fast texture classification. We used Haralick features
to extract information regarding image gradients based on the GLCM.

Results: We demonstrate that a gradient of k gray levels per pixel in an image
generates GLCM entries on the kth parallel line to the main diagonal. We find that,
for synthetic sinusoidal periodic gradients with different wavelengths, the number
of gray levels due to intensity quantization follows a power law that also transpires
in some Haralick features. We estimate bounds for four of the most often used
Haralick features: energy, contrast, correlation, and entropy. We find good
agreement between our analytically predicted values of Haralick features and
the numerical results from synthetic images of sinusoidal periodic gradients.

Discussion: This study opens the possibility of deriving bounds for Haralick
features for targeted textures and provides a better selection mechanism for
optimal features in texture analysis applications.
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1 Introduction

Image processing can be performed in dual spaces, such as the Fourier transform or image
space. Direct imaging allows the fastest possible information retrieval for image classification.
Among themany properties of an image, texture is themost often used for classification. “Texture
is an innate property of virtually all surfaces, the grain of wood, the weave of a fabric, the pattern
of crops in a field, etc. [. . .] Texture can be evaluated as being fine, coarse, or smooth; rippled,
moiled, irregular, or lineated” (Haralick et al., 1973). The critical assumption in texture analysis
and classification based on the gray-level co-occurrence matrix (GLCM) introduced by Haralick
is that “. . .texture information in an image I is contained in the overall or ‘average’ spatial
relationship which the gray tones in the image have to one another” (Haralick et al., 1973).

The initial applications of Haralick features used photomicrographs of sandstone and aerial
photographs and satellite images to classify types of stone and determine land-use categories
(Haralick et al., 1973; Haralick, 1979). From the beginning, Haralick’s features were also applied
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in medical imaging to enable personalized medicine by taking
advantage of clinical imaging data. The first automatic screening
texture-based analysis for identifying and classifying pneumoconiosis
was developed by Hall et al. (1975). Although they did not use Haralick
features for classification, they established that only invariant measures
of pixel relationships should be used for medical diagnosis. Haralick
et al. (1973) and Haralick (1979) also noted that the most valuable
features for texture classifications are the angular second moment,
entropy, sum entropy, difference entropy, information measure of
correlation, and the maximal correlation features that are due to
gray-level quantization invariance. Recent advances in machine
learning and AI have led to novel approaches in X-ray
radiodiagnosis which are primarily focused on optimized versions of
convolutional neural networks (CNNs) (Akhter et al., 2023). The first
automatic system based on Haralick features used digitized lung X-rays
and identified black lung disease with 96% accuracy (Kruger et al., 1974;
Abe et al., 2014), while physician accuracy varies from 86% to 100%
(Hall et al., 1975). Although the nomenclature was not yet standardized
at the time of the first large-scale pneumoconiosis study (Kruger et al.,
1974) using Haralick features (Haralick et al., 1973; Haralick, 1979), the
five features used for patient classification were “autocorrelation”
(similar to the normalized correlation feature f3 from Eq. 10), the
“moment of inertia” (similar to the contrast feature f2 from Eq. 9), a
similarity feature (similar to inverse difference momentum f5 from Eq.
12), a conditional entropy (similar to the entropy feature f9 fromEq. 16),
and “another dissimilarity measure” (similar to the contrast feature
except using absolute value instead of the square distance between gray
levels in GLCM). The volume of radiation oncology on radiographic
images for diagnosis and treatment is increasing exponentially. It
requires new fast direct imaging analysis, such as segmentation and
texture analysis based on Haralick features (Bodalal et al., 2019). All
medical imaging modalities (CT, MRI, PET, and ultrasound) display
the image as grayscale, and the image features (as many as a couple of
thousand) are extracted for classification in machine learning-assisted
image processing (Devnath et al., 2022; Wang et al., 2022; Ferro et al.,
2023a). Radiomic texture features were applied to images to classify
pulmonary nodules as benign or malignant, with a correct classification
rate of 90.6% in 1999 (McNitt-Gray et al., 1999). McNitt-Gray et al.

(1999) first identified the most relevant Haralick features in pulmonary
nodule classification. They found that a reasonable (over 90%)
classification accuracy can be obtained with only three features:
contrast, sum entropy, and difference variance. Their study also
highlighted that the selection of displacement vectors is critical for
classification accuracy. Non-oncological classification tasks in the
kidneys alone have included differentiation between benign and
malignant lesions and lipid-poor angiomyolipomas from renal cell
carcinoma (RCC) (Raman et al., 2014; Yan et al., 2015; Jeong et al.,
2019; Ferro et al., 2023b; Criss et al., 2023). Classification tasks have also
successfully classified lesions in the liver, pancreas, and bowel (Song
et al., 2014; Raman et al., 2015; Permuth et al., 2016; Jeong et al., 2019;
Cao et al., 2022). The texture features outperformed standard uptake
value (SUV) parameters in PET scan images, including mean SUV,
maximum SUV, peak SUV, metabolic tumor volume, and total lesion
glycolysis (Cook et al., 2013; Feng et al., 2022). Texture features are
helpful for image contouring, tissue identification, classification tasks,
disease staging, treatment response prediction, disease-free survival,
overall survival estimation, risk stratification, response classification,
and real-time response monitoring. Among the most used features in
medical imaging are first-order statistical descriptors (mean, range, and
standard deviation), shape descriptors, and texture features (El-Baz
et al., 2011). In addition to direct imaging-based features such as
Haralick’s, there are also wavelet-based feature filter banks (Mallat,
1989; Soufi et al., 2018; Prinzi et al., 2023).

In addition to biomedical imaging, Haralick features have been
applied to detecting intrusion to mitigate cybersecurity attacks (Azami
et al., 2019; Baldini et al., 2021). Intrusion detection algorithms identify
unauthorized intruders and attacks on various electronic devices and
systems such as computers, network infrastructures, and ad hoc
networks (Lunt, 1993; Baldini et al., 2017).

Crowd abnormality detection, such as for flash mobs, is a public
safety concern, and real-time identification and intervention are crucial
for reducing casualties (Sivarajasingam et al., 2003; Lloyd et al., 2017).
The difficulty of crowd abnormality detection is the great amount of
data feeds available. By some estimates, there is one surveillance camera
per 35 people in the United Kingdom (Serrano Gracia et al., 2015)
combined with a very low human accuracy of 19% for detecting

FIGURE 1
GLCM displacement vector and marginal probabilities. (A) By convention, the x-direction runs horizontally to the right, and the y-direction is
vertically downward, with the image’s origin at the upper-left corner. The pixel of interest in the grayscale image I (y, x) has the nearest horizontal neighbor
to the right described by the offset, or displacement, vector d=(Δy=0, Δx=1) and the nearest vertically upward neighbor given by d=(Δy=−1, Δx=0). (B) A
two-bit image is scanned for all horizontal nearest neighbors to the right of the reference pixel with a displacement vector d=(Δy=0,Δx=1). The two
elliptical shaded areas show two pairs with gray-level intensities i =1, j =0, i.e., P(1,0)=2. GLCM is shown in panel (C). The two rectangular shaded areas in
panel (B) show vertically upward neighbors with a displacement vector d =(Δy =−1, Δx =0). The two pairs with i =2, j =0, i.e., P(2,0)=2, are shown in
panel (D).
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abnormalities while simultaneously observing four video feeds
(Voorthuijsen et al., 2005). The default video tracking algorithm is
based on the optical flowmethod (Kratz and Nishino, 2012), which has
significant drawbacks when applied to crowds (Wang and Xu, 2016). A
considerable data dimensionality reduction was obtained using GLCM
(Ryan et al., 2011), which allowed the fast detection of abnormalities
(Lloyd et al., 2017).

1.1 Gray-level co-occurrence matrix (GLCM)

Throughout this study, the pixel coordinate definition originates at
the top-left corner of an image with the x-direction horizontal to the
right and a y-direction vertically downward (Figure 1A). As a result, the
matrix representation of an image has its first (line) index associated
with the y-direction and the second (column) index with the x-
direction, that is, I (line index, column index) = I (y, x) (Figure 1B).
An image I (y, x) of sizeNy ×Nx gives the intensity at location (pixel) of
coordinates (y, x) by discrete numbers from Ng light intensity
quantization levels. For example, the b = 2-bit encoding of intensity
for the Ny(=3) × Ny(=4) image shown in Figure 1B allows for ~Ng �
2b � 4 gray levels of image intensity quantization that correspond to
different gray levels from black (0) to white (3).

The gray level co-occurrence matrix (GLCM) counts the
number of occurrences of the reference gray level i at a distance
specified by the horizontal and vertical increments d = (Δy, Δx) from
the gray level j (Haralick et al., 1973):

PΔy,Δx i, j( ) � # yi, xi( ), yj, xj( )( ): I yi, xi( ) � i & I yj, xj( ) � j{ },
(1)

where # denotes the number of elements in the set, the coordinates of
the reference gray level i are (yi, xi), and the coordinates of the neighbor
pixel with gray level j are (yj = yi + Δy, xj = xi + Δx). In GLCM, the first
index is the reference or starting point of the displacement vector d. For
example, an offset d = (Δy = 0, Δx = 1) means that the row index
(y-direction) does not change because Δy = 0 and the column index

increases (x-direction) by one unit (Δx = 1), that is, the new location is
the horizontal nearest neighbor to the right of the reference pixel, as
shown by the shaded ellipses for i = 1, j = 0 in Figure 1B. The
corresponding GLCM for d = (0, 1) is shown in Figure 1C.
Similarly, an offset d = (Δy = −1, Δx = 0) means that the row index
(y-direction) decreases by one unit (vector pointing vertically upward),
and the column index is constant. The pairs are upward vertical nearest
neighbors, as shown by the shaded rectangles in Figure 1B and the
corresponding GLCM in Figure 1D. In their seminal paper on GLCM
features, Haralick et al. (1973) focused on the eight nearest neighbors of
the reference pixel in Figure 1 and used the magnitude |d| of the
displacement vector d = (Δy, Δx) and the corresponding angle θ = tan−1

(Δy/Δx) to the nearest neighbor.
Although it is common practice in GLCM evaluation to consider

toroidal periodic boundary conditions, we did not use them in this
study. In the original definition of GLCM given by Haralick et al.
(1973), there is a symmetry that allows both 1,2 and 2,1 pairings to
be counted as the number of times the value 1 is adjacent to the value
2. Here, we used a stricter approach to define the occurrence matrix
that does not double count such occurrences; consequently, our
GLCMs are not always symmetric.

GLCM belongs to the class of second-order statistical methods for
image analysis and is based on the joint probability distribution of gray-
level intensities at two image pixels. The first-order statistic is based on
the image histogram and the statistical values, such as mean image
intensity, standard deviation, and skewness. The justification of the
GLCM method is based on experiments on the human visual system
that showed that “. . .no texture pair can be discriminated if they agree
in their second-order statistics” (Julesz, 1975).

The number of possible pairs in the image often normalizes
GLCM. For example, in an Nx × Ny image, there are Rx = (Nx − 1)Ny

horizontal pairs and Ry = (Ny − 1)Nx vertical pairs with a
displacement vector d of one unit. In the example shown in
Figure 1, since the image is 3 × 4 pixels, the GLCM normalization
factors are Rx = 9 and Ry = 8. The corresponding normalized GLCM
values in Figure 1C are, for example, p(1, 0) = P(1, 0)/Rx = 2/9 and

FIGURE 2
Marginal probability distributions fromGLCM. (A) The probability of finding a gray-level intensity i along the horizontal x-direction in the image is px(i)
and along the y-direction is py(i) [see panel (B)]. (C) The probability of finding a contrast of k gray levels in the image is px−y(k) and is determined by the
elements parallel to the primary diagonal of GLCM. (D) The probability of finding an intensity sum of the k gray level in the image is px+y(k) and is
determined by the elements parallel to the secondary diagonal of GLCM.
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for Figure 1D are p(2, 0) = P(2, 0)/Ry = 2/8. In the following, un-
normalized GLCM is labeled with capital letters such as P(i, j),
whereas its normalized version is labeled p(i, j). The advantage of the
normalized GLCM is that, regardless of the size of the image or the

number of gray levels, ∑
Ng−1

i�0
∑
Ng−1

j�0
p(i, j) � 1.

Haralick features have received much recent attention due to the
advance of machine learning and artificial intelligence algorithms
capable of accurately and quickly classifying textures over a wide
range of applications, such as biomedical imaging (Cao et al., 2022;
Devnath et al., 2022; Feng et al., 2022; Wang et al., 2022; Ferro et al.,
2023a; Akhter et al., 2023; Ferro et al., 2023b; Criss et al., 2023;
Nakata and Siina, 2023; Prinzi et al., 2023), cybersecurity (Lunt,
1993; Chang et al., 2019; Karanja et al., 2020; Baldini et al., 2021), or
crowd abnormality (Sivarajasingam et al., 2003; Lloyd et al., 2017;
Naik and Gopalakrishna, 2017). However, beyond five-decade-old
definitions (Haralick et al., 1973), little progress has been made on
the theoretical and analytical understanding of Haralick features,
deriving theoretical lower and upper bounds, the dependence of
GLCM and Haralick features on image depth, and other related
issues. We started this study by observing that Haralick features are
measures of light intensity gradients in images. To derive bounds for
Haralick features, we determined the symmetries of GLCM induced
by the linear gradients present in images. Such symmetries allowed
us to estimate the marginal probabilities (Section 2) necessary for
analytically estimating Haralick feature bounds. We then generated
synthetic gradients, such as vertical stripes of different gray-level
intensities, and compared our theoretical predictions against
numerical calculations of Haralick features. While we used all
14 Haralick features (Section 2), only four are relevant to the
synthetic patterns we investigated (Section 3). We also showed
that some features, like contrast and homogeneity, are redundant
for the synthetic images generated.

2 Methods: Haralick GLCM features

The un-normalized GLCM P(i, j) gives the number of
occurrences of gray level j at a distance Δx and Δy from the
current location of the reference pixel with gray level i in an
image. Assuming that there are Ng gray levels in the image,
normalized GLCM is the Ng × Ng matrix:

p i, j( ) � P i, j( )

∑
Ng−1

i�0
∑

Ng−1

j�0
P i, j( )

, (2)

with the obvious property that ∑
Ng−1

i�0
∑
Ng−1

j�0
p(i, j) � 1.

2.1 Marginal probability distributions

The x-direction marginal probability distribution, or marginal
row probability, can be obtained by summing the rows of GLCM
p(i, j):

px i( ) � ∑
Ng−1

j�0
p i, j( ), (3)

as shown in Figure 2A. For example, px(0) is the sum of all row
elements with intensity i = 0 at the reference point, or the starting
point of displacement vector d in Figure 1A regardless the intensity
of its endpoint neighbors. Similarly, the mean and variance of
GLCM along px(i) are as follows:

μx � ∑
Ng−1

i�0
ipx i( ),

σ2x � ∑
Ng−1

i�0
i − μx( )2px i( ).

(4)

FIGURE 3
Vertical stripes synthetic images. (A1) Vertical stripes of constant intensity with a horizontal gradient of 1 gray level per pixel with a b = 2-bit depth.
The images were rendered in color to emphasize the differences between gray-level stripes. Each line is 1 pixel wide. (B1) Gray-level intensities for the
vertical stripes in panel (A1). (C1)GLCM for the image in panel (A1). (A2) Reduced 1-bit depth of the original image in panel (A1). (B2)Gray-level intensities
for the 1-bit depth image in (A2). (C2) GLCM for the image in panel (A2). GLCM of 1-bit depth is the convolution of non-overlapping 2×2 kernels
(shaded areas in panel c1) with GLCM of the 2-bit image.

Frontiers in Signal Processing frontiersin.org04

Oprisan and Oprisan 10.3389/frsip.2023.1271769

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1271769


The y-direction marginal probability distribution, or marginal
column probability, can be obtained by summing the columns of
GLCM p(i, j)

py i( ) � ∑
Ng−1

i�0
p i, j( ), (5)

as shown in Figure 2B. For example, py(0) is the sum of all column
elements with an endpoint intensity i = 0 (Figure 1A) regardless the
intensity of the reference (starting) point.

The marginal distribution of a given contrast k = |i − j| between
the reference pixel intensity i and endpoint neighbor intensity j is as
follows:

px−y k( ) � ∑
Ng−1

i�0
∑
Ng−1

j�0
δ|i−j|,kp i, j( ), (6)

where δm,n is Kronecker’s delta symbol. For example, px−y(0) is the
sum of all GLCM entries along the primary diagonal because these
elements have no contrast between the reference i and the endpoint j
of the vector d (Figure 2C). Similarly, the sum of GLCM entries
along the first-order diagonal parallel to the primary diagonal has a
contrast of k = j − i = 1 between the reference i and the endpoint j of
GLCM and determines the element px−y(1) of the marginal
distribution px−y.

The marginal distribution of a given sum of gray-level intensity
k = i + j between the reference pixel intensity i and the endpoint
neighbor intensity j is

px+y k( ) � ∑
Ng−1

i�0
∑
Ng−1

j�0
δi+j,kp i, j( ) (7)

and can be visualized as corresponding sums along the secondary
diagonals (Figure 2D).

2.2 Haralick texture features

While there is no standard notation for Haralick features,
we will follow the original (Haralick et al., 1973; Haralick,
1979).

1) Angular second momentum (ASM) or energy is a measure of the
homogeneity of the image and is defined as

f1 � ∑
Ng−1

i�0
∑
Ng−1

j�0
p i, j( )2. (8)

When pixels are very similar, the ASM value will be large. For a
quantization scheme with Ng gray levels, a uniform image has only
one entry in GLCM, which gives the maximum f1 = 1. For a purely
random-filled image, all entries of the Ng × Ng GLCM matrix are
equally represented with p(i, j) � 1/N2

g. Consequently, the

minimum value is f1,min � ∑
Ng−1

i�0
∑
Ng−1

j�0
1/N4

g � 1/N2
g. This statistic,

also called “uniformity”, measures textural uniformity and pixel pair
repetitions; it detects disorders in textures. Energy reaches a
maximum value equal to 1. High energy values occur when the
gray-level distribution is constant or periodic. Energy has a
normalized range; GLCM of a less homogeneous image will have
many small entries. Energy is preferred to entropy as its values
belong to the normalized range.
2) Contrast (CON) measures local variations present in the image

and is defined as

f2 � ∑
Ng−1

k�0
k2px−y k( ). (9)

When i and j are equal, there is no contrast k = j − i between
pixels; therefore, px−y(k) has weight k = 0 in f2 along the primary
diagonal of GLCM. If k = |i − j| = 1, there is a small contrast between
neighbor pixels, and px−y(k) contributes a weight of 1 to f2. The
weight of px−y(k) increases quadratically as the contrast k = |i − j|
increases. For example, if only the primary diagonal elements of the
GLCM are populated, then the contrast is minimum f2 = 0. This
feature measures the variation between neighboring pixels (larger
differences get square law weights). It can also be viewed as a
measure of the spread of values in the GLCM matrix. Contrast is
associated with the average gray level difference between
neighboring pixels and is similar to variance. However, contrast
is preferred due to reduced computational load and its effectiveness
as a spatial frequency measure. Energy and contrast are the most
significant parameters for visual assessment and computational load
to discriminate between textural patterns.

3) Correlation (COR) is a measure of the linear dependency of gray
levels of neighboring pixels and is defined as

f3 �
∑

Ng−1

i�0
∑

Ng−1

j�0
ijp i, j( ) − μxμy

σxσy
. (10)

COR describes how a reference pixel is related to its neighbor: 0 is
uncorrelated and 1 is perfectly correlated. This measure is similar to
the familiar Pearson correlation coefficient.

TABLE 1 GLCM for the entire image in Figure 3A1 with a horizontal
displacement vector d =(Δy, Δx)=(0,1), i.e., rightward displacement, or
d =(0,−1), i.e., leftward displacement.

0 1 2 3

0 0 200 0 0

1 200 0 200 0

2 0 200 0 200

3 0 0 200 100

TABLE 2 GLCM for the entire image in Fig. 3a1 with a vertical displacement
vector d =(Δy, Δx)=(−1,0), i.e., downward displacement, or d =(1,0), i.e., upward
displacement.

0 1 2 3

0 99 0 0 0

1 0 198 0 0

2 0 0 198 0

3 0 0 0 198
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4) Variance (VAR)

f4 � ∑
Ng−1

i�0
∑
Ng−1

j�0
i − μ( )2p i, j( ). (11)

Variance is a measure of the dispersion of the values around the
mean of combinations of reference and neighbor pixels. This feature
assigns increasing weight to greater gray-value differences. The mean
value μ was not defined in Haralick’s original studies and is given by

μ � 1
Ng

∑
Ng−1

i�0
∑
Ng−1

j�0
p i, j( ).

This statistic measures heterogeneity and correlates with first-
order statistical variables such as standard deviation. Variance
increases when the gray-level values differ from their mean.

5) Inverse difference momentum (IDM) or homogeneity measures
the local homogeneity and has a high value when the local gray
level is uniform. Its definition is as follows:

f5 � ∑
Ng−1

i�0
∑
Ng−1

j�0

1

1 + i − j( )2
p i, j( ). (12)

IDM measures the closeness of the distribution of the GLCM
elements to the GLCM diagonal. The IDM weight value is the
inverse of the contrast weight, with weights decreasing quadratically
away from the diagonal. Sometimes, a new homogeneity measure is

used: ∑
Ng−1

i�0
∑
Ng−1

j�0
1

1+|i−j|p(i, j). The homogeneity value is high when

the GLCMmatrix is populated mainly along the diagonal. Therefore,
homogeneity measures the closeness of the distribution of elements of
GLCM to the GLCM diagonal. It measures image homogeneity as it
assumes larger values for smaller gray-tone differences in pair
elements. It is more sensitive to near diagonal elements in GLCM.
It has a maximum value when all elements in the image are the same.
GLCM contrast and homogeneity are strongly, but inversely,
correlated in terms of equivalent distribution in the pixel pair
population, meaning that homogeneity decreases if contrast
increases while energy is kept constant.

6) Sum Average (SA)

f6 � ∑
2 Ng−1( )

k�0
kpx+y k( ). (13)

Sum average measures the sum of the average of all gray levels.

7) Sum variance (SV)

f7 � ∑
2 Ng−1( )

k�0
k − f6( )2px+y k( ). (14)

Sum variance is a measure of heterogeneity that places higher
weights on neighboring intensity level pairs that deviate more from
the mean. The uniform (flat) distribution of the sum of gray levels
has maximum entropy.

8) Sum entropy (SE)

f8 � − ∑
2 Ng−1( )

k�0
px+y k( )log px+y k( )( ). (15)

Sum entropy is a measure of non-uniformity in the image or the
complexity of the texture.

9) Entropy

f9 � − ∑
Ng−1

i�0
∑
Ng−1

j�0
p i, j( )log p i, j( )( ). (16)

Entropy takes on its maximum value when a probability
distribution is uniform (completely random texture), and its
minimum value is 0 when it becomes deterministic (all grayscale
values in the image are identical). If the entropy f9 is defined using
the base-2 logarithm log2 (), then f9 is measured in bits. Entropy
measures the disorder of an image and achieves its greatest value
when all elements in the GLCM matrix are equal. The entropy
measure is also called the “Shannon diversity”. It is high when the
pixel values of GLCM have varying values. Entropy is inversely
proportional to the angular second moment; this statistic measures
the disorder or complexity of an image. Entropy is large when the
image is not texturally uniform—many GLCM elements have very
small values. Complex textures tend to have high entropy: entropy is
strongly but inversely correlated with energy.

10) Difference variance (DV)

f10 � ∑
2 Ng−1( )

k�0
k −DA( )2px−y k( ), (17)

where the difference average (DA) is given by

DA � ∑
2(Ng−1)

k�0
kpx−y(k). The difference variance measure is

defined as the variance of px−y in a manner similar to its sum
counterpart. It is the variance of difference of gray levels.

11) Difference entropy (DE)

f11 � − ∑
Ng−1

k�0
px−y k( )log px−y k( )( ). (18)

Difference entropy measures the randomness or lack of
structure or order in the image contrast. The uniform (flat)
distribution of the difference of gray levels has maximum entropy.

TABLE 3 GLCM for Mx wavelengths is similar to Figure 3A1 with a horizontal
displacement vector d =(Δy, Δx)=(0,1) or d =(0,−1).

0 1 2 3

0 0 100Mx 0 0

1 100Mx 0 100Mx 0

2 0 100Mx 0 100Mx

3 0 0 100Mx 100 (Mx − 1)
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12) Information Measures of Correlation Feature 1

f12 � f9 −HXY1

max HX,HY( ), (19)

where HX �− ∑
Ng−1

i�0
px(i)log(px(i)), HY�− ∑

Ng−1

j�0
py(j)log(py(j)),

and HXY1� − ∑
Ng−1

i�0
∑
Ng−1

j�0
p(i,j)log(px(i)py(j)). Information measures

of correlation are correlations of various parameters measured using
different techniques. Mutual information is normalized. Information
correlation is set to infinity if the denominator is 0.

13) Information Measures of Correlation Feature 2

f13 � 
√ 1 − exp −2 HXY2 − f9( )( )( ), (20)

where HXY2 � − ∑
Ng−1

i�0
∑
Ng−1

j�0
px(i)py(j)log(px(i)py(j)). This

measure is the difference between joint entropy f9 and joint
entropy assuming independence HXY2. f13 also assesses the
correlation between the probability distributions of i and j
(quantifying the complexity of the texture). Note that HXY1 = HXY2

and that HXY2 − HXY ≥ 0 represents the mutual information
on the two distributions. Therefore, 0 ≤ f13 < 1, with
0 representing the case of two independent distributions (no
mutual information) and the maximum value representing the

case of two fully dependent and uniform distributions (maximal
mutual information).

14) Maximal correlation coefficient

f14 � 
√ second largest eigenvalue of Q( )), (21)

where Q(i, j) � ∑
k

p(i,k)p(j,k)
px(i)py(k) . Q can be viewed as the transition

matrix for a Markov chain of neighboring pixel gray levels. The
maximal correlation coefficient relates to how fast the Markov
chain converges; it measures the texture’s complexity and 0 ≤
f14 ≤ 1.

3 Results

GLCM and Haralick features are challenging to interpret as
they have second-order statistical correlation characteristics
among pixels. Here, we provide a detailed analytical and
computational analysis of synthetic images to gain insights
into the GLCM’s meaning. Since Haralick features are based
on pairwise distribution along different directions in the image,
the most fundamental type of texture is a gradient of gray levels
(Figures 3A1 or 3A2). Consequently, gradients of different
intensities (in gray levels per pixel) will be found along the
corresponding lines parallel to the principal (main) diagonal

TABLE 4 Normalized GLCM of Table 3 entries for Mx wavelengths shown in Figure 3A1 with a horizontal displacement vector d = (Δy, Δx) = (0,1) or d = (0, −1).

0 1 2 3

0 0 Mx
7Mx−1 0 0

1 Mx
7Mx−1 0 Mx

7Mx−1 0

2 0 Mx
7Mx−1 0 Mx

7Mx−1

3 0 0 Mx
7Mx−1

Mx−1
7Mx−1

FIGURE 4
Vertical stripe synthetic images of 1,024×1,024 pixels with 8-bit depth. (A) Vertical stripes of wavelength λ =10 pixels. (B) Vertical stripes of
wavelength 200 pixels. (C)Different quantization schemes generated by twowavelengths of λ=10 (* symbol), respectively, λ =15 (o symbol), pixels. (D) As
wavelength λ decreases and the number of cycles that fit into the Nx =1,024 pixel increases, quantization maps to fewer gray levels.
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of GLCM. For example, if there is no gradient along a particular
direction (uniform gray-level intensity), the respective pixels will
contribute only to the main diagonal. A gradient of one gray level
per pixel in a given direction will only contribute to the first line
parallel to the main diagonal of GLCM (Figure 3C1), as explained
in detail in the following.

3.1 From image patterns to GLCM patterns

3.1.1 Horizontal displacement vectors and GLCM
entries for constant gradients of gray levels

Although the results are valid for an arbitrary number of gray levels,
we could only produce amanageable size GLCMfitting the printed page
by using a b = 2-bit gray-level image with the fixed number of linesNy =
100, similar to the case shown in Figure 1. The most straightforward
synthetic images are composed of vertical lines with a horizontal
gradient of gray-level intensities: first vertical line of intensity 2b −
1 = 3, the next vertical line of intensity 2, and so on. In this case, the
gradient is one gray level per pixel along the horizontal direction with
the “natural” displacement vector d = (Δy, Δx) = (0, 1) (Figure 3A1). As
the synthetic image in Figure 3A1 is scanned from left to right, we
noticed that, first, there is a gray-level transition for 3 to 2, P(3, 2) = 1,
followed by P(2, 1) = 1 until we reached the lowest gray level with P(1,
0) = 1 (Figure 3B1). One gray level per pixel gradient allows one-to-one
mapping between gray levels Ng and the number of horizontal pixels
Nx. As Figure 1C1 shows, the aforementioned sequence P(3, 2), P(2, 1),

and P(1, 0) is a negative gradient that corresponds to the first parallel
line below the main, or primary, diagonal of GLCM, with the starting
point at the lower-right corner of the matrix P(3, 2) and the endpoint at
the top-left corner P(1, 0). As one continues reading the gray levels in
Figure 1B1, the gradient becomes positive, and new entries P(0, 1), P(1,
2) and P(2, 3) complete the periodic structure observed in Figure 1A1.
These new values of the positive gradient correspond to the first parallel
line above the main, or primary, diagonal of GLCM, with the starting
point at the top corner of thematrix with P(0, 1) and the endpoint at the
bottom corner P(2, 3). One complete period of the one gray level per
pixel gradient shown in Figures 3A1, A1 produces GLCM entries
circling clockwise around the main diagonal of GLCM (Figure 3c1).
The images in Figures 3A1, A2 were rendered in color to emphasize the
differences between gray-level stripes. Because the image in Figure 3A1
hasNy= 100 identical lines, the actual values of GLCMaremultiplied by
Ny. If the gradient structure repeatsMx times along the x-direction, then
the un-normalized GLCM elements are multiples of Mx. For example,
the pattern in Figure 3A1 repeats twice along the horizontal direction.

The wavelength, λ of the periodic structure marked in
Figure 3A1 is λ = Nx/Mx pixels, which can be determined more
generally as the ratio of the image size Nx × Ny divided by the factor
that multiplies GLCM. For the 2-bit depth image in Figure 3A1, the
actual grayscale values are shown in Figure 3B1. GLCM for the first
wavelength λ in Figure 3A1 is shown in Figure 3C1. There are no
diagonal elements in GLCM (Figure 3C1), and they can only occur
in two different ways. The first possibility is that a vertical stripe, like
that shown in Figures 3A1, A2, is more than one pixel wide. For

FIGURE 5
Selected Haralick features for vertical stripes of variable wavelength. Top panels (A1–D1) are the Haralick features of the 8-bit images of vertical
stripes of variable wavelengths, such as those shown in Figures 4A, B. The bottom panels (A2–D2) are the Haralick features for the same images, with all
pixels randomly reshuffled. (A1, A2) Log–log plot of energy for horizontal displacements (red stars and black squares) and vertical displacements (green
dots and blue crosses). (B1, B2) Regardless of the direction of the displacement vector, the log–log plot of the contrast feature overlaps. (C1, C2) The
correlation feature is the maximum possible for a vertical displacement vector and decreases along the horizontal direction. (D1, D2) The log–log plot of
entropy is constant for the vertical displacement vector and increases along the horizontal direction.
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example, in Figure 3A1 and the numerical example shown in
Figure 3B1, the line of gray level 3 has a width w3 larger than
one pixel and contributes w3 − 1 times to the diagonal element P (3,
3). In this example, the gray level 3 of the first wavelength λ is
followed by a vertical strip of the same gray level value from the next
wavelength— w3 = 2. Consequently, GLCM for the entire image
shown in Figure 3A1 includes P(3, 3) = (w3 − 1)*Ny = 1*100

(Table 1) which accounts for the fact that there is a two-pixel-
wide vertical strip of gray level 3 in Figure 3A1.

3.1.2 Bit depth reduction of images and their effect
on GLCM

Bit depth reduction can occur during image compression or
other image processing operations that require casting the image

FIGURE 6
Complete set of 14 Haralick features for vertical stripes. The 14 original Haralick features (see definitions in Section 2) are plotted on a horizontal
semi-log axis vs. the number of repeating cycles of one wavelength (Figure 3). The horizontal displacement vectors d =(Δy, Δx)=(0,1) to the right of the
current pixel location (red stars) and d =(0,−1) to the left (solid black squares), and the vertical displacement d =(1,0) downward (green solid circle) and
d =(1−,0) upward (blue cross) measure features along the respective directions. (A1) The image has no gradients along the vertical directions, and,
therefore, the energy (A1) is constant regardless of the number of cycles of gradients along the horizontal direction. Similarly, the contrast (B1) is zero, and
the correlation (C1) is maximum along the vertical directions. The variance (D1), the sum average (B2), the information measure of correlation 2 (A4), and
the sum variance (C2) are not quite sensitive to the displacement vector direction in this particular type of pattern. The homogeneity (A2) is constant and
maximum possible along the vertical directions. The sum entropy (D2), entropy (A3), Difference entropy (C3), and information measure of correlation
1 (D3) are all constant along vertical displacements and show an exponential increase with the number of cycles along the periodic horizontal pattern.
Eventually, these features saturate as the number of cycles increases due to the space GLCM structure. The variance difference (B3) and the maximum
correlation coefficient (B4) are both zero for the uniform gray levels along the vertical displacement vector and sensitive to periodic gradients along the
horizontal direction.
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intensity to a lower depth. Therefore, the second possibility for
generating a non-zero diagonal element in the GLCM is a bit depth
reduction (Figure 3A2) where the original image from Figure 3A1
was reduced from 2-bit (four gray levels) to 1-bit (two gray levels)
depth. Such a bit depth reduction is generated by dropping the least
significant digit in the binary representation of the gray levels. The

bit depth reduction is a convolution of the higher depth intensity
GLCM with a 2 × 2 non-overlapping kernel, as shown in Figure 3C1
with the shaded rectangles. All occurrences involving gray levels
0 and 1 in the 2-bit depth GLCM, such as P(0, 0), P(0, 1), P(1, 0), and
P(1, 1) in the 2-bit GLCM shown in Figure 3C1, collapse to gray level
0 after depth reduction to 1-bit. This convolution is suggested in

FIGURE 7
Complete set of 14 Haralick features for a random reshuffle of the vertically striped images. The 14 original Haralick features shown in Figure 6 have
reference values corresponding to a random reshuffle of all pixels. (A1) The energy for randomly reshuffling the pixels in the image has a lower value than
for the periodic patterns in Figure 6A1. The contrast (B1) of reshuffling the pixels gives the upper bound over all pixel arrangements. The correlation (C1)
among pixels is totally lost by randomly reshuffling the pixels. The variance (D1) and the sum average (B2) are not particularly useful for the type of
patterns considered in this study. The homogeneity (A2) reaches its lower bound for randomly reshuffled pixels, asymptotically approached by the
periodic gradients (see Figure 6A2). The sum variance (C2) reaches its lower bound for randomly reshuffled pixels. All entropy-related measures such as
sumentropy (D2), entropy (A3), and difference entropy (C3) aremaximum for randomly reshuffled pixels, and they correspond to asymptotic values of the
respective features in periodic gradients (see Figures 6A3, D2, C3, respectively). The difference variance (B3) is themaximumpossible, and the information
measure of correlation 1 (D3), the information measure of correlation 2 (A4), and the maximum correlation coefficient (B4) are all zero for randomly
reshuffled pixels. These values are also bounds which the respective features approach asymptotically for periodic gradients (see the corresponding
panels in Figure 6).
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Figure 3C1 by the symbol Σ along the arrow that maps the 2 × 2
kernel into the new GLCM values shown in Figure 3C2. For clarity,
we insert a subscript to GLCM to indicate its bit depth, such that

P1bit 0, 0( ) � P2bit 0, 0( ) + P2bit 0, 1( ) + P2bit 1, 0( ) + P2bit 1, 1( ). (22)
Similarly, gray levels 2 and 3 in the 2-bit image depth shown in

Figure 3A1 collapse to the new gray level 1 in the 1-bit image shown
in Figure 3A2.

3.1.3 Vertical displacement vectors and the GLCM
entries for constant gradients of gray levels

GLCM of Figure 3A1 along the vertical direction with a
displacement vector d = (Δy, Δx) = (−1, 0) or d = (Δy, Δx) = (1,
0) contains only diagonal elements as there is no gray level gradient
along the vertical direction (Table 2). For example, there is only one
vertical strip of gray level 0 on the first wavelength λ, marked in
Figure 3A1, which contains P(0, 0) = (Ny − 1) = 99 gray level pairs of
0 and 0 intensities along the vertical direction (see Table 2).

Therefore, a zero gradient—no change in gray level—along a
given displacement vector leads to non-zero main diagonal
elements in GLCM. A gradient of one gray level per pixel
leads to non-zero elements along the first upper and lower
parallel lines to the main diagonal, as seen in Figure 3C1 and
Table 1. Similarly, a gradient of two gray levels per pixel would
lead to non-zero GLCM values for P(0, 2), P(1, 3), P(3, 1), and
P(2, 0), which are elements along the second upper and lower
parallel lines to the main diagonal.

Because GLCM is a lower-dimensional Ng × Ng matrix
representation of the original Nx × Ny image, it is always
ambiguous, and the original image can never be recovered from
its GLCM. Furthermore, GLCM cannot distinguish between
diagonal elements due to spatially extended regions of uniform
intensity and a bit-depth reduction. For example, GLCM shown in
Figure 3C2 cannot distinguish based on the diagonal elements
P1bit (0, 0) = 200 if this value comes from a vertical stripe with
width w0 = 3 (Figure 3B2) and length Ny = 101—a one-pixel-wide
stripe of length 201 pixels—or a bit depth reduction (Figure 3C1).

3.2 FromGLCM patterns to Haralick features

Section 3.1 shows the relationship between patterns, such as
gray-level gradients, in images and the structure of GLCM.
Haralick features (Section 2) represent another level of
dimension reductions as the entire Ng × Ng GLCM is reduced
to a single numerical value.

Given that a dimension reduction produces a feature that is even
more ambiguous than GLCM, it being impossible to infer the
original image patterns, we focus here on the following:

1) Using synthetic 8-bit and 1,024 × 1,024 pixel images with known
patterns or textures (Figure 4) and linking them to Haralick
features.

2) Investigating the effect of gray-level quantization in Section 3.2.1
(see Eq. 23 and Eq. 24) induced by periodic gradients.

3) Determining the bit depth reduction effect on energy (Section
3.2.2.1), contrast (Section 3.2.3.1), correlation (Section 3.2.4.1),
and entropy (Section 3.2.5.1) features.

4) Estimating lower and upper bounds for energy (Section 3.2.2.2),
contrast (Section 3.2.3.2), correlation (Section 3.2.4.2), and
entropy (Section 3.2.5.2) features for specific gray-level
distributions, such as random intensities or uniform gray
levels.

In the following, we only review some of the most frequently
used and relevant Haralick’s features and make theoretical
predictions regarding their values in the aforementioned two
cases that are amenable to analytic solutions. All our analytical
derivations were subsequently checked by numerical simulations
using synthetic textures. For all numerical simulations, we generated
synthetic images where the gray levels vary sinusoidally along the
horizontal direction according to sin (2πx/λ) where x is the pixel
index from 1 toNx = 1,024, as shown in Figures 4A (for λ = 10 pixels)
and B (for λ ≈ 200 pixels).

3.2.1 Gray-level quantization of sinusoidal
gradients of variable wavelength

While all sine waves cover b = 8-bit depthNg � 2b � 256 gray
levels as seen in Figure 4C, the quantization of gray levels
dramatically depends on the number of cycles Mx that can fit
into Nx = 1,024 horizontal pixels. For short wavelength λ

(Figure 4A), for example, in λ = 10 pixels, corresponding to
Mx = Nx/λ ≈ 100 cycles in Figure 4C, there are N

~
g � 5 distinct

quantization levels for gray-level intensity—249, 202, 53, 6, and
127—marked ‘A’ in Figure 4D along the lower straight line in the
log–log plot. In the following, to distinguish between the
dynamic range of the 8-bit image Ng � 256 and the actual
number of distinct gray levels due to the quantization effect,
we added a tilde, as in N

~
g � 5, for periodic vertical stripes with

sinusoidal changing intensity with a wavelength of λ = 10 pixels
in the 1,024 × 1,024 image (Figures 4A, B). For a longer
wavelength λ (Figure 4B), such as λ = 15 pixels,
corresponding to Mx = Nx/λ ≈ 68 cycles in Figure 4C, there
are N

~
g � 15 distinct quantization levels for gray-level

intensity—179, 222, 249, 254, 238, 202, 154, 101, 53, 17, 1, 6,
33, 76, and 127—marked ‘B’ in Figure 4D along the upper
straight line in the log–log plot. The two parallel lines in the
log–log plot of Figure 4D are determined by rounding sin (2πx/
λ) when mapped into 8-bit gray levels. The power law for the
curve starting at ‘A’ that determines the actual number of
distinct gray levels N

~
g out of the maximum possible Ng �

256 is given by

N
~

g � −6.0 ± 1.1( ) + 1.43 ± 0.09( )λ 0.802±0.009( ), (23)

with an RMSE value of 1.3326 and an adjusted R2 = 0.9995. For the
alternative line that starts at ‘B’,

N
~

g � −8.6 ± 2.1( ) + 3.0 ± 0.3( )λ 0.77±0.02( ), (24)

with an RMSE value of 2.0835 and an adjusted R2 = 0.9990.

3.2.2 Analytical estimates for energy feature
In the following, we provide analytical estimates of how a bit

reduction affects GLCM and the corresponding Haralick feature.
While some Haralick features are normalized, such as correlation,
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most are not, and there are no theoretical lower and upper bounds in
the literature.We provide systematic derivations of bounds for each of
the selected features along (a) vertical displacement vectors, (b)
horizontal displacement vectors, and (c) after a random reshuffling
of image pixels.

3.2.2.1 Bit-depth reduction affects angular second
momentum (ASM) or energy

Based on Eq. 8, the lowest ASM corresponds to a random
distribution of gray levels and the maximum to a uniform image.
As previously noted, reducing the image’s bit depth by one unit
makes every new entry in the lower-depth GLCM the sum of
the elements in 2 × 2 sub-arrays from the higher-depth GLCM.

Using Eq. 22, one finds f1,1bit � ∑
1

i�0
∑
1

j�0
p1bit(i, j)2 � p1bit(0, 0)2 +

p1bit(0, 1)2 + p1bit(1, 0)2 + p1bit(1, 1)2 � (p2bit(0, 0) + p2bit(0, 1)+
p2bit(1, 0) + p2bit(1, 1))2 +/ . Expanding the sums inside the
parenthesis gives f1,1bit = f1,2bit + 2× (all products of two factors
in every parenthesis), which means f1,1bit ≥ f1,2bit. Therefore, bit
depth reduction can only increase the value of ASM.

3.2.2.2 Lower and upper bounds for angular second
momentum (ASM) or energy
3.2.2.2.1 Vertical displacement vectors. A log–log plot of the
ASM, or energy, feature for the original image Figure 5A1 shows that
its value is constant across all images for the vertical displacement
vectors (green solid circles and blue crosses). This is expected as
GLCM for the vertical strips (Table 2) has only diagonal elements
with little to no change as we add more vertical stripes. For such
homogeneous patterns, such as single pixel-wide vertical stripes
measured along the vertical displacement vector, the GLCM
diagonal entries are p(i, i) � 1/N

~
g, which gives f1 �

∑
Ng−1

i�0
∑
Ng−1

j�0
p(i, j)2 � ∑

Ng−1

i�0
p(i, i)2 � 1/N

~
g.

3.2.2.2.2 Horizontal displacement vectors. GLCM along the
horizontal displacement direction is similar to Table 1, where most
occurrences are parallel to the main diagonal. For horizontal
displacement vectors and a very short wavelength of λ = 10
pixels, we previously found (Figure 4) that there are only N

~
g � 5

gray levels in the vertical strip pattern images—249, 202, 53, 6, and
127. As a result, the only non-zero entries in GLCM along the
horizontal displacement vector are p(249, 202), p(202, 53), p(53, 6),
p(6, 127), and p(127, 249) and their transpose values—such as
p(202, 249)—for a total of 2N

~
g values. Therefore, assuming that each

of the gray levels is only represented by a one-pixel-wide vertical strip;

this gives f1 � ∑
Ng−1

i�0
∑
Ng−1

j�0
p(i, j)2 � ∑

Ng−1

i�0
1/(2N~ g)2 � 1/(2N~ g). For

example, for λ = 10 and N
~
g � 5, we get f1 = 0.1, which is close

to the data shown in Figure 5A1 (red stars and solid black
squares). There are a few variations due to rounding that
change the aforementioned prediction: (1) some quantization
levels are so broad that distinct values of the sine wave sin (2πx/λ)
fall under the same gray level (e.g., pixels 2 and 3 for λ = 10 pixels
that are mapped to gray level 249 and pixels 7 and 8 mapped to

gray level 6 in Figure 4C); (2) some rounding produces very
similar but distinct gray levels, such as pixel 5 with gray level
128 and pixel 10 with gray level 127 in Figure 4C. The first type of
rounding does not change the number of gray levels but rather
gives more weight to some of them, increasing the energy. The
second type of rounding increases the number of gray levels and
decreases the energy associated with the pattern. Such small
rounding differences produce the fluctuations evident in
Figure 5A1.

3.2.2.2.3 Random reshuffling of pixels. The energy of all
displacement vectors for randomly reshuffling the pixels in the
image is the same and very low, as expected (Section 2). Indeed,
for a random distribution of pixel intensities, we expect p(i, j) �

1/N
~ 2
g which gives f1 � ∑

Ng−1

i�0
∑
Ng−1

j�0
p(i, j)2 � 1/N

~ 2
g , as seen in

Figure 7A1.
To summarize, the lower bound of the angular second

momentum (ASM) or energy is f1,min � 1/N
~ 2
g , which occurs for

a random reshuffle of image pixels (Section 3.2.2.2.3). The upper
bounds depend on the type of pattern. For homogeneous patterns
such as those shown in Figure 3 along the vertical displacement
vector, the upper bound is f1 � 1/ ~Ng (Section 3.2.2.2.1). For
periodic patterns such as those shown in Figure 3 along the
horizontal displacement vector, the upper bound is f1 � 1/(2N~ g)
(Section 3.2.2.2.2).

3.2.3 Bound estimates for contrast feature
3.2.3.1 Bit depth reduction effect on contrast

While most Haralick features are based on GLCM p (i, j), the
contrast is based on the GLCM subset px−y(k) of elements parallel to
that primary diagonal (Eq. 9). If all elements of GLCM are along the
primary diagonal at a given bit depth of px−y (0) = 1, then the
contrast is f2 = 0 and will be 0 for all subsequent depth-reduced
images. The contrast continuously decreases by bit-depth
reduction— f2,1bit ≤ f2,2bit. For example, assuming that all
elements of 2-bit GLCM are distributed to achieve maximum
contrast of 3—px−y,2bit (3) = 1—then the contrast is f2,2bit = 32. A
1-bit depth reduction means that the maximum contrast is 1 and
px−y,2bit (1) = 1, which gives f2,1bit = 12.

3.2.3.2 Lower and upper bounds bit for contrast
3.2.3.2.1 Vertical displacement vectors. In such cases, the only
elements of the occurrence matrix are along the main diagonal,
which means that the contrast in Figure 5A2 is 0 (not shown due to
the log–log scale).

3.2.3.2.2 Horizontal displacement vectors. The contrast along
the horizontal displacement vector increases with the number of
cycles,Mx. This is because a larger number of cycles means that the
8-bit gray levels will fit on a smaller scale, leading to a larger
gradient k = |i − j| between gray levels—the GLCM entries will be
aligned parallel to the main diagonal, but farther from it. As a
result, the contrast increases (Figure 5A2). Based on Eq. 9, un-
normalized Table 3 and the corresponding normalized GLCM
entries in Table 4, all GLCM entries along the contrast lines

Frontiers in Signal Processing frontiersin.org12

Oprisan and Oprisan 10.3389/frsip.2023.1271769

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2023.1271769


k = j − i = ±1 have the same weight of Mx/(7Mx − 1), which leads
to f2 = 6Mx/(7Mx − 1).

3.2.2.2.3 Random reshuffling of pixels. For a random
reshuffling of pixels in the synthetic image, we expect
p(i, j) � 1/N2

g, which gives, according to Figure 2C, px−y(k) �
[Ng, 2(Ng − 1), . . . 4, 2]/N2

g for the corresponding
contrast vector k � |i − j| � [0, 1, . . . Ng − 2, Ng − 1].

Based on Eq. 9, one gets f2 � ∑
Ng−1

k�1

2(Ng−k)
N2

g
k =

(N2
g−1)

3Ng
. As the

number of gray levels Ng increases, the contrast of a random

distribution of pixels increases almost linearly with the number
of gray levels Ng. For an 8-bit image with the actual number of

gray levelsN
~
g � 28 � 256, the contrast reaches approximately 85,

whereas, for shorter wavelengths such as λ = 10 pixels with

N
~
g � 5, the theoretically estimated contrast is approximately 1.6.

The numerical results for the contrast shown in Figure 5B2 for
randomly reshuffling the pixels in the vertically stripes images are
lower than the theoretical prediction because of the small
rounding fluctuations discussed in Section 3.2.2 that produce
deviations from the ideally assumed distribution of GLCM
values.

In summary, the upper bound of the contrast is always
(N2

g−1)
3Ng

(Section 3.2.3.2.3). The lower bound depends on the patterns. The
lower bound is zero for uniform patterns (see Section 3.2.3.2.1), as
seen in Figure 3A1 along the vertical displacement vector. For
periodic patterns like those shown in Figure 3A1 along the
horizontal displacement vector, the lower bound is 6Mx/(7Mx −
1) (Section 3.2.3.2.2).

3.2.4 Bound estimates for correlation feature
3.2.4.1 Bit depth reduction effect on correlation

A cursory inspection of Eq. 10 shows a dramatic decrease in the
correlation feature f3 by bit depth reduction. For example, the un-

normalized correlation sum is cor � ∑
Ng−1

i�0
∑
Ng−1

j�0
ijp(i, j) for a 1-bit

image is cor1bit � ∑
1

i�0
∑
1

j�0
ijp1bit(i, j) � p1bit(1, 1). According to the

bit depth reduction discussion in the previous subsection, p1bit (1,
1) = p2bit (2, 2) + p2bit (2, 3) + p2bit (3, 2) + p2bit (3, 3). On the other

hand, cor2bit �∑
3

i�0
∑
3

j�0
ijp2bit(i,j) �p2bit(1,1)+2p2bit(1,2)+3p2bit(1,3)+

2p2bit(2,1)+4p2bit(2,2)+6p2bit(2,3)+3p2bit(3,1) +6p2bit(3,2)+9p2bit(3,3)
� 4cor1bit +(p2bit(1,1)+2p2bit(1,2)+3p2bit(1,3)+2p2bit(2,1)+2p2bit(2,3)+
3p2bit(3,1)+2p2bit(3,2)+5p2bit(3,3))≥4cor1bit.

3.2.4.2 Lower and upper bounds for correlation
3.2.4.2.1 Vertical displacement vectors. For a one-unit vertical
displacement vector in the vertically striped images shown in
Figure 3, the only entries in GLCM are along the main diagonal
such that p(i, i) = (Ny − 1)/((Ny − 1)Nx) = 1/Nx. Because of the GLCM
symmetry, the x-direction marginal probability distribution px(i)
and for y-direction py(i) are equal at px(i) � py(i) � 1/Ng.

Consequently, μx � μy � ∑
Ng−1

i�0
ipx(i) � (Ng−1)

2 . The variances are

also equal σ2x = σ2y = ∑
Ng−1

i�0
(i − μx)2px(i) =

(N2
g−1)
12 . Along the

GLCM diagonal i = j, so the un-normalized correlation sum is

cor � ∑
Ng−1

i�0
ijp(i, i) � ∑

Ng−1

i�0
i2p(i, i) � (Ng−1)(2Ng−1)

6 , which gives a

normalized correlation COR = 1 as seen in Figure 5C1.

3.2.4.2.2 Horizontal displacement vectors. To further simplify
the calculations, one assumes that the image has a one gray-level per
pixel gradient along the x-direction (Figure 3). To further simplify
the evaluation of the correlation for periodic patterns shown in
Figure 3, we only consider one period,Mx = 1 in Table 4. As a result,
the marginal probabilities are px = py = (1, 2, . . . , 2, 1), and the non-
zero GLCM entries are aligned only along the two symmetric
contrast lines k = j − i = ±1 with equal probability p(i, j) �
1/(2(Ng − 1)) (Table 4). The mean values required in Eq. 10 are

μx � μy � ∑
Ng−1

i�0
ipx(i) � (Ng − 1)/2. Similarly, the variances are

σ2x � σ2y � ∑
Ng−1

i�0
(i − μx)2px(i) � (N2

g − 2Ng + 3)/12. The un-

normalized correlation sum along the two non-zero lines of

contrast k = j − i = ±1 (Table 4) is cor � ∑
Ng−2

i�0
i(i + 1)p(i, i + 1)

+ ∑
Ng−1

i�1
i(i − 1)p(i, i − 1) � Ng(Ng − 2)/3. The normalized

correlation is COR � (cor − μ2x)/σ2x = (N2
g − 2Ng − 3)/(N2

g −
2Ng + 3) � 1 − 6/(N2

g − 2Ng + 3).
The un-normalized correlation sum is

cor � ∑
Ng−1

i�0
i2p(i, i) � (Ng−1)(2Ng−1)

6 , which gives a normalized

correlation COR = 1 (Figure 5C1).

3.2.4.2.3 Random reshuffling of pixels. Randomly reshuffling of
the pixels in an image p(i, i) � 1/N2

g gives px(i) � py(i) � 1/Ng,

μx � μy � ∑
Ng−1

i�0
ipx(i) � (Ng−1)

2 , σ2x = σ2y = ∑
Ng−1

i�0
(i − μx)2px(i) =

(Ng−1)(2Ng−1)(2N2
g−3Ng+3)

12N2
g

, and COR = 0 (Figure 5C2).

In summary, the lower bound of the correlation is always 0, as
seen from Section 3.2.4.2.3. The upper bound of f3 depends on the
specific patterns. For uniform patterns, such as Figure 3 along the
vertical displacement vector, the correlation feature is a maximum of
f3,max = 1, as shown in Section 3.2.4.2.1. For periodic patterns, such
as those shown in Figure 3 along the horizontal displacement vector,
the correlation feature depends on the gray-level quantization (or
the wavelength of the pattern) and is f3 � 1 − 6/(2N2

g − 3Ng + 3),
as shown in Section 3.2.4.2.2. In agreement with this derived
formula, Figure 5C1 shows that the correlation feature asymptotically
approaches its maximum possible value of f3,max = 1 as the number
of gray levels increases.

While theoretical estimates can be derived for any other
Haralick feature, as shown previously, entropy is the only other
feature of interest.
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3.2.5 Bound estimates for entropy feature
3.2.5.1 Bit depth reduction effect on entropy

According to Eq. 16, 1-bit GLCM is f9,1bit � −∑
1

i�0
∑
1

j�0
p1bit(i, j)

log(p1bit(i, j)) � p1bit(0, 0)log(p1bit(0, 0)) + p1bit(0, 1)log(p1bit(0, 1))
+p1bit(1, 0)log(p1bit(1, 0)) + p1bit(1, 1)log(p1bit(1, 1)). Notice that

every p1bit (i, j) term contains four GLCM terms from the 2-bit image,

such as p1bit (0, 0) = p2bit (0, 0) + p2bit (0, 1) + p2bit (1, 0) + p2bit (1, 1), and that

p1bit (i, j) is larger than any of the 2-bit terms it includes. Consequently, for

example, p1bit (0, 0) log (p1bit (0, 0)) = (p2bit (0, 0) + p2bit (0, 1) + p2bit (1, 0) +

p2bit (1, 1)) log (p1bit (0, 0))≥ p2bit (0, 0) log (p2bit (0, 0)) + p2bit (0, 1) log (p2bit
(0, 1)) + p2bit (1, 0) log (p2bit (1, 0)) + p2bit (1, 1) log (p2bit (1, 1)). Applying

this inequality to all terms of the 1-bit entropy Eq. 16 results in f9,1bit≥ f9,2bit,
which extends by induction.

3.2.5.2 Lower and upper bounds for entropy
3.2.5.2.1 Vertical displacement vectors. Since a vertical
displacement vector in a vertically striped image, such as those
shown in Figures 4A1, B1, only determines diagonal entries in
GLCM as in Figure 3C1, we first consider the simplest possible
case of a one gray level per pixel gradient, which means that all
diagonal entries are equal and p(i, i) � 1/Ng. As a result, the entropy
is f9 � log(Ng), which is monotonically increasing for all Ng ≥ 2.
For example, for a base-10 logarithm, the entropy for a vertical
displacement vector in the 8-bit GLCM should be f9 = log (256) ≈
2.4, as seen in Figure 5D1 (green dots and blue crosses).

3.2.5.2.2 Horizontal displacement vectors. For horizontal
displacement vectors in a vertically striped image, such as those in
Figures 4A1, B1, with a gradient of one gray level per pixel, GLCM
has elements parallel to the main diagonal (Figure 3C1). For an 8-bit
image, the non-zero elements of GLCM should be
p � 1/(2(Ng − 1)), giving f9 � −2(Ng − 1)p log(p) � log(2(Ng−
1)) ≈ 2.7 (Figure 5D1). However, as the wavelength of the periodic
patterns decreases and the number of cycles increases (Figures 3A1,
A2), the number of available gray levels decreases (Figure 4B2). For
example, for a wavelength of λ = 15 pixels, onlyN

~
g � 15 gray levels

repeat in Figures 4A1, B1. The number of cycles is Mx = Nx/λ ≈ 68,
meaning that there are only 2(N~ g − 1) transitions in GLCM among
the N

~
g � 15 gray levels, each given by p(i, j) � 1/(2(N~ g − 1)), and

each transition repeats Mx time. Thus, the non-zero entries in
GLCM equal p � Mx/(2(N~ g − 1)). Therefore, the entropy is
f9 � −2(N~ g − 1)p log(p) � Mx log((2(N~ g − 1)/Mx)). As shown
previously, a power–law relationship exists between N

~
g and the

number of cycles Mx (Figure 4B2). Consequently, such a power law
manifests in the entropy plot for horizontal displacement vectors, as
shown in Figure 5D1 (red stars and solid black squares symbols),
and shows a steady increase for f9 with the number of cycles.

3.2.5.2.3 Random reshuffling of pixels. As with the previous
Haralick features, for a random reshuffling of the pixels in an image
p(i, i) � 1/N2

g, and, therefore, the entropy becomes

f9 � − ∑
Ng−1

i�0
∑
Ng−1

j�0
2 log(Ng)/N2

g � 2 log(Ng). For an 8-bit image,

the entropy of a random distribution of pixels should be f9 =
2 log (256) ≈ 4.8. As noticed from Figure 5D2, the entropy is a

bit higher than our estimate and decreases as we increase the
number of cycles in the vertically striped pattern shown in
Figures 5A1 and B1. Entropy decreases with the number of
cycles because, as in Figure 4B2, the number of gray levels in the
images in Figures 4A1, B1 is much smaller than the expected 8-bit
depth (256 gray levels). For example, for a λ = 15-pixel wavelength

pattern, the gray levels are quantized into N
~
g � 15 distinct gray

levels (instead of the full range Ng � 256), which gives entropy of

f9 = 2 log (15) ≈ 2.35 for Mx = 68 cycles in Figure 4B2.
In summary, the upper bound of the entropy is always f9,max �

2 log(Ng) (Section 3.2.5.2.3) for the random reshuffling of the image
pixel. The lower bound depends again on the specific patterns.
For uniform patterns, such as those shown in Figure 3 along the
vertical displacement vector, the entropy feature has the lowest
possible value f9,min � log(Ng), as seen from Section 3.2.5.2.1. For
periodic patterns, such as Figure 3 along the horizontal displacement
vector, the entropy feature has an intermediate value between the
maximum determined by random reshuffling and a minimum of a
uniform image—f9 � log(2(Ng − 1))—as seen in Section 3.2.5.2.2.

Figure 6 shows all 14 Haralick features, of which we have discussed
in detail only the four most relevant for the patterns shown in Figures 3,
4. All plots are on a semi-log horizontal scale, showing the results for
horizontal and vertical unit displacement vectors.

The values of the Haralick features in Figure 7 are provided as
references. As expected, there are many redundant features, so we have
only focused on four. For example, the inverse difference momentum
(IDM) of homogeneity featuring f5 in Figure 6A2 is an inverse measure
to the contrast discussed in detail in Figure 5B1 (see also Figure 6B1).

To avoid cluttering the plots, we also show the same features in
Figure 7 after randomly reshuffling the pixels in the original images.
We also notice from Figure 7 that the Haralick feature has the same
value regardless of the direction of the unit displacement vector.

4 Conclusion

One of the main difficulties in using GLCM and Haralick
features, as opposed to Fourier-based spectral methods in signal
and image processing, is the fact that the real space mapping of the
original signal is lost. Indeed, for example, the Fourier space of a
two-dimensional image I(y, x) is a conjugate space i(qy, qx) where the
wavenumber qx = 2π/λ is directly related to the spatial size λ of the
pattern in the image. Therefore, the Fourier spectrum allows direct
mapping of the results back into the image space. Since GLCM and
the corresponding Haralick features retain only a relative
arrangement of gray-level intensities in an image, they only
encode gray-level gradients present in images. While GLCM has
the advantage of a simpler interpretation than Fourier spectral
analysis, its most significant shortcoming is the quadratic O(N2)
computational complexity (Araujo et al., 2018) compared to
the faster Fourier computation with O(N log(N)) complexity
(Preparata and Sarwate, 1977). Another critical shortcoming of
GLCM-based methods is that both GLCM and the Haralick
texture feature values depend on the number of gray levels in the
quantized image (Lofstedt et al., 2019). Another significant
drawback is the high dimensionality of the GLCM matrix and
the high correlation of the Haralick features (Humeau-Heurtier,
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2019). This study brings analytical estimates of Haralick features
that apply to arbitrary gray-level quantization schemes and directly
links the meaning of Haralick features to image gradients.

We found that the structure ofGLCMdirectly encoded the gray-level
intensity gradients along a given direction in the image (Section 3.1). In
our synthetic images (Figures 3A1, A2, 4A, B) of vertical stripes, the
vertical direction has uniform gray levels—zero gradients.We found that
a zero gradient along a given direction generates only entries along the
main, or principal, diagonal of GLCM for the respective gray level. Each
entry along the main diagonal measures the pattern’s size along the
displacement vector and its width perpendicular to it. For example, one
vertical stripe of gray level 0 with a length ofNy = 100 pixels generates the
GLCM entry P(0, 0) = (Ny − 1) = 99 when measured along a vertical
displacement vector. If the gray level stripe has a width ofw = 2, then the
GLCM entry becomes w (Ny − 1) = 198. However, because GLCM does
not preserve information about the spatial location of image pixels, it
cannot be determined whether the w (Ny − 1) GLCM entry was
determined by a single stripe with wNy pixels or by w stripes, each
with Ny pixels.

Similarly, we found that a gradient of one gray level per pixel
produces only GLCM entries along the first parallel lines to the main
diagonal of GLCM (Section 3.1). Furthermore, a positive gradient of
one gray level per pixel along the horizontal displacement vector produces
GLCM entries that rotate clockwise, such as p(1, 2), followed by p(2, 3),
then by p(3, 4), and so on, and they are arranged above the main
diagonal. A gradient of two gray levels per pixel will generate GLCM
entries along the second parallel lines from the main diagonal.

We also found that bit depth reduction generates diagonal entries in
GLCM. Bit depth reduction occurs, for example, during data
compression. GLCM cannot distinguish between the effect of bit
depth reduction, which blurs the image, versus actual uniform gray-
level patches present in the original image. Furthermore, since GLCM is
a lower dimensional Ng × Ng representation of the original Nx × Ny

pixel image, one can never recover from it the original image.
Haralick features reduce the data dimensionality from the

Ng × Ng of GLCM to a single number. We only selected four of
the original 14 Haralick features as they allow the best discrimination of
the particular patterns in our synthetic images: angular second
momentum (ASM) or energy (Section 3.2.2), contrast (Section
3.2.3), correlation (Section 3.2.4), and entropy (Section 3.2.5).

All four Haralick features analyzed in detail were analytically
estimated for uniform random distribution of pixels across the entire
image with a givenN

~
g number of gray levels. The actual number of gray

levelsN
~
g in a synthetic image can change in two different ways: (1) by bit

depth reduction, like changing from 8-bit to 7-bit images, dropping the
actual gray-level numbersN

~
g from 256 to 128, and (2) by changing the

wavelength λ of the synthetic pattern that produces a variable number of
gray levels due to the quantization of intensities. We investigated the
effect of bit depth reduction and wavelength modulation.

Bit depth reduction produces a block shrinking of GLCM similar to
a convolution (Figures 3C1, C2). The only difference is that, while
convolutions have an odd-size kernel such that they can compute a
replacement for the central value based on the neighboring values, a 1-
bit depth reduction of GLCM always operates on gray-level values as a
2 × 2 kernel by dropping the least significant bit (Eq. 22).

On the other hand, we found that the gray level quantization of
the periodic sin (2πx/λ) for different values of λ produces power–law
dependence, such as Eq. 23 (curve ‘A’ in Figure 4D) and Eq. 24

(curve ‘B’ in Figure 4D). Consequently, such power–law
dependencies on λ or, equivalently, on the number of cycles
Mx = Nx/λ were observed in the four analyzed Haralick features
(Figures 5A1–D1) when plotted against the number of cycles.

We provided bounds for Haralick features for the synthetic
gradient pattern, allowing a straightforward interpretation of the
results for future applications. As real-world textures are more
complex than the gradients investigated here, our findings could
be generalized and integrated into a systematic approach to the
meaningful use of Haralick features for image processing.
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