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Existing macroeconomic forecasting methods primarily focus on the
characteristics of economic data, but they overlook the energy-related
features concealed behind these economic characteristics, which may lead to
inaccurate GDP predictions. Therefore, this paper meticulously analyzes the
relationship between energy big data and economic data indicators, explores
the coupling featuremining of energy big data and economic data, and constructs
features coupling economic and energy data. Targeting the nonlinear variation
coupling features in China’s quarterly GDP data and using the long short-term
memory (LSTM) neural network model based on deep learning, we employ
wavelet analysis technology (WA) to decompose selected macroeconomic
variables and construct a prediction model combining LSTM and WA, which is
further compared with multiple benchmark models. The research findings show
that, in terms of quarterly GDP data prediction, the combined deep learningmodel
and wavelet analysis significantly outperform other methods. When processing
structurally complex, nonlinear, and multi-variable data, the LSTM and WA
combined prediction model demonstrate better generalization capabilities,
with its prediction accuracy generally surpassing other benchmark models.

KEYWORDS

quarterly GDP prediction, wavelet analysis, deep learning, cross-validation,
macroeconomic variables

1 Introduction

With the development of economic globalization, we are faced with new
opportunities and challenges, and the fluctuations in the global economy are having
an increasingly significant impact on China’s domestic economy. Therefore, conducting
accurate economic forecasts, formulating appropriate economic policies, and avoiding
economic risks in advance have become particularly important. Quarterly GDP metrics
offer benefits in showcasing crucial macroeconomic figures like the quarterly economic
total and growth rate, and they can promptly illustrate recent trends in economic
development, thus having significant reference value in formulating economic policies.
Exploring high-precision statistical methods for predicting quarterly GDP and revealing
the laws of GDP changes on a quarterly basis is of great importance in macroeconomic
development planning.

In reality, GDP growth isn’t solely influenced by the cyclical fluctuations of the
macroeconomy. Other energy variables, including energy production and consumption,
can also play a role in shaping the short, medium, and long-term trajectories of GDP. Hence,
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when assessing GDP trends, it’s essential to consider both
macroeconomic factors and an array of other specific
determinants (Huang et al., 2021; Huang et al., 2022).

To substantiate this, numerous researchers have delved deeper.
For instance, Das et al. (2012) employed a system matrix estimation
technique to analyze the electricity consumption and GDP data of
45 developing countries over the last 4 decades, revealing a positive
correlation between the two. Similarly, ZAshraf, AYJavid, and
MJavid from Pakistan (Ashraf et al., 2013) reached a parallel
conclusion. Furthermore, Altinay Galip and Karagol Erdal
(Altinay and Karagol, 2005) affirmed this through a causality
perspective. However, research from the U.S. Energy Information
Administration suggests the relationship might vary across
countries. Research by KraftJ, Stern D1 (Kraft and Kraft, 1978),
Ferguson R (Ferguson et al., 2000) and Liu (Liu et al., 2023) further
underscored the tight bond between energy consumption and
economic growth.

Over the years, researchers have primarily relied on traditional
linear prediction models for GDP forecasting. For instance, The
linear time series forecasting model, known as the autoregressive
integrated moving average (ARIMA), a concept brought forward by
Box and Jenkins in 1976 (Box and Jenkins, 2010), stands as a notable
example in this field. Considering the seasonality of economic data,
researchers further discussed the applicability of seasonal ARIMA
models in cyclical economic time series (Ngungu et al., 2018).
However, many studies have overlooked other influencing factors
when predicting GDP and only used univariate models, which are
prone to data leakage, resulting in biased prediction accuracy. In
contrast, the vector autoregression (VAR) model incorporates more
prediction variables, and Linda F. Debenedictis (Debenedictis, 1997)
found that the VAR model outperforms the ARIMA model in
predicting actual GDP values. In the selection of other variables,
Linda F. Debenedictis introduced traditional economic indicators
such as the money supply (M2) and fixed assets investment
(INVESTMENT) as prediction variables.

Currently, an increasing number of scholars are applying
machine learning techniques to data prediction (Tan et al., 2022).
Artificial Neural Networks (ANN), as a prominent example of
machine learning algorithms, can handle complex nonlinear
multidimensional data. Tkacz (2001) (Tkacz, 2001) applied the
ANN model to the research on the annual GDP growth rate
prediction in Canada, showing that the model prediction error
was reduced by about 25% compared to linear prediction models.
With the advancement of computer performance, deep learning
has gradually become the frontier field of machine learning and
has received extensive attention in economic data prediction. X.
Wu, Z (Wu et al., 2021) believes that deep neural network models
such as neural network models such as Long Short-Term
Memory (LSTM) and Convolutional Neural Network (CNN)
are superior to traditional ARIMA, VAR, and other models in
predicting economic data. Furthermore, some scholars found
that utilizing wavelet analysis (WA) to decompose time series can
better extract features, thereby improving model prediction
accuracy. Yan et al. (2019) applied wavelet analysis to the
prediction of individual household energy consumption, and
the empirical results showed that the integration of wavelet
analysis improved the predictive performance of dynamic

trends in time series. However, few studies have applied
wavelet analysis techniques to GDP data prediction.

In this study, we employed the LSTM model combined with
wavelet analysis to decompose nine critical macroeconomic
variables. To enhance prediction accuracy, we identified four
energy indicators with strong relevance to GDP. During the
model’s development, we utilized time series cross-validation to
refine the parameters, leading to the creation of an integrated LSTM
and wavelet analysis prediction model (LSTM&WA), primarily
applied to forecast China’s quarterly GDP data. To assess the
performance of our model, we compared it with various
forecasting models, including SARIMA, VAR, ANN, 1D-CNN,
and their wavelet-augmented counterparts like VAR&WA,
ANN&WA, and 1D-CNN&WA. Additionally, we examined the
prediction accuracy changes before and after incorporating
energy indicators. This comprehensive analysis enabled us to
evaluate the efficacy and reliability of different models in
predicting China’s GDP data.

The main contributions and organization are given as follows:

• The article provides a detailed analysis of the relationship
between energy big data and economic indicators, carries out
mining of the coupling characteristics between energy big data
and economic data, and constructs the coupling characteristics
of economic data and energy data.

• Considering the nonlinear change characteristics of China’s
quarterly GDP, the LSTM model from deep learning neural
networks is introduced, combined with wavelet analysis
technology to decompose the selected macroeconomic
variables. Subsequently, an LSTM & WA (Wavelet
Analysis) forecasting model is constructed to conduct
predictive research on the high and low frequency parts of
the quarterly GDP.

• Comparative analysis of the predictive effects of various
models (LSTM, 1D-CNN & WA, 1D-CNN, ANN & WA,
ANN, VAR & WA, VAR) shows that the LSTM & WA
forecasting model has better generalization capability, and
its prediction accuracy surpasses the other seven benchmark
models.

The following text outlines the organization of this paper.
Section two presents an LSTM neural network model for
economic forecasting. Section three conducts a case study,
offering prediction outcomes and associated errors. Finally,
Section four provides a summary of the primary contributions of
this paper.

2 Model building

In order to verify whether deep learning models are
applicable for economic data prediction, this paper selects
commonly used models in economic data prediction, such as
SARIMA, VAR, and the ANN model from shallow machine
learning as the benchmark models, aiming to compare the
GDP prediction capabilities of different models. The specific
construction of SARIMA, VAR, and ANN models can be
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found in references (Debenedictis, 1997; Tkacz, 2001; Ngungu
et al., 2018; Tan et al., 2022).

2.1 Deep learning models

2.1.1 CNN model
CNN is a type of feedforward neural network that can be used in

areas such as image and speech recognition. Unlike multilayer
feedforward neural networks, CNN has fewer network structure
parameters and features local connections, weight sharing, and
subsampling. A typical CNN network structure is composed of
interconnected convolutional and pooling layers, supplemented by
fully connected layers. Initially, the raw data is fed into the CNN
network where it experiences several simultaneous convolutional

processes, generating a variety of feature maps. These maps are
subsequently modified via a nonlinear activation function, like
ReLU. Next, pooling layers compress the generated features by
choosing either the maximum value, known as max pooling, or
the mean value, termed average pooling within a specific region
from the results generated by the convolutional layer, with the aim of
decreasing the quantities of parameters and lessening the
computational burden in the subsequent layer., and prevent
overfitting. The final layer is a fully connected one, essentially
embodying a conventional neural network architecture, whose
essence is to combine features generated from the previous
convolutional layers and set different parameters.

Figure 1 shows the overall architecture of theCNNnetwork, Figure 2
depicts feature map transformations, Figure 3 illustrates receptive field
changes, and Figure 4 presents the basic structure of the one-dimensional

FIGURE 1
Overall architecture of CNN network.

FIGURE 2
Feature map transformation.

FIGURE 3
Change in receptive field.
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CNN network used in this study, mainly including two one-dimensional
convolutional layers and two average pooling layers, etc.

2.1.2 LSTM model
When using Long Short-Term Memory networks (LSTM) for

quarterly GDP forecasting based on the coupling of economic and
energy data, LSTMs have several advantages over Convolutional
Neural Networks (CNN), so we adopt LSTMmodel to forecast GDP.

• Sequence Learning Ability: LSTM is designed to handle
sequence data, capable of capturing long-term dependencies
within time series, which is very useful for predicting
economic indicators like GDP.

• Handling Variable-Length Sequences: LSTM can process time
series data of varying lengths, while CNN typically requires
fixed-size inputs.

• Forgetting Mechanism: LSTM has a forgetting gate that
enables them to learn to ignore irrelevant information,
which is an important feature when analyzing complex
economic and energy data.

• Stable Learning Process: LSTM is generally more stable than
CNN when processing long time sequences and have a
relatively smaller problem with vanishing gradients.

As the LSTM neural network model can better discover long-
distance dependence relationships in sequence data, it is widely used in
handling time series data issues. At the same time, the LSTM model is
proficient at addressing the issues of gradient explosion and gradient
disappearance during the learning process. The basic principle of LSTM
is to record and use the state of all previous positions to better represent

the short-distance and long-distance dependencies in the sequence data.
LSTM’s cell structure introduces two mechanisms, namely, “memory
cells” and “gates.” The former records the state information of previous
positions, while the latter controls the state information usage through
gate functions. These three gates’ functions are to protect and control
the cell state, determining whether the information will be passed on to
the next cell.

The LSTM network mainly consists of LSTM layers and
Dropout layers, and the LSTM model structure can be seen in
Figure 5.

2.1.3 Model structure
The 1D-CNN network’s input layer takes charge of accepting the

one-dimensional time series input data X = [x1, x2, xn] to undergo
network processing. The convolutional layer extracts input features
by applying dot product operations on the input vector, weights, and
biases, and an activation function is applied for nonlinear mapping
while the pooling layer condenses the outcomes produced by the
convolutional layer, performing average pooling on selected regions.
Convolution and pooling operations are as follows:

C1� f X ⊗w1 + b1( )� ReLU X ⊗w1 + b1( ) (1)
p1� average C1( ) + b2 (2)

C2� f X ⊗w2 + b3( )� ReLU p1 ⊗ w2 + b3( ) (3)
p2� average C2( ) + b4 (4)

H2� f p2 ⊗ w3 + b5( )� sigmoid p2 ⊗ w3 + b5( ) (5)
Where C1 and C2 are the output vectors of convolutional layers

1 and 2, respectively; p1 and p2 are the outputs of pooling layers
1 and 2, respectively; Weight matrices are denoted as w1, w2, and w3,

FIGURE 4
1D-CNN model structure.

FIGURE 5
LSTM model structure.
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while b1, b2, b3, b4, and b5 represent bias vectors. The outcome post
convolutional and pooling operations is referred to as
Hc � [hc1, hc2,/hci], where i is the length of the output
sequence; average represents average pooling; ReLU and Sigmoid
are activation functions; And ⊗ is the dot product operation symbol.

Between the pooling layer and the fully connected layer, a
Flatten layer is utilized to simplify the feature map into a one-
dimensional vector, and a Dropout layer is employed to prevent
overfitting, further improving the model’s generalization capability.
The fully connected layer uses activation functions to allocate
weights on feature vectors, and iteratively updates the optimal
weight parameter matrix for interpreting features extracted by
the model’s convolutional part. The activation function learns
load change rules from the extracted features to achieve the
prediction function, and obtains the prediction results in the
output layer. In this study, the activation function of the output
layer is Linear, and the output layer calculation formula is:

yt � w0at + b0 (6)
Where yt is the output result of the tth network training, w0 and

b0 are the weight matrix and bias vector, respectively.
For the LSTMmodel, an LSTM cell structure is shown in Figure 6.

The LSTM neural network contains multiple cell structures.

it� σ xtWxi + ht−1Whi + bi( ) (7)
f t� σ xtWxf + ht−1Whf + bf( ) (8)

~ct � tanh xtWxc + ht−1Whc + bc( ) (9)
ct � f t ⊗ ct−1 + it ⊗ ~ct (10)

ot� σ xtWxo + ht−1Who + bo( ) (11)
ht � ot⊗ Linear ct( ) (12)

In this model, xt is the input vector at time t, which includes
historical data of macroeconomic variables such as quarterly GDP,
M2, and CPI; ht-1 represents the output at the previous moment; ct-1
denotes the memory at the previous moment; it indicates the output
of the input gate; ft represents the output of the forget gate; refers to

the memory updated at this moment; ct stands for the final memory
of the memory module; ot describes the information filtered by the
output gate that is not useful for prediction; ht signifies the ultimate
output of the output gate; W1 and W2 are weight matrices, and b1
and b2 are bias vectors; Tanh and Linear are activation functions.

2.2 Cross-validation to determine optimal
parameters

In this study, cross-validation is employed to identify the parameters
or hyperparameters for the selectedmodels. The original dataset is divided
into three categories: a training set, a validation set, and a test set. By
iterating through parameter combinations in the training set and selecting
the best parameter combination with the validation set using the rolling
window cross-validationmethod. As shown in Figure 7, the validation set
(Valid) is divided into 5-fold, each fold containing n samples. Compute
RMSE1 with Train1 as the first training set and Valid1 as the first test set.
Add n1 periods of samples to the training set, use Train2 as the second
training set, Valid2 as the second test set, and calculate RMSE2. So on and
so forth, the training set adds n samples each time and ends when

FIGURE 6
LSTM unit structure.

FIGURE 7
5-fold cross-validation with rolling window.
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Valid5 becomes the test set, then calculates RMSE5. Finally, the average
RMSE is calculated based on the training results of the 5 validation sets to
select better performingmodel parameters. Cross-validation improves the
robustness of the model, does not produce significant outlier predictions,
and makes the results more stable and reliable.

SARIMA, VAR, ANN, and 1D-CNN models were selected as
comparison models for LSTM in this paper. Due to the seasonal
factors of the GDP sequence increasing with the overall trend, a
multiplicative form of the SARIMA model was chosen. The optimal
lag order for the VAR model is determined through the Akaike
Information Criterion (AIC) and a VAR (1) model is established. In
addition, a two-hidden-layer ANN model was considered.

The paper used a rolling window cross-validation method to tune
and train SARIMA, VAR, ANN, 1D-CNN, and LSTM models on the
data from the first quarter of 1996 to the second quarter of 2019
(74 quarters for training and 20 quarters for validation) and finally
tested the GDP for 5 quarters. Throughout the training phase of neural
network models, optimizers are required to enhance the model, refresh

network model parameters, and establish varying parameters for
adaptive learning rates., thereby improving training speed and
prediction accuracy. Kingma and Ba (2014) compared several
optimization algorithms, and the results showed that the Adam
algorithm is a combination of ideas from gradient descent,
momentum, and other stochastic optimization algorithms with slight
improvements, and is an excellent algorithm in both computational
power and performance. Therefore, the Adam algorithm was chosen as
the optimizer for the selected neural network models in this paper.

Through the time series cross-validation tuning method
mentioned above, the final parameter setups for the models
developed in this research are showcased in the Table 1.

To form a unifiedmeasurement standard among different prediction
models, this study employs Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), andMean Absolute Percentage Error (MAPE) as
assessment metrics. The calculation formulas are as follows:

RMSE �

������������
1
N
∑N
t�1

yt − ŷt( )2
√√

(13)

MAE � 1
N
∑N
t�1

yt − ŷt
∣∣∣∣ ∣∣∣∣ (14)

MAPE � 100%
N

∑N
t�1

yt − ŷt
yt

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (15)

2.3 Wavelet analysis

Wavelet analysis adjusts the frequency spectrum and spatial
positioning of data via the scaling and translation of the wavelet
basis function. It identifies the oscillation frequency of data in time

TABLE 1 Hyperparameters of the model.

Hyperparameters LSTM Hyperparameters 1D-CNN

Number of LSTM layers 2 Number of convolution layers 2

Number of neurons 32 Number of convolution kernels 128

Learning rate 0.01 Learning rate 0.001

Optimizer Adam Optimizer Adam

Output layer activation function Linear Output layer activation function Linear

Dropout ratio 0.2 Dropout ratio 0.2

Loss function MAE Loss function MAE

Hyperparameters ANN Parameters SARIMA

Number of hidden layers 2 p 2

Number of hidden layer nodes 32 d 1

Learning rate 0.001 q 1

Learning rate Adam P 0

Hidden layer activation function Relu D 1

Loss function MAE Q 0

Batch size 16 — —

FIGURE 8
China’s quarterly GDP sequence from 1996 to 2020.
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and spatial dimensions, consequently facilitating feature selection
and noise reduction. Wavelet analysis technique disassembles input
time series data into components of low and high frequencies. As the
scale increases, the amplitude of wavelet coefficients in the high-
frequency part diminishes to zero, portraying the transient random
fluctuations in the sequence. The amplitude of the low-frequency
part remains roughly the same, with no significant changes,
capturing the fundamental pattern exhibited by the sequence.

By processing the features with wavelet analysis, the LSTM
neural network model becomes less susceptible to the disruptive
influence of short-term noise disturbances.

When forecasting quarterly GDP based on the coupling of
economic and energy data, the first step is to process the
economic features. The advantages of applying wavelet analysis
over Fast Fourier Transform (FFT) include:

✓Wavelet analysis is better suited for non-stationary data where
the statistical properties change over time, which is often the
case with economic data.

✓Wavelet transforms provide both time and frequency
information, allowing for a more detailed analysis of time
series that have transient characteristics in specific time
periods.

✓They can handle abrupt changes and localized features in
economic and energy data more effectively than FFT, which
assumes the signal is periodic and continuous.

✓Wavelets allow for multi-resolution analysis, which can be
particularly useful for capturing the inherent hierarchies and
multiple scales present in economic data.

TABLE 2 Definitions and processing methods of the indicators.

Indicator Unit Statistical frequency Indicator processing

GDP Billion yuan Quarterly

M2 Billion yuan Monthly The quarterly value is the sum of 3 months

INVESTMENT Billion yuan Quarterly

CPI % Monthly The quarterly value is the average of 3 months

RATE % Monthly The quarterly value is the average of 3 months

C Billion yuan Monthly The quarterly value is the sum of 3 months

EXPORT Billion yuan Quarterly

Public expenditure Billion yuan Quarterly

Industrial value % Monthly The quarterly value is the average of 3 months

TEC billion KWH Monthly The quarterly value is the sum of 3 months

FIGURE 10
Wavelet decomposition results for total retail sales of consumer
goods.

FIGURE 9
Wavelet decomposition results for CPImonth-on-month growth
rate.
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3 Case study

3.1 Feature analysis

3.1.1 Economic data feature analysis
Based on Keynes’ theory, the following specific indicators are

selected:

(1) Quarterly real GDP (GDP), which is the core variable for
prediction;

(2) Money supply (M2), which represents changes in the money
supply;

(3) Fixed asset investment completion amount (INVESTMENT),
which as an important part of investment, is a crucial basis for
monitoring macroeconomic trends;

(4) CPI month-on-month growth rate (CPI), which measures
inflation levels;

(5) RMB loan benchmark interest rate (RATE), which is the short-
term loan interest rate for lending periods within 6 months
(inclusive of 6 months);

(6) Total retail sales of consumer goods (C), which reflects domestic
consumption and can determine macroeconomic development
trends;

(7) Export amount (EXPORT), which measures market openness,
and when the indicator is large, it implies increased exports and
good economic performance, otherwise, it indicates
macroeconomic downturn;

(8) National public fiscal expenditure (Public Expenditure),
representing the government’s purchasing situation;

(9) Month-to-month expansion rate of industrial value-added for
enterprises above a designated size (Industrial Value), which is
commonly used to judge the short-term industrial economic
operation and macroeconomic prosperity.

The above data are from the website of the National Bureau of
Statistics and the Wind database. Among these, 4 indicators are
quarterly, and 5 are monthly. Considering that the core variable
GDP is quarterly data, as shown in Figure 8, the frequencies of the
9 selected indicators need to be unified and all processed as quarterly
data. The frequency statistics and particular processing techniques
for each indicator are depicted in the fourth and fifth columns of
Figure 8. The selected indicators cover a time span from the first
quarter of 1996 (1996Q1) to the third quarter of 2020 (2020Q3). The
explanations and descriptive statistics for each indicator are
presented in Tables 2, 3.

3.1.2 Energy data feature analysis
In terms of energy indicators, this paper also selects 10 related

influencing factors in the energy economy, including power and
energy, elements that notably influence economic production. The
impact of these 10 factors on GDP is determined through grey
relational analysis, and the specific grey correlation degree results are
shown in Table 4.

Through Table 5, it can be found that among the 10 indicators
selected in this paper, X10 has the highest grey correlation degree
with GDP, while X7 has the lowest. According to the ranking from
high to low, this paper selects the top four variables as the main
indicators affecting GDP, namely, X10, X9, X2, and X1, which are
total social electricity consumption, electricity production, total
energy consumption, and the consumption of primary electricity
and other energy sources.

3.2 Data preprocessing

3.2.1 Data normalization
In order to enhance the model’s training process and expedite its

convergence speed, measures will be taken to optimize its
performance, this paper uses the min-max standardization
method for data normalization, as shown in Formula 16. After
modeling and predicting using the normalized data, Formula 17 is
used to restore the data for accuracy comparison among different
models.

FIGURE 11
Wavelet decomposition results for national public fiscal
expenditure.

FIGURE 12
Wavelet decomposition results for China’s quarterly GDP.
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xscaled � x − x min

x max − x min
(16)

xunscale � xscaled x max − x min( ) + x min (17)
This paper uses the multivariate time series from 1996Q1 to

2019Q2 as input values to establish ANN, 1D-CNN, and LSTM
models. Due to the processing of lagged data by two periods, in order
to ensure that the length of the input data for the model is the same,
the total amount of data used is reduced from 94 sets to 92 sets.

3.2.2 Wavelet analysis
The four-stage compactly supported orthogonal wavelet

(Daubechies wavelet, db4) has advantages such as better
regularity, asymmetry, and strong time-frequency localization
ability, which can increase the frequency domain resolution.
Therefore, this paper selects db4 wavelet to perform wavelet
analysis on selected macroeconomic variables and quarterly GDP,
and draws waveform diagrams before and after analysis. This paper
primarily examines the decomposition findings of the month-on-
month growth rate of CPI, total retail sales of consumer goods, and
national public fiscal expenditure, and China’s quarterly real GDP,
as shown in Figures 9–12 on the next page.

It can be seen that each indicator presents different fluctuations
on the original overall trend, and after wavelet analysis processing,
the changes in the low-frequency part (the second subplot in each
figure) are relatively smooth, reflecting an overall trend, while the

FIGURE 13
Rolling forecast method for predicting 3 periods.

TABLE 3 Descriptive statistics of the indicators.

Indicator Sample size Mean Standard deviation Minimum Maximum

GDP 99 99,751.62 76,816.26 14,628.00 278,019.70

M2 99 2,248,208.00 2,192,936.00 186,690.00 12,888,024.21

INVESTMENT 99 62,070.51 62,349.74 1298.71 197,458.00

CPI 99 2.25 2.40 −2.17 9.37

RATE 99 3.28 2.19 −1.46 8.11

C 99 39,359.86 32,877.42 5,726.40 114,974.80

EXPORT 99 3,182.07 2,229.07 282.49 7,126.49

Public expenditure 99 22,281.27 19,798.05 1,178.64 64,909.00

Industrial value 99 10.97 4.69 −10.43 20.03

TABLE 4 Energy indicator names and meanings.

Variable name Variable meaning

X1 Total electricity consumption of the whole society

X2 Electricity production

X3 Industrial electricity consumption

X4 Total available energy for consumption

X5 Natural gas consumption

X6 Total industrial energy consumption

X7 Coal consumption

X8 Petroleum consumption

X9 Total energy consumption

X10 One-time electricity and other energy consumption
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high-frequency part (the third subplot in each figure) has a higher
fluctuation frequency and more frequent changes.

Next, this paper builds VAR&WA, ANN&WA, 1D-CNN&WA,
and LSTM&WA models for the high and low-frequency parts,
respectively, and finally compares the combined predictions with
the actual GDP values.

3.3 Model prediction ability comparison
analysis

This paper uses a rolling forecast method for prediction, that is,
using known true values for predicting the next period. Figure 13
illustrates the prediction process using a 3-step rolling forecast as an
example. To obtain prior sample information, quarterly GDP data
from lag 1 to lag 4 is used as the initial sample interval. From the 5th
period onwards, a one-step forward rolling forecast is performed,
that is, estimating the 5th period’s quarterly GDP data based on

prior information, obtaining the predicted value Fore_5 for the 5th
period. The true value of GDP, True_5, for the 5th period is added to
the initial sample to predict the 6th period’s quarterly GDP data, and
so on, until predicting the 7th period’s quarterly GDP.

3.3.1 Univariate model prediction performance
This paper establishes SARIMA (2,1,1) × (0,1,0)4, VAR (1),

ANN, 1D-CNN, and LSTM models and, after verification,
conducts rolling forecasts on China’s quarterly GDP (a total of
5 data points) from 2019Q3 to 2020Q3. Since the SARIMA model
can only predict a single time series, for ease of analysis, we model
the univariate quarterly GDP data. The prediction results of
various models are presented in Table 6, illustrating the
univariate analysis, and the last two columns of Table 6 provide
the RMSE and MAPE of these four models for the GDP time series.
As can be seen, deep learning neural network models’ prediction
performance is superior to other machine learning models, such as
the ANN model, and traditional seasonal time series models, such
as the SARIMA model, with the LSTM model having the smallest
MAPE of 3.64%.

3.3.2 Multivariate model prediction performance
Furthermore, this paper incorporates a feature analysis of energy

data and compares the results of different prediction models
considering economic data features only or considering coupled
economic and energy data features, as shown in Table 7 below. It is
evident that the LSTM model with combined features exhibits
superior performance.

3.3.3 Prediction effect of multivariate model
combined with wavelet analysis

At the same time, this paper presents an introduction to
wavelet analysis and provides a comparative analysis of the
outcomes of different prediction models for multi-variable
coupled features, as shown in Table 8. It can be seen that for
forecasting research related to China’s quarterly GDP, The
LSTM&WA model outperforms other deep learning models
with notably higher accuracy, such as the 1D-CNN model,
machine learning models like the ANN model, and traditional
multivariate time series models like the VAR model. Meanwhile,
we have confirmed that the inclusion of wavelet analysis in the
LSTM&WA model results in significantly improved prediction
performance when compared to the LSTM model without wavelet
analysis. The introduction of wavelet analysis has improved the
LSTMmodel’s prediction accuracy, such as MAPE, by 0.55%. After
determining the model parameters through cross-validation, the

TABLE 5 Grey correlation degree.

Variable name Gray correlation Variable name Gray correlation

X1 0.903943 X6 0.823812

X2 0.923044 X7 0.751810

X3 0.895299 X8 0.894320

X4 0.853212 X9 0.963938

X5 0.851565 X10 0.966350

FIGURE 14
LSTM&WA model test set prediction results.

TABLE 6 Comparison of univariate model prediction performance (Rolling
forecast).

LSTM 1D-CNN ANN SARIMA

MAE 15,263.95 29,384.28 29,646.27 30,827.67

MAPE (%) 7.64 10.30 10.36 13.77
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LSTM&WAmodel has stronger generalization ability compared to
various benchmark models, and its prediction curve performance
is more robust, as seen in Figure 14 Specifically, in the 2019Q3 to
2020Q3 interval, the LSTM&WA model’s predicted values are
close to the actual quarterly GDP values, with no significantly
abnormal predictions.

For structurally complex nonlinear multivariable data, the
LSTM&WA prediction model exhibits strong generalization
capabilities and in terms of prediction accuracy, the LSTM&WA
forecast model surpasses the other seven benchmark models (LSTM,
1D-CNN&WA, 1D-CNN, ANN&WA, ANN, VAR&WA, VAR).

In our initial efforts to predict GDP using the LSTM model, we
focused solely on economic indicators as input features. Table 7
indicates a prediction error of 6.36%. However, by incorporating
energy-related features, we managed to reduce the error to 5.93%.
Further enhancement came when we integrated wavelet analysis
techniques, leading to a significant accuracy boost. As shown in
Table 8, the error decreased to 4.73%, marking a 1.63%
improvement from our original rate.

3.4 Computational burden

We believe that incorporating computational efficiency into
experimental evaluation is crucial. While accuracy is a key
indicator of model performance, the computational time of
the model is equally important in real-world application
scenarios, as it directly relates to the practicality and
operability of the model. We meticulously recorded the overall
computational time for model training and forecasting, and
compared it with the computational efficiency of other
benchmark models in Table 9.

We found that despite the higher computational demands of
the combined LSTM and WA model in handling time series
predictions in Table 9, it exhibits an excellent balance between
computational time and forecasting precision in Tables 8, 9,
offering a viable and efficient solution for the field of economic
forecasting.

4 Conclusion and future work

This research conducts an all-inclusive analysis to scrutinize
the relationship between extensive energy data and economic
indicators. Furthermore, coupling feature mining of energy big
data and economic data is performed to uncover valuable
insights, and constructs coupled features of economic data and
energy data. In response to the nonlinear change characteristics
of China’s quarterly GDP, we introduce the LSTM model from
deep learning neural networks and combine wavelet analysis
techniques to decompose the selected macroeconomic
variables. Subsequently, we construct an LSTM&WA
prediction model and conduct prediction research on the
high- and low-frequency parts of quarterly GDP. By
incorporating wavelet analysis in the feature processing stage,
the LSTM neural network model becomes less susceptible to the
disruptive influence of short-term noise disturbances. For
quarterly GDP data, compared to the LSTM model without
wavelet analysis, the LSTM&WA model yields superior
prediction outcomes, as evidenced by the prediction accuracy,
such as MAPE, increasing by 0.55%.

This paper primarily employs mathematical statistics and data
mining knowledge, building models based on related time series
data. It does not take into account other factors that may influence
China’s GDP. Significant policies or events could potentially cause
actual figures to exceed the forecasted range of this paper. Due to
limitations in the data sources, data from 2020 and beyond were not
utilized, thus, to some extent, avoiding the impact of events like the
pandemic. Therefore, for more long-term GDP forecasting,
improvements are needed in how to integrate other influencing
factors and further refine the model.

TABLE 7 Comparison of economic feature and coupled feature model
prediction performance (Rolling forecast).

MAE RMSE MAPE (%)

LSTM& Coupling features 11,798.53 14,623.26 5.93

LSTM& Economic features 12,446.25 14,725.28 6.36

ID-CNN& Coupling features 19,856.4 25,684.03 8.86

1D-CNN& Economic features 22,964.33 28,009.51 9.86

ANN& Coupling features 21,963.76 25,041.62 8.65

ANN& Economic features 22,816.93 26,858.04 9.18

VAR& Coupling features 25,638.43 30,281.45 13.61

VAR& Economic features 27,581.49 31,421.51 14.51

TABLE 8 Comparison of multivariate model prediction performance (Rolling
forecast).

MAE RMSE MAPE (%)

LSTM&WA 10,897.51 14,596.56 4.73

LSTM 12,446.25 14,725.28 5.93

ID-CNN&WA 19,926 22,748 8.46

1D-CNN 22,964.33 28,009.51 8.86

ANN&WA 21,362.06 23,911.72 8.38

VAR&WA 22,816.93 26,858.04 9.18

VAR 34,666.73 41,879.15 13.61

TABLE 9 Time of train and test (s).

LSTM LSTM-WA

Train time 6,382 6,528

Test time 0.274 0.295
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