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To fairly use demand response to regulate customer load , support the economic
and environmental protection, and assess the quantity and quality of the
synergistic growth of the integrated energy system, a multi-objective optimum
scheduling model and a solution method considering exergy efficiency and
demand response are presented. To begin with, a mathematical model of each
energy gadget is created. The electricity–gas load demand response model
is then built using the price elasticity matrix, while the cooling load demand
response model is built taking into account the user’s comfort temperature.
On this basis, a multi-objective optimal dispatching model is developed with
the optimization goals of minimizing system operation costs, reducing carbon
emissions, and increasing exergy efficiency. Finally, the model is solved using
NSGA-II to produce the Pareto optimal frontier solution set in various situations,
and the VIKOR decision procedure is utilized to identify the complete best
dispatching solution. The simulation results suggest that the proposed model
can match the system’s scheduling needs in terms of numerous objectives such
as economy, environmental protection, and exergy efficiency while also assuring
user’s comfort.

KEYWORDS

exergy efficiency, demand response, optimal scheduling, NSGA-II, integrated energy
systems

1 Introduction

The global energy crisis and environmental concerns have become increasingly serious
in recent years, and efficient energy usage and sustainable development have become the
focus of attention from people from all walks of life (Schick et al., 2022). The integrated
energy system (IES) is capable of energy optimization and multi-energy coupling, and it
plays a critical role in increasing energy efficiency and sustainable energy consumption
(Karimi and Jadid, 2023). The energy sector’s focus in the context of “carbon peaking
and carbon neutrality” is on the development of clean, affordable, and efficient energy
supply technologies (Fangjie et al., 2022). Simultaneously, the expansion of the energy
Internet has imposed stringent standards on the economy, energy saving, environmental
preservation, and a variety of other IES metrics (Malka et al., 2023). As a result, the
operation and scheduling of IES necessitate a thorough examination of economic,
environmental, and energy efficiency criteria, and the development of an effective multi-
objective optimal scheduling model and its efficient solution becomes a critical issue.
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Current research on IES optimization dispatching objectives
concentrates primarily on reducing the system’s operating costs
and carbon emissions. In the energy system optimization model,
Wang et al. (2023) considered indirect costs such as power
generation investment, taxation, subsidies, and bilateral transaction
costs of energy subsystems. An energy system was planned and
designed by Yazdanie (2023) with maximum elastic regulation
capacity, minimum total operating cost, and minimum carbon
emissions as objectives. Ceylan and Devrim (2023) assessed the off-
grid state of a hybrid energy system based on renewable hydrogen
energy using the average energy cost. Souayfane et al. (2023) took
into account the impact of various weather characteristics on the
energy system and used the system’s life cycle cost and carbon
emissions as optimization objectives to determine the most cost-
effective system design. Caglayan et al. (2019) designed a system
with the lowest annual total cost as the optimization objective
after considering a diversity of hydrogen energy equipment.
However, the aforementioned studies only examined economic and
environmental indicators, energy indicators of system operation
received insufficient consideration, and the difference in effective
energy among various energy sources could not be considered
comprehensively. Exergy is a form of useful energy. The exergy
analysis method is a more effective energy-saving diagnosis method
than the energy analysis method (Keshavarzzadeh and Ahmadi,
2019), which is of significant importance to the study of energy
quality. Caliano et al. (2022) considered various energy quality levels
and optimized the distributed energy system with energy cost and
exergy efficiency as their primary objectives. Sayadi et al. (2019)
established a control strategy based on exergy economic analysis
to increase the energy efficiency of structures on the premise that
thermal comfort constraints must be satisfied. Sejkora et al. (2022)
considered the energy supply system and final energy application
before proposing an exergy-based comprehensive energy system
optimization model, which is advantageous for enhancing the
overall energy efficiency. Therefore, in IES optimal scheduling,
not only the “quantity” but also the “quality” of energy should
be considered. Establishing an exergy efficiency model for energy
conversion has a certain research value.

Demand response (DR) can smooth consumers’ electricity
consumption curves, reduce pressure on the power grid during
peak hours, and increase the scheduling flexibility of an IES
(Bahlawan et al., 2022). Guo et al. (2023) constructed a model of
power demand response, optimized the energy system using a
price elasticity matrix, and considered the incremental carbon
trading mechanism. Çiçek (2023) remotely managed the thermal
comfort of a home by establishing a model of user thermal load
demand response. Alghtani et al. (2023) used a price-based demand
response model to optimize the energy management system for
smart home system consumers while ensuring user’s comfort.
Ghahramani et al. (2022) utilized demand response programs in
electricity and gas networks to reduce customer loads during
peak energy consumption periods and to ensure the security of
energy networks. Kirkerud et al. (2021) developed a comprehensive
demand response time model, investigated the future economic
potential of demand response in the renewable energy-rich northern
region, and analyzed the impact of widespread participation on
demand response. However, the preceding research on demand
response did not consider the coupling effect of economy,

environmental protection, and exergy efficiency as the optimization
objective for coordinated demand response for IES optimal dispatch.
Consequently, it is crucial to investigate the modeling and efficient
solution of multi-objective optimal scheduling of IES with demand
response.

In this regard, this paper investigates themulti-objective optimal
scheduling problem of an IES, taking into account demand response
and exergy efficiency exhaustively, in an effort to identify a more
appropriate energy scheduling strategy. The main contributions of
this paper are as follows:

i) A multi-objective optimal dispatching model with the lowest
system operation cost, lowest carbon emission, and highest exergy
efficiency is established for IES, which includes various forms of
energy supply, energy conversion equipment, and load demand, to
meet the needs of IES optimal dispatching in various aspects such as
economy, environmental protection, and energy efficiency.

ii) In order to fully exploit the peak and valley reduction
potential of demand-side resources, price-based electricity–gas load
demand response and adjustable cooling load demand response
are established while taking customer comfort temperature into
account.

iii) Tent mapping chaos optimization-based NSGA-II is utilized.
The optimal scheduling model is solved for many scenarios, and the
superiority of the model suggested in this research is demonstrated.

The remainder of this paper is organized as follows: In Section 2
the mathematical model of each energy device is established. In
Section 3, the electricity–gas load demand response model is then
established using the price elasticity matrix, and the cooling load
demand response model is also established taking into account the
user comfort temperature. In Section 4, the establishment of an IES
multi-objective optimal scheduling model with the optimization
objectives of the lowest system operation cost, lowest carbon
emission, and best exergy efficiency is shown. In Section 5,we
test the superiority of the suggested model. NSGA-II is used to
solve the Pareto optimal frontier solution set in various situations
and the VIKOR decision method is used to select the integrated
optimal scheduling scheme. Section 6 presents the discussion
and limitations. Finally, in Section 7, the paper’s conclusions are
presented.

2 Modeling of the IES

2.1 Composition of the comprehensive
energy system

Thestructure and energy flowof the IES analyzed in this research
are depicted in Figure 1, which has three modules: energy supply,
energy conversion, and load demand. The system’s electrical load is
met by the grid, photovoltaic (PV), gas turbine (GT), and electric
storage (ES). The electrical load is met via a heat recovery steam
generator (HRSG), gas boilers (GBs), electric boilers (EBs), and heat
storage (HS). The electrical load is met via an absorption chiller
(AC), electric chiller (EC), ground source heat pump (GSHP), and
cooling storage (CS).The gas network supplies the gas load; GT, GB,
and AC combine to generate combined cooling, heating, and power
(CCHP).
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FIGURE 1
IES structure and energy flow.

2.2 Constructing an IES model

2.2.1 The part CCHP
The part CCHP model is built as follows:

{{{{{{
{{{{{{
{

Pgt (t) = Ggt (t)Kgηgt

Hhg (t) =
Pgt (t)
ηgt

ηhg

Cac (t) =Hhg (t)ηac

(1)

where Pgt,Hhg,and Cac are the output electric power, thermal power,
and cold power, respectively; Ggt is the natural gas consumption;
Kg is the gas–heat conversion factor; ηgt is the power generation
efficiency; ηhg is the heat generation efficiency; and ηac is the heat
and cold conversion efficiency.

2.2.2 The part EC
The part EC is expressed as follows:

Cec (t) = Pec (t)ηec, (2)

where Cec is the cooling power; Pec is the input electrical power; and
ηec is the cooling efficiency.

2.2.3 The part GB
The part GB is shown as follows:

Hgb = GgbKgηgb, (3)

where Hgb is the heat production power; Ggb is the natural gas
consumption; and ηgb is the gas-to-heat conversion efficiency.

2.2.4 The part EB
The part EB is expressed as follows:

Heb (t) = Peb (t)ηeb, (4)

where Heb is the heating power; Peb is the input electric power; and
ηeb is the heating efficiency.

2.2.5 The part GSHP
The part GSHP is expressed as follows:

Cgp (t) = Pgp (t)ηgp, (5)

whereCgp is the cooling power; Pgp is the input electrical power; and
ηgp is the cooling efficiency.

2.2.6 The part energy storage systems
Electric energy storage, CS, and HS share a similar working

principle and energy conversion relationship; here, these are
expressed in a unified energy storage model, and the power model
of energy storage devices is as follows (Asl et al., 2022):

Es (t) = Es (t− 1)(1− ηsloss) + η
s
charP

s
char (t) −

Psdis (t)
ηsdis
, (6)

where Es(t) is the storage capacity of the energy storage device at
time t; Pschar(t) and Psdis(t) are the storage charging and discharging
power of the energy storage device at time t, respectively; ηsloss,
ηschar, and ηsdis are the self-loss rate, charging efficiency, and
discharging efficiency of the energy storage device, respectively;
and s = 1, 2, 3 are the electric energy storage, CS, and HS,
respectively.

{{{{{{{{{{
{{{{{{{{{{
{

Esmin ≤ E
s (t) ≤ Esmax

0 ≤ Pschar (t) ≤ α
s
char (t)P

s
char,max

0 ≤ Psdis (t) ≤ α
s
dis (t)P

s
dis,max

αschar (t) + α
s
dis (t) ≤ 1

Es1 (t) = E(t)
s
24

(7)

where Esmax and Esmin are the upper and lower limits of the
energy storage capacity of the energy storage device, respectively;
Pschar,max and P

s
dis,max are the maximum charging and discharging

power of the energy storage device, respectively; αschar(t) and
αsdis(t) are the states of charging and discharging, respectively;
and 1 means the device is in a charging or discharging state
and 0 means the device stops charging and is in a discharging
state.

3 Electricity–gas–cooling load
demand response model

Thedemand response approach utilized in this work comprises a
price-based electricity–gas load demand response and an adjustable
cooling load demand response.

3.1 Electricity–gas load demand response

This paper considers price-based electricity–gas load demand
response, and a price-based demand response model based on
the load price elasticity coefficient matrix is developed to guide
customers in responding to changes in energy prices in order
to adjust load demand. The change in load is represented by a
price elasticity matrix based on the price elasticity coefficient while
employing time-sharing electricity and gas pricing (Tan et al., 2020).
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The elasticity coefficient is defined as the ratio of the rate of change
in load demand to the rate of change in price and is calculated as
follows:

εxij =
ΔQx

j

Qx
j
/
ΔPxi
Pxi
, (8)

where εxij is the price elasticity coefficient; Qx
j and ΔQx

j are the
load demand and load change, respectively; εxij is the self-elasticity
coefficient when i = j; εxij is the cross-elasticity coefficient when i ≠ j;
and x = 1 for electric load and x = 2 for gas load. The load change
reflected by the price elasticity matrix can be calculated using the
price elasticity coefficient:

[[[[[[[

[

ΔQx
1/Q

x
1

ΔQx
2/Q

x
2

⋮

ΔQx
n/Q

x
n

]]]]]]]

]

=

[[[[[[[

[

εx11 εx12 ⋯ εx1n
εx21 εx22 ⋯ εx2n
⋮ ⋮ ⋮

εxn1 εxn2 ⋯ εxnn

]]]]]]]

]

[[[[[[[

[

ΔPx1/P
x
1

ΔPx2/P
x
2

⋮

ΔPxn/P
x
n

]]]]]]]

]

. (9)

In order to find the price elasticity matrix consisting of the price
elasticity coefficients in Equation 9, assuming that for a given time
interval l, the energy price at any moment i has the same effect on
the consumption of the same type of energy at moments i + l, the
following assumptions are made in this paper:

εx11 = ε
x
22 =⋯ = ε

x
nn = ε0

εx12 = ε
x
23 =⋯ = ε

x
(n−1)n = ε

x
1

εx13 = ε
x
24 =⋯ = ε

x
(n−2)n = ε

x
2

εx21 = ε
x
32 =⋯ = ε

x
n(n−1) = ε

x
−1

εx31 = ε
x
12 =⋯ = ε

x
n(n−2) = ε

x
−2

⋯. (10)

Therefore, Equation 9 can be simplified as follows:

ΔQx
i

Qx
i
=
+m

∑
l=−m

εl
ΔPxi+l
Pxi+l
, (11)

where i = 1,2,…,n and Pxi+l are the energy prices at neighboring
moment i at a distance l; εl is the response elasticity coefficient;
and m is the range of moments that have an effect on energy prices
at moment i. The specific procedure for finding the price elasticity
matrix is as follows:

Step 1. Based on the historical energy use data of the studied
IES (June–July 2022), corresponding to time period i, the average
value of energy prices pi and the average value of energy use qi are
calculated as follows:

pi =
R fi +Rgi +Rpi

q fi + qgi + qpi
, (12)

qxi = q
x
fi + q

x
gi + q

x
pi, (13)

where R is the energy price; q is the energy usage; and the subscripts
f, g, and p are the peak, valley, and normal periods, respectively.

Step 2. Outlier handling
The 3σ criterion is chosen to remove outliers from the sample.

|vk| = Xk −X > 3σ. (14)

If the residual satisfies Equation 14, the value is considered an
outlier. Since the standard deviation σ is usually unknown, the
experimental standard deviation difference s (Xk) is used instead of
σ. The formula for s (Xk) is as follows:

s(Xk) = √
1

n− 1
[

n

∑
k=1
(Xk −X)

2], (15)

where Xk is the value of the first k samples; X is the mean value of
the samples.

Step 3. The rate of change of energy and energy prices is
calculated. The rate of change of energy and energy prices in
Equation 9 is calculated using Equations 15, 16, respectively:

ΔQx
i

Qx
i
=
Qx
i2 −Q

x
i1

Qx
i1
, (16)

ΔPxi
Pxi
=
Pxi2 − P

x
i1

Pxi1
, (17)

where Pxi2 is the average value of energy price in July at i period; Pxi1
is the average value of energy price in June at i period; Qx

i2 is the
energy usage in July at i period; and Qx

i1 is the energy usage in June
at i period.

Step 4. The price elasticity coefficient matrix based on
Equation 11 is calculated. Amultiple regression algorithm is applied
to calculate the price elasticity coefficient ɛl, l = −m,−m+ 1,…,+m.

After using the time-sharing electricity–gas price, the following
formula may be derived based on Equation 9:

[[[[[[[

[

Q*x
1

Q*x
2

⋮

Q*x
n

]]]]]]]

]

=

[[[[[[[

[

Qx
1

Qx
2

⋮

Qx
n

]]]]]]]

]

+

[[[[[[[

[

Qx
1 0 ⋯ 0

0 Qx
2 ⋯ 0

⋮ ⋮ ⋮

0 0 ⋯ Qx
n

]]]]]]]

]

[[[[[[[

[

ΔQx
1/Q

x
1

ΔQx
2/Q

x
2

⋮

ΔQx
n/Qx

n

]]]]]]]

]

, (18)

where Q*x
n is the electricity–gas load demand after the introduction

of time-of-use pricing.

3.2 Cooling load demand response

Adjustable cooling load demand response modifies the cooling
load within the user’s temperature comfort range based on the
ambiguity of the user’s temperature demand and transforms the
cooling load curve into a cooling load interval, increasing system
scheduling flexibility. A building heat balance model is a physical
description of the building heat exchange process that can analyze
the principle and process of temperature change in the building,
describe the process of heat gain and loss in the building, and
obtain the connection between temperature and cooling power
in the building (Triolo et al., 2023). The following heat balance
equation can be used to describe the temperature change inside the
building:

(cgasmgas + csms)
dTb

dt
= qload (t) − qc (t) , (19)

where cgas and cs are the specific heat capacity of air and
the specific heat capacity of the envelope, respectively; mgas
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and ms are the air mass and the envelope mass, respectively;
dTb/dt is the differentiation of room temperature with respect
to time; qc(t) is the cooling power; and qload(t) is the building
load.

The building load qload(t) consists of the following components:

qload (t) = q1 (t) + q2 (t) + q3 (t) , (20)

where q1(t) is the heat exchange between the maintenance structure
and the environment; q2(t) is the heat transfer from the outside air;
and q3(t) is the heat dissipation inside the building. q1(t), q2(t), and
q3(t), respectively, can be expressed as

{{{{
{{{{
{

q1 (t) = KF(Tin (t) −Tout (t))

q2 (t) = (Tin (t) −Tout (t))cgasρgasV

q3 (t) = A(e (t) + pe (t))

(21)

where K is the average heat transfer coefficient of the maintenance
structure; F is the heat transfer area of the maintenance structure;
Tin(t) is the indoor temperature; Tout(t) is the outdoor temperature;
ρgas is the air density; V is the air exchange volume; A is the floor
area; e(t) is the amount of heat dissipated by the equipment per
unit area; and Pe(t) is the heat dissipation power per unit area.
The discrete treatment of the building heat balance equation is as
follows:

qc (t) = −
{
{
{

(Tin (t+ 1) −Tin (t))(cgasmgas + csms)
Δt

+ qload (t)
}
}
}
.

(22)

According to the aforementioned calculation, the user’s cooling
load demand is proportional to the indoor temperature and
equals the cooling power under supply–demand balance. Thus,
the adjustment interval of the cold power supplied by the IES
may be estimated based on the user’s temperature comfort range,
reducing the burden of delivering energy during the peak cooling
period.

4 Multi-objective optimal scheduling
for the IES

Themulti-objective optimal function is constructed as follows:

F =min{F1,F2,F3} , (23)

where F1 is the system operating cost; F2 is the system carbon
emission; and F3 is the inverse of the system exergy efficiency.

4.1 Economical goal

Thedaily operating cost of the system includes the purchase cost
of electricity and gas fbuy and the operation and maintenance cost of
each equipment fom.

F1 = fbuy + fom, (24)

fbuy =
24

∑
t=1

Pgrid (t)Cgrid (t) +
24

∑
t=1

Ggrid (t)Cgas (t) , (25)

where Pgrid(t) is the purchased power at time t, Cgrid(t) is the price
of electricity at time t, Ggrid(t) is the purchased gas volume at time t,
and Cgas(t) is the price of gas at time t.

fom =
n

∑
i=1

24

∑
t=1

Pi (t)ηi, (26)

where Pi(t) is the power output of the ith device at time t; ηi is the
operation and maintenance cost of the ith equipment output.

4.2 Environmental goal

Carbon emissions from power and gas purchases are
included in the IES carbon emissions. The entire system’s carbon
emissions are calculated using the unit carbon emission factor as
follows:

F2 =
24

∑
t=1

Pgrid (t)λgrid (t) +
24

∑
t=1

Ggrid (t)λgas, (27)

where λgrid is the purchased power carbon emission factor; λgas is the
purchased gas carbon emission factor.

4.3 Exergy target

The IES contains several types of energy with varying
characteristics. Exergy can represent the “quantity” as well
as the “quality” of energy. We introduce an energy quality
system to measure the losses in each energy source’s conversion
process and determine the utilization of each energy source,
i.e., exergy efficiency (Chen et al., 2022). The inverse of exergy
efficiency is used as the optimization objective in the following
equation:

F3 =

24

∑
t=1
(Pld (t)λe +Hld (t)λh +Cld (t)λc +Gld (t)λg)

24

∑
t=1
(Pgrid (t)λe + Ppv (t)λpv +Ggrid (t)λg)

, (28)

where Pld(t), Hld(t), Cld(t), and Gld(t) are the electrical, thermal,
cooling, and gas loads of the system at time t, respectively; λe, λh, λc,
λg, and λpv are the energy quality coefficients of electrical, thermal,
cooling, and PV, respectively; and Ppv(t) is the PV power generated
at time t.

4.4 Constraints and conditions

The IES is subjected to power balance constraints and conditions
when solving optimal scheduling. The electrical power balance
constraint is shown as follows:

Pgt (t) + Ppv (t) + P1dis (t) + Pgrid (t) = Pec (t) + Peb (t) + Pgp (t)

+ Pld (t) + P1char (t) .
(29)

The thermal power balance constraint is

Hgb (t) +Heb (t) +Hhg (t) + P
3
dis (t) =Hld (t) + P

3
char (t) . (30)
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The cooling power balance constraint is

Cac (t) +Cec (t) +Cgp (t) + P2dis (t) = Cld (t) + P2char (t) . (31)

The gas power balance constraint is

Ggrid (t) = Ggt (t) +Ggb +Gld (t) . (32)

The system power and gas purchase constraints are

{
{
{

0 ≤ Ggrid (t) ≤ Gbuymax

0 ≤ Pgrid (t) ≤ Pgridmax

(33)

where Gbuymax is the upper limit of purchased gas
power; Pgridmax is the upper limit of purchased electricity
power.

According to the “Office Building Design Standards” in China,
the indoor temperature of office buildings in summer should be
in the range of 25°C–28°C. The temperature comfort constraint
is

25 ≤ T (t) ≤ 28. (34)

4.5 Model solving

In this paper, NSGA-II based on Tent mapping chaos
optimization is used to solve the proposed multi-objective
optimization model, due to its advantages of large search space

FIGURE 2
NSGA-II based on Tent mapping chaos optimization.

and fast convergence (Verma et al., 2021). The specific solving
process is depicted in Figure 2. After obtaining the Pareto optimal
frontier solution set using NSGA-II based on Tent mapping chaos
optimization, the optimal scheduling scheme is selected using the
VIKOR decision method, and the specific process is as follows
(Zheng and Wang, 2020):

Step 1. Let A = {A1,A2,…,An} be the set of force solutions to be
selected, n = 100; G = {G1,G2,…,Gm} be the set of objectives,m = 3;
andW = {w1,w2,…,wm} be the set of objective weights.

Step 2. The raw data xij = {i = 1,2,…,n; j = 1,2,⋯m} are
normalized.

vij =
xij

√
n

∑
i=1

x2ij

, (35)

where vij is the normative value of the j objective of the i scenario.
Step 3. The positive and negative ideal solutions are obtained.

{
{
{

r+ = {max xi1,max xi2,…,max xim} ,

r− = {min xi1,min xi2,…,min xim}
(36)

where r+ and r− are the positive and negative ideal solutions,
respectively.

Step 4. The group benefit values and individual regret values are
calculated.

Si =∑wij(
r+j − vij
r+j − r
−
j
), (37)

Ri =max{wij(
r+j − vij
r+j − r
−
j
)} (38)

where Si and Ri are the group effect value and individual regret value
of the i decision option, respectively.

Step 5. The decision index value Qi based on Si,Ri is calculated.

Qi = v
Si − S−

S+ − S−
+ (1− v)

Ri −R−

R+ −R−
, (39)

FIGURE 3
Electrical, gas, cooling, and heating loads and PV output forecast.
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TABLE 1 Prices of natural gas and electricity.

Item Electricity Natural gas

Time period Price (CNY/kWh) Time period Price (CNY/m3)

Peak [9–12][18–20] 1.19 [9–12][17–19] 3.5

Flat [7–8][13–17][21–22] 0.75 [7–8][13–16][20–22] 2.4

Valley [1–6][23–24] 0.36 [1–6][23–24] 2.1

where Qi is the value of the decision indicator; S+ and S− are the
maximum andminimum values of group effect, respectively; andR+

and R− are the maximum and minimum values of individual regret,
respectively.

Step 6. According to the decision index values of each solution,
the solution corresponding to the first ranked index value is the
optimal solution.

5 Example analysis

5.1 Parameter settings

The Sino-German Ecological Park in Qingdao, China, is
chosen as the research object to investigate the applicability and
effectiveness of the proposed IES multi-objective optimal dispatch
model incorporating exergy efficiency and demand responsiveness
(DR). The multi-objective optimal scheduling analysis is performed
in this example based on the electricity, gas, cooling, and heating
loads in typical summer days. The global scheduling time is 24 h,
and the unit scheduling time is 1 h. Figure 3 depicts the system’s
projection for power, gas, cooling, and heating loads and solar
output. The price information of natural gas and electricity used
in this case study is listed in Table 1. Table 2 lists the economic
parameters of the equipment. Table 3 lists the parameters of
the modeling. Among them, IES internal equipment parameters,
energy storage equipment parameters, and energy time-of-use
prices are derived from Wang et al. (2022). The following NSGA-
II settings are considered: the population size is 50, the maximum
number of iterations is 300, the crossover percentage is 0.7,
and the mutation percentage is 0.3. The average summer days
of IES are chosen for this paper’s energy supply study. Because
the heat load is small and stable, it is excluded in demand
response.

5.2 Analysis of the results

To validate the feasibility and effectiveness of the IES optimal
scheduling model developed in this paper, five scenarios are set
up for comparative analysis, and the settings for each scenario are
shown in Table 4. The optimization outcomes under each scenario
are solved after optimization computation, and the system operation
cost, carbon emission, and energy efficiency are compared, and
the optimum scheduling results are shown in Table 5. As shown
in Table 5, the performance of individual indexes in Scenario 4 is

TABLE 2 Economic parameters of equipment.

Equipment type Operation cost (CNY/kWh)

Photovoltaic 0.015

Gas turbine 0.1685

Heat recovery steam generator 0.0023

Gas boiler 0.0018

Electric boiler 0.002

Absorption chiller 0.0156

Electric chiller 0.005

Round source heat pump 0.002

Electric storage 0.004

Heat storage 0.005

Cooling storage 0.005

slightly worse than that in Scenarios 1, 2, and 3; however, it can take
into account the three indices of system economy, environmental
protection, and energy efficiency at the same time. Compared
to Scenario 1, exergy efficiency improves by 5.1%; compared to
Scenario 2, carbon emissions are decreased by 3.5%; and compared
to Scenario 3, operation costs are lowered by 5.2%. As a result, the
model suggested in this study can meet IES scheduling criteria for
numerous purposes, such as economy, environmental protection,
and exergy efficiency.

The load variations following demand response are depicted
in Figure 4 and Figure 5. When combined with Table 5, it can be
observed that all indicators of Scenario 5 are better than those
of Scenario 4, in which energy efficiency is increased by 6.4%,
carbon emissions are decreased by 1.3%, and operation costs are
lowered by 1.7%. This is primarily due to the fact that after demand
response, IES can appropriately cut the peak values of electric
load, gas load, and cooling load while satisfying the basic load
demand and maintaining a comfortable temperature and, lowering
the cost of purchasing high-priced energy during the peak period;
at the same time, it can shift the peak load, allowing for multi-
objective optimization to reduce carbon emissions and improve
exergy efficiency.
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TABLE 3 Parameters of themodeling.

Parameter Symbol Value Unit

Coefficient of power generation for CCHP ηgt 0.39 -

Coefficient of heat generation for CCHP ηhg 0.44 -

Coefficient of cool generation for CCHP ηac 0.8 -

Low calorific value of natural gas Kg 9.7 kW/m3

Cooling energy efficiency rate of EC ηec 4 -

Heating energy efficiency rate of GB ηgb 0.9 -

Heating energy efficiency rate of EB ηeb 0.95 -

Cooling energy efficiency rate of GSHP ηgp 4.2 -

Upper limits of the energy storage capacity Es
max 800, 600, and 800 kWh

Lower limits of the energy storage capacity Es
min 80, 60, and 80 kWh

Storage charging power Ps
char,max 400, 300, and 400 kW

Discharging power Psdis,max 400, 300, and 400 kW

Self-loss rate ηsloss 0.02 -

Charging efficiency ηschar 0.95, 0.92, and 0.92 -

Discharging efficiency ηsdis 0.95, 0.92, and 0.92 -

Purchased power carbon emission factor λgrid 0.96 kg/kWh

Purchased gas carbon emission factor λgas 2.16 kg/m3

Upper limit of purchased gas Gbuymax 800 m3/h

Upper limit of purchased electricity
power

Pgridmax 2,000 kW

TABLE 4 Various scenario settings.

Scenario DR Operating cost Carbon emission Exergy efficiency

1 × √ √ ×

2 × √ × √

3 × × √ √

4 × √ √ √

5 √ √ √ √

The peak–valley difference of electric load after demand
response decreases by 21.9% and the peak–valley difference of gas
load after demand response decreases by 17.8% compared to those
before demand response. The load fluctuation is leveled off, which
is due to the impact of price response on users’ energy consumption
habits, and users’ loads are shifted downward and upward during

peak and valley hours, respectively, as shown in Figure 4 and
Figure 5. The efficiency of price-based demand response for
optimizing electricity–gas load is demonstrated. During the peak
cold load period, the cold load is properly reduced to ensure the
user’s comfort, relieving supply pressure during the peak energy
consumption period. This is due to the human body’s ambiguity for
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TABLE 5 System operating costs, carbon emissions, and exergy efficiency for each scenario.

Scenario Operating cost (CNY) Carbon emission (kg) Exergy efficiency

1 36,031 25,093 0.59

2 36,313 27,806 0.69

3 38,845 26,773 0.67

4 36,824 26,813 0.62

5 36,174 26,442 0.66

FIGURE 4
Electricity load and gas load before and after the introduction of
demand responsiveness.

temperature changes within a certain range, and adjusting the cold
load to change the temperature within this range has no effect on
the comfortable temperature, so the cold load curve is transformed
into a cold load interval, transforming the cold load into a flexible
adjustable load to participate in demand response to enhance system
scheduling flexibility. The electric, gas, and cooling load curves can
be efficiently smoothed using demand response, ensuring improved
system operating economy, environmental protection, and exergy
efficiency.

The Pareto solution set of Scenario 5 is illustrated in Figure 6,
demonstrating that the low operating cost, low carbon emission,
and high exergy efficiency of IES are three competing optimization
objectives, and obtaining the optimal solution simultaneously is
difficult. As a result, the model developed in this paper can
satisfy IES’s optimal scheduling requirements in terms of economy,
environmental protection, and exergy efficiency. Decision-makers
in the multi-objective optimal decision method used in this study
can alter the VIKOR decision weight parameters based on the real
needs of the project to acquire the appropriate optimal scheduling
solution.

Theoptimal dispatching result of Scenario 5 is shown in Figure 7,
Figure 8, Figure 9, and Figure 10. Due to the cost-effectiveness,

minimal carbon footprint, and high exergy efficiency of PV, it is
completely consumed during the dispatching procedure. During
23:00–06:00, the system purchases low-cost electricity from the
grid as its primary supply and from GT as its supplementary
supply, while the storage apparatus stores electricity. At this time,
the cold load is low, with EC and GSHP as the primary supply
method and AC as the supplementary supply; during 07:00–10:00,
the electric load and cold load continue to increase, the price of
electricity is moderate, and the joint power supply equipment can
meet the needs of a variety of loads; during 11:00–13:00, the electric
load and cold load reach their peak, the price of electricity is at
its highest, and GT generation is more advantageous. AC as the
main refrigeration equipment, which can use low-grade thermal
energy to cool, has a more balanced exergy efficiency and economy
compared to the consumption of high-grade electrical energy to
cool the electric refrigeration equipment; during 14:00–17:00, the
cold load demand is greater, the electricity price is flat, and the
system is suited to increase the output of the electric refrigeration
equipment; and during 18:00–22:00, which are the peak electricity
price hours, the output of the electric refrigeration equipment should
be decreased.

6 Discussion and limitations

This section will provide a broader analysis of the multi-
objective optimal scheduling model proposed in this paper,
discussing its strengths and limitations. In addition to considering
the modeling and technological diversity of information exchange,
the model’s impact on the intensity of information exchange among
the participants of an IES will be explored.

6.1 Advantages of the model

Multi-objective optimization:Themodel proposed in this paper
effectively balances multiple objectives, including system operating
costs, carbon emissions, and exergy. By providing a Pareto optimal
frontier solution set, it enables decision-makers to weigh the trade-
offs and make informed choices that are in line with their priorities.
In this paper, we use NSGA-II to achieve efficient solution space
exploration and obtain diverse sets of Pareto optimal solutions.This
feature enables decision-makers to identify a range of feasible and
desirable solutions. Integrated demand response: The introduction
of a demand response mechanism allows dynamic load regulation,
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FIGURE 5
Comparison of cooling load and temperature before and after the
introduction of demand responsiveness.

FIGURE 6
Diagram of electrical power balance.

FIGURE 7
Results of electrical power balance.

FIGURE 8
Results of gas power balance.

FIGURE 9
Results of cooling power balance.

promotes demand-side management and energy conservation, and
helps improve the overall economic and environmental performance
of the IES. The model takes into account user’s comfort when
optimizing energy scheduling, ensuring user’s comfort, enhancing
user’s satisfaction, and increasing user’s participation in demand
response programs.

6.2 Limitations of the model

Scalability and complexity: Although the model in this paper
considers different types of energy devices and demand response
scenarios, it may face challenges when applied to larger and more
complex IESs. Future research should address scalability issues
for a wide range of practical applications. Data requirements and
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FIGURE 10
Results of heating power balance.

model generalization: Models are highly dependent on accurate
and real-time data, and obtaining and managing these data can
be resource-intensive and may present challenges in practice; as
with any optimization model, the generalizability of the approach
presented in this paper to different types of IESs requires further
study. The unique characteristics and constraints of a particular
system may require customization of the model.

6.3 Impact of modeling on the intensity of
information exchange in integrated energy
systems

In the study of this paper, a multi-objective optimal dispatch
model is proposed which takes into account energy efficiency
and demand response. This model may have an impact on
the intensity of communication between participants in an IES.
In the real world, different participants in the energy system
need to exchange information frequently in terms of supply and
demand matching and energy trading. Our model may introduce
new information exchange needs, e.g., sharing of energy supply
plans during demand response adjustments to ensure smooth
operation of the system. Such information exchange may affect
aspects such as cooperation patterns, data sharing, and decision
coordination among participants. In addition, different types of
energy equipment and systems may involve different modes of
information exchange. For example, there may be differences
in the way information is exchanged between electric, thermal,
and gas energy systems because of their different characteristics
and operational needs. The model in this paper may introduce
closer information exchange between different systems for cross-
system coordination and optimization.This diversity of information
exchange models requires adequate technical support to ensure
the safety and reliability of data transmission. In this paper, we
pay special attention to the modeling of information exchange and
technological diversity in order to better understand the impact of

our model on the intensity of communication between participants
in an IES. In IESs, effective modeling of information exchange
is essential to achieve efficient system operation. Górski (2023)
emphasized the importance of information exchange in software
applications, especially in the communication between different
systems, introducing integration services and business views. The
multi-objective optimal scheduling model in this paper also aims
to create an integrated view between various energy devices. Such
a view helps reveal the information needs and communication
patterns among the energy systemparticipants. InZhao et al. (2023),
the role of emerging information and communication technologies
in driving energy system transformation is emphasized. The
model developed in this paper is based on an IES that leverages
information exchange and technological diversity to optimize
energy scheduling. In the model proposed in this paper, different
types of energy devices and demand response mechanisms are
considered, and frequent data and information exchanges are
required among the various players. Therefore, the modeling of
information exchange needs to be fully considered in the model,
including data transmission methods, communication protocols,
and the time cost of information processing and delivery. In an
IES, different energy devices and technologies are usually diverse,
such as smart meters, sensors, and communication networks. For
example, in our model, we introduce a price elasticity matrix to
simulate the exchange of information in the energy market to
support electricity–gas load demand response. This has similarities
to the idea of using message flow modeling discussed in the paper,
where information exchange is used to achieve coordination among
system components. The diversity of these technologies not only
provides broader possibilities for information exchange but also
brings a number of challenges, such as data compatibility and
information security. Taken together, the multi-objective optimal
scheduling model in this paper has far-reaching implications for the
modeling of information exchange and technological diversity in
IESs. In order to further improve the model, appropriate modeling
of information exchange needs to be embedded in the model to
ensure efficient communication among participants. At the same
time, different information and communication technologies should
be actively applied to accommodate the technological diversity in
IESs and to address the associated technological challenges.Through
such explorations and improvements, the model proposed in this
paper will be better adapted to practical applications and make
positive contributions to the intelligent and sustainable development
of IESs.

7 Conclusion

This paper proposes a multi-objective optimization
scheduling model of the IES incorporating exergy efficiency and
demand responsiveness and evaluates it considering economy,
environmental protection, and high quality energy use, and the
following conclusions are drawn using arithmetic analysis:

(1) The low operating cost, low carbon emission, and high exergy
efficiency of IES are three conflicting optimization objectives,
making it difficult to find the optimal solution. Multiple
objectives, such as economy, environmental protection, and
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exergy efficacy, can be met by the model constructed in this
paper, including those of the IES. Compared to dual-objective
optimization scheduling, the exergy efficiency is increased by
5.1%, carbon emissions are reduced by 6.1%, and the operation
cost is decreased by 5.2%.

(2) Considering DR can efficiently reduce the peak-to-valley load
difference, alleviate the pressure of supplying energy during
peak load, and enhance the flexibility of IES multi-objective
optimization, exergy efficiency is increased by 6.4%, carbon
emissions are decreased by 1.3%, and operating expenses are
decreased by 1.7%.

This study has achieved some results in the multi-objective
optimal dispatch model considering exergy efficiency and
demand response. In order to further promote the economic and
environmental protection and quantity and quality of the synergistic
growth of the IES, future research will focus on the following
aspects:

(1) In order to incentivize users to participate in demand response
and promote the balancing and optimization of energy supply
and demand, we will study the market mechanism adapted to
the multi-objective optimal dispatching model of the IES and
explore economic incentives and policy support to promote the
sustainable development of the IES.

(2) Considering the complexity and scale of IESs, wewill investigate
more efficient and accurate optimization algorithms to cope
with multi-objective optimal scheduling problems for large-
scale energy devices. We will explore meta-heuristic algorithms
combined with evolutionary algorithms and evaluate the
applicability and performance of different algorithms in various
scenarios.
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