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Abstract 
Since many years ago, flow measurement has become a fundamental issue in hydraulic 

engineering. One of the conventional methods of flow measurement is the use of combined 

structures. In this regard, using a combined structure, including a gate and a weir, is one of the 

approaches that has attracted the attention of researchers in this field. Therefore, in this research, 

five different methods based on artificial neural networks were used to predict the discharge 

coefficient.  The networks architecture includes an input layer with four neurons, a hidden layer 

with seven neurons, and an output layer with one neuron.  be mentioned that the number of 

neurons within the hidden layer is set to 4 only for the recurrent network. For the hidden layer, 

the logarithmic sigmoid activation function was used. Also, the linear activation function was 

used for the output layer. Finally, the results showed that the Levenberg-Marquardt (LM) 

algorithm performs better than the other methods. The convergence speed of this algorithm, 

which also uses the second derivative, is much higher than others. In this case, the coefficient of 

determination (R2) for the training and the test stage was equal to 0.92616 and 0.94079, 

respectively. In addition to, the first type of rough model with the gradient descent training 

algorithm also had an acceptable performance and was placed in second place. Also, the 

sensitivity analysis on the dimensionless parameters affecting this issue showed that the 𝐻 𝑑⁄ , 

𝑦 𝑑⁄ , 𝑏 𝐵⁄ , and 𝑏 𝑑⁄  parameters have maximum to minimum effect on the model results, 

respectively. 
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1. Introduction  
Estimating or measuring discharge is one of the main issues in all fields related to hydraulics. 

Hereof, many researchers try to develop and present methods for estimating discharge. The 

intensity of flow or discharge is described as the volume flow per unit of time. In open channels, 

the flow is measured by various methods, such as using the pressure difference, velocity-area 

method, tracer-dilution method, hydraulic structures (flumes and weirs), etc. [1]. Weirs are one 

of the most straightforward hydraulic structures employed for controlling water levels and 

measuring the channel flow. The ease and accuracy of measuring in different flow conditions led 

to the design of various types of weirs [1-3]. 

The most important part of hydraulic research is the modeling of hydraulic structures in field 

conditions. In irrigation projects, like irrigation and drainage networks, gates and weirs are 

generally used [4]. The weir is used to pass the flow over the crest. The gate is used to get rid of 

the sediment in the lower part of the weir. Therefore, these two types of hydraulic structures 

have been widely studied [5]. 

The weir-gate structure combines the benefits of a weir and a gate. It controls the water head 

and flow rate while preventing sedimentation behind the weir, by passing sediment through the 

gate [6]. Ahmed [7], investigated a rectangular weir combined with a rectangular gate and 

determined the discharge coefficient. Negm et al. [8], analyzed the impact of geometric 

parameters on a combined rectangular weir and inverse triangular gate with various angles. They 

developed a regression equation for estimating the discharge coefficient and evaluated free flow 

characteristics over the combined structure. Hayawi et al. [9], studied the composite structure of 

a triangular weir with a rectangular gate, and the results of their studies showed that with the 

increase in the D/h ratio (the ratio of the height of the overflow to the water head on the 

overflow) the discharge coefficient decreases. Aein et al. [6], simulated four combined triangular 

weir-rectangular gate structures using Flow-3D, based on previous experimental research. 

Dimensional analyses were conducted to determine the dimensionless parameters that affect the 

discharge coefficient. Results indicated that Flow-3D has high simulation capabilities for this 

structure. 

Recently, by advancing soft computing techniques in almost areas of water engineering, 

investigators have applied them to model and predict the hydraulic and hydrology phenomenon. 

Successfully in this regard, the soft computing models for modeling and predicting the discharge 

in rivers, scouring, and discharge coefficient of weirs have been used by researchers [4,5]. 

Choosing appropriate intelligent models according to different hydraulic parameters and 

different shapes of weirs can efficiently and accurately carry out this work [10]. For example, 

Bilhan et al. [11], estimated the discharge coefficient (Cd) of a triangular labyrinth side weir in a 

curved channel by using artificial neural networks (ANN). In their study, they determined Cd 

using the results of 7963 laboratory tests. The performance of the ANN model was compared 

with multiple nonlinear and linear regression models. Root mean square errors (RMSE), mean 

absolute errors (MAE), and correlation coefficient (R) statistics were used as comparing criteria 

for the evaluation of the models’ performances. There were good agreements between the 

measured values and the values obtained using the ANN model. It was found that the ANN 

model with RMSE=0.1658 in the validation stage is superior in the estimation of discharge 

coefficient than the multiple nonlinear and linear regression models with RMSE of 0.2054 and 

0.2926, respectively. In research by Safari and et al. [3], 113 data sets of Bos were used for the 

applicability of Artificial Neural Network (ANN), Gene expression programming (GEP), 

regression models to estimate the discharge coefficient for the rectangular broad-crested weirs. 
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Comparing the models showed that the ANN with the highest R2 coefficient (0.9916), lowest 

RMSE = 0.0012, and MAE = 0.00052 has the best discharge coefficient estimation than GEP 

models, regression models, and other empirical relations for the rectangular broad crested weirs. 

Salmasi et al. [12], and Chen et al. [2], used ANN, linear regression (LR), random forest (RF), 

support vector machine (SVM), k-nearest neighbor (KNN) and decision tree (DT) algorithms to 

predict discharge coefficients for broad crested weirs and streamlined weirs, respectively. All 

methods can provide a reasonable prediction for  Cd [2,6]. 

Also, in the field of combined weir-gate, some studies have been done by researchers, in the 

research of Parsaie et al. [13], the discharge coefficient of weir-gate was predicated using 

adaptive neuro-fuzzy inference systems (ANFIS) and multilayer perceptron neural network 

(MLP).  The sensitivity analysis of MLP and ANFIS showed that the Froude number of flow 

upstream of the weir and the ratio of the gate opening height to the diameter of the weir are the 

most influential parameters on the discharge coefficient. Parsaie et al. [5], also predicted a weir-

gate discharge coefficient using ANN, SVM, and ANFIS. Assessing the performance of three 

models show that all of them have reasonable accuracy; however, the SVM model with a 

coefficient of determination ( = 0.94) and root mean square of error (RMSE = 0.008) has the best 

performance in comparison with others. Sahib et al. [4], applied ANN to predict the discharge 

coefficient for a combined weir and found that their model with ten neurons was highly accurate. 

The sensitivity analysis was used to evaluate the performance of artificial neural networks using 

different numbers of valid input parameters. They showed that the ANN model has a good idea 

of what works best for the discharge coefficient and that the network training process is easier to 

understand than the traditional approach of expressing the discharge coefficient as an equation. 

In this paper, a model for predicting the weir-gate discharge coefficient with the approach of 

using ANN capabilities is presented. For this purpose, five different learning methods, including 

Emotional Learning (EL), Levenberg-Marquardt (LM), Flexible ANN, Rough (Type1), and 

Recurrent (Elman), are used for this research. Finally, the capacities of these algorithms and 

methods are compared to each other, and at last, for the best approach, sensitivity analysis is 

performed on the input parameters of the model. 

 

2. Material and Methods 
Figure 1 shows a schematic of a combined weir-gate. As shown in the figure, d is the opening 

height of the gate, h is the free height of the flow on the overflow, H is the total upstream head 

of flow and ℎ𝑡 is the water head of the downstream. 

 
Figure 1. A scheme of H-weir-gate structure 
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Considering that this structure is a combination of a gate and a weir, therefore, to calculate 

discharge, the combination of equations governing the gate and weir is used. 

 
𝑄𝑐 = 𝑄𝑤 + 𝑄𝑔 (1) 

𝑄𝑤 =
2

3
𝐶𝑑𝑤  √2𝑔 𝐿𝑒𝐻

1.5 (2) 

𝑄𝑔 = 𝐶𝑑𝑔𝐿𝑑  √2𝑔(𝐻 − 𝑑)  (3) 

 

Where Qw and Qg are the discharge of flow through the weir and gates, respectively, and Qc is 

the total discharge passed from the weir-gate. Based on the dimensional analysis, the weir-gate 

discharge coefficient is a function of dimensionless parameters according to equation (4). 

 

(4) 𝐶𝑑 = 𝑓 (
𝑦

𝑑
,
𝑏

𝑑
,
𝑏

𝐵
,
𝐻

𝑑
) 

 

Therefore, 4 dimensionless input parameters (
𝑦

𝑑
,
𝑏

𝑑
,
𝑏

𝐵
,
𝐻

𝑑
)  are required to predict the weir 

discharge coefficient. In this study, the data of Parsaie et al. [5], has been used, which contains 

161 data. A summary of the statistical status of this dataset is presented in Table 1. 

 
Table 1. Summaries of the statistical status of the dataset 

 Min Max Mean Standard 

Deviation 
𝑦

𝑑
 0.47 5 2.24 1.37 

𝑏

𝑑
 

0.65 5 2.41 1.43 

𝑏

𝐵
 

0.32 0.66 0.51 0.15 

𝐻

𝑑
 

1.67 7.40 3.65 1.21 

𝐶𝑑 0.50 0.69 0.59 0.03 

 

2.1. ANN 
ANN is a nonlinear mathematical model that can simulate arbitrarily complex nonlinear 

processes, which relate to the inputs and outputs of any system. Multilayer perceptron (MLP) 

networks are common types of ANN widely used in research. To use the MLP model, the 

definition of appropriate functions, weights, and bias should be considered [5,13]. Figure 2 

shows a simple configuration of a feedforward MLP model used in this study. 
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Figure 2. Multilayer perceptron neural network architecture 

 

Weights and biases values will be adjusted dynamically during the training stage by 

comparing predicted output with target. Such networks are often trained using a backpropagation 

algorithm [5,6]. In this paper, five different methods were used to train the neural network, and 

their titles are listed in Table 2. 

75% of the data is used for the training and 25% for the test stage. The details of the networks 

used, including the number of inputs, the number of hidden layers, the number of neurons of the 

hidden layers, and the activation functions of the first layer and the second layer, are presented in 

Table 2. 

 

 
Table 2. Summarizes the features of the used neural network models 

Model Method N.I N.H.L N.N.H.L A.F.1 N.N.O.L A.F.2 

1 Emotional 

Learning 
4 1 7 logsig 1 Purelin 

2 Levenberg-

Marquardt 
4 1 7 logsig 1 Purelin 

3 Flexible ANN 4 1 7 logsig 1 Purelin 

4 Rough (Type 1) 4 1 7 logsig 1 Purelin 

5 Recurrent (Elman) 4 1 4 logsig 1 Purelin 

Notes: N.I: number of inputs, N.H.L: number of hidden layers, N.N.H.L: number of neurons in the hidden 

layer, A.F.1: activation function of hidden layer, N.N.O.L: number of neurons of output layer, A.F.2: 

activation function of output layer 

 

2.2. Governing Equations 
In this section, feedforward and backpropagation equations for several artificial neural 

network models used in this research are presented: 
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2.2.1. Two layer perceptron + Emotional Learning 
Emotional learning is a training strategy for neural networks that facilitates error convergence 

by making it possible to use the latest information about neural parameters. In this algorithm, 

errors from previous times are used to learn the network, which increases the speed of 

convergence [14]. In this method, the error function is defined as follows: 

 

𝐸(𝑘) =
1

2
𝑟2(𝑘) =

1

2
(𝑘1 × 𝑒(𝑘) + 𝑘2 × 𝑒 .(𝑘))

2
 (5) 

 

which in the above equation: 

 
𝑒(𝑘) = 𝑇𝑎𝑟𝑔𝑒𝑡(𝑘) − 𝑂2(𝑘) (6) 

𝑒 .(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1) (7) 

 

that the opened form of equation (5) for a two-layer perceptron with one hidden layer can be 

written as follows: 

 

𝐸(𝑘) =
1

2
(𝑘1 × 𝑒(𝑘) + 𝑘2 × [𝑒(𝑘) − 𝑒(𝑘 − 1)])2 =

1

2
([𝑘1 + 𝑘2] × 𝑒(𝑘) − 𝑘2 × 𝑒(𝑘 − 1))

2
 (8) 

𝐸(𝑘) =
1

2
([𝑘1 + 𝑘2] × (𝑇𝑎𝑟𝑔𝑒𝑡(𝑘) − 𝑂2(𝑘)) − 𝑘2 × (𝑇𝑎𝑟𝑔𝑒𝑡(𝑘 − 1) − 𝑂2(𝑘 − 1)))

2

=
1

2
([𝑘1 + 𝑘2] (𝑇𝑎𝑟𝑔𝑒𝑡(𝑘) − 𝑓2(𝑤2(𝑘)×𝑂1(𝑘)))

− 𝑘2(𝑇𝑎𝑟𝑔𝑒𝑡(𝑘 − 1) − 𝑓2(𝑤2(𝑘 − 1)×𝑂1(𝑘 − 1))))
2

 

(9) 

 

Then updating and modifying the weights from the last layer to the first layer is done: 
• Modification of weights of the last layer 

 

∆𝑤2(𝑘) = −𝜂.
𝜕𝐸(𝑘)

𝜕𝑤2(𝑘)
= −𝜂 (

𝜕𝐸

𝜕𝑟

𝜕𝑟

𝜕𝑒

𝜕𝑒

𝜕𝑂2

𝜕𝑂2

𝜕𝑛𝑒𝑡2

𝜕𝑛𝑒𝑡2

𝜕𝑤2
) (𝑘)

= 𝜂.𝑟(𝑘).[𝑘1 + 𝑘2].𝑓
′2(𝑘).𝑂1(𝑘) 

 

(10) 

𝑤2(𝑘 + 1) = 𝑤2(𝑘) + 𝜂×𝑟(𝑘)×[𝑘1 + 𝑘2]×𝑓′2(𝑘)×𝑂1(𝑘) (11) 

 

• Modification of weights of the last layer 

∆𝑤1(𝑘) = −𝜂.
𝜕𝐸(𝑘)

𝜕𝑤1(𝑘)
= −𝜂 (

𝜕𝐸

𝜕𝑟

𝜕𝑟

𝜕𝑒

𝜕𝑒

𝜕𝑂2

𝜕𝑂2

𝜕𝑛𝑒𝑡2

𝜕𝑛𝑒𝑡2

𝜕𝑂1

𝜕𝑂1

𝜕𝑛𝑒𝑡1

𝜕𝑛𝑒𝑡1

𝜕𝑤1
) (𝑘)

= 𝜂×𝑟(𝑘)×[𝑘1 + 𝑘2]×𝑓′2(𝑘)×𝑤2(𝑘)×𝑓′1(𝑘)×𝐼𝑛𝑝𝑢𝑡(𝑘) 

 

(12) 

𝑤1(𝑘 + 1) = 𝑤1(𝑘) + 𝜂×𝑟(𝑘)×[𝑘1 + 𝑘2]×𝑓′2(𝑘)×𝑤2(𝑘)×𝑓′1(𝑘)×𝐼𝑛𝑝𝑢𝑡(𝑘) 
 

(13) 

Figure 3 shows a generalized form of the training process of a two-layer perceptron neural 

network based on emotional learning. 



A study of five types of ANN-based approaches to predict … 

 
AUTUMN 2022, Vol 8, No 4, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                

79 

 
Figure 3. A two-layer perceptron neural network training process based on emotional learning. 

 
2.2.2. Two-layer perceptron + (Levenberg-Marquardt) 

Higher-order algorithms are presented to solve the problem of first-order algorithms. It has 

been proven that first-order algorithms are trapped in local minimum in solving many problems. 

In addition, due to excessive repetitions in training and adjusting the weights, they will also face 

problems. An alternative method for this type of problem is to use higher-order optimization 

methods [15]. 

The Levenberg-Marquardt algorithm is one of the second-order learning algorithms. In other 

words, in this algorithm, the second-order derivative is used to train the network, which causes 

fast convergence of the computational model [15]. Let the vector 𝑤 ∈ ℝ𝑁𝑤 contain all weights 

or adjustable parameters in the weighted search space. Also, the target and the output of the 

neural network should be 𝑇𝑎𝑟𝑔𝑒𝑡(𝑘) ∈ ℝ𝑀  and 𝑦(𝑘) ∈ ℝ𝑀 , respectively, where M is the 

number of neurons in the output of the neural network. Thus, the output error of the neural 

network for the q-th neuron for each p-th learning pattern (𝑒𝑝𝑞(𝑤)) and the sum of squared error 

(E(w)) can be defined as follows: 

 
𝑒𝑝𝑞(𝑤) = 𝑦𝑝𝑞(𝑤) − 𝑇𝑎𝑟𝑔𝑒𝑡𝑝𝑞(𝑤) 𝑞 ∈ {1,2, … ,𝑀}   ,  𝑝 ∈ {1,2, … ,𝑁𝑝} (14) 

𝐸(𝑤) =
1

2
∑(𝑒𝑝(𝑤))

2

𝑁𝑝

𝑝=1

= ∑
1

2
(𝑦𝑝𝑞(𝑤) − 𝑇𝑎𝑟𝑔𝑒𝑡𝑝𝑞(𝑤))

𝑇

(𝑦𝑝𝑞(𝑤) − 𝑇𝑎𝑟𝑔𝑒𝑡𝑝𝑞(𝑤))

𝑁𝑝

𝑝=1

=
1

2
∑ ∑(𝑒𝑝𝑞(𝑤))2

𝑀

𝑞=1

𝑁𝑝

𝑝=1

 

 (15) 
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Where 𝑁𝑝 is the total number of training samples. Therefore, 𝐸(𝑤) is the sum of squared 

residual errors of all network outputs for all training patterns. Finally, the modification of the 

weights in the Levenberg-Marquardt algorithm is as follows: 

 
𝑤(𝑘 + 1) = 𝑤(𝑘) − 𝜂(𝑘) × [𝐽𝑇(𝑘) × 𝐽(𝑘) + 𝜇(𝑘) × 𝐼]−1 × 𝐽𝑇(𝑘) × 𝑒(𝑘)  (16) 

 

Where J is the Jacobian matrix and is defined as follows: 

 

𝐽 =

[
 
 
 
 
 
 
 

𝜕𝑒11

𝜕𝑤1

(𝑘)
𝜕𝑒11

𝜕𝑤2

(𝑘)

𝜕𝑒21

𝜕𝑤1

(𝑘)
𝜕𝑒21

𝜕𝑤2

(𝑘)

.
𝜕𝑒11

𝜕𝑤𝑁𝑤

(𝑘)

.
𝜕𝑒21

𝜕𝑤𝑁𝑤

(𝑘)

. .
𝜕𝑒𝑁𝑝1

𝜕𝑤1

(𝑘)
𝜕𝑒𝑁𝑝1

𝜕𝑤2

(𝑘)

⋯ .

.
𝜕𝑒𝑁𝑝1

𝜕𝑤𝑁𝑤

(𝑘)
]
 
 
 
 
 
 
 

  (17) 

 

In equation (16), the phrase  𝜇(𝑘) × 𝐼  causes the matrix to move away from the singular 

condition, which makes the inverse of the phrase inside the bracket can be calculated. When 

𝜇(𝑘) is very large, the term 𝐽𝑇(𝑘) × 𝐽(𝑘) becomes very small compared to 𝜇(𝑘) × 𝐼 , which 

causes the equation (16) to become the equation of the typical gradient descent method. 

On the other hand, if 𝜇(𝑘) is a very small number, then 𝜇(𝑘) × 𝐼 is negligible compared to 

𝐽𝑇(𝑘) × 𝐽(𝑘), in which case, the weight modification equation of the Levenberg-Marquardt 

algorithm becomes the equation of the Gauss-Newton algorithm and subsequently approaches 

the singularity condition. 

 

2.2.3. Flexible two-layer perceptron 
The most important feature of flexible neural networks is that these networks are more 

similar to the structure of biological neurons in the human brain. According to the need of the 

problem, some parameters can be considered flexibly in the neural network. Flexible 

consideration of a parameter increases the flexibility and the degree of freedom of the network. 

In this research, to create a flexible network, the « g » parameter has been trained. 

For the hidden layer, the flexible binary sigmoid (logarithmic sigmoid) activation function is 

defined as follows: 

 

𝑓1(𝑘) =
2𝑔1(𝑘)

1 + 𝑒−𝑔1(𝑘)×𝑁𝑒𝑡1(𝑘)
 (18) 

 

The purpose of adjusting the slope coefficients (g) for the activation functions is that the 

network learns how to update »g« to optimize the cost function. For this purpose, the error 

backpropagation equations by chain derivatives are used to update the »g« parameter of the 

activation function. 
For the last layer : 

 

∆𝑔2(𝑘) = −𝜂𝑔
2

𝜕𝐸(𝑘)

𝜕𝑔2(𝑘)
= −𝜂𝑔

2 ×
𝜕𝐸(𝑘)

𝜕𝑒(𝑘)
×

𝜕𝑒(𝑘)

𝜕𝑂2(𝑘)
×

𝜕𝑂2(𝑘)

𝜕𝑔2(𝑘)
= −𝜂𝑔

2 × 𝑒(𝑘) × (−1) × 𝑓∗2(𝑘) (19) 

∆𝑔2(𝑘) = 𝜂𝑔
2 × 𝑒(𝑘) × 𝑓∗2(𝑘) = 𝜂𝑔

2 × 𝜎2(𝑘) (20) 
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And, for the hidden layer : 

 

∆𝑔1(𝑘) = −𝜂𝑔
1

𝜕𝐸(𝑘)

𝜕𝑔1(𝑘)
 

 

(21) 

∆𝑔1(𝑘) = −𝜂𝑔
1 ×

𝜕𝐸(𝑘)

𝜕𝑒(𝑘)
×

𝜕𝑒(𝑘)

𝜕𝑂2(𝑘)
×

𝜕𝑂2(𝑘)

𝜕𝑁𝑒𝑡2(𝑘)
×

𝜕𝑁𝑒𝑡2(𝑘)

𝜕𝑂1(𝑘)
×

𝜕𝑂1(𝑘)

𝜕𝑔1(𝑘)
 

 

(22) 

∆𝑔1(𝑘) = −𝜂𝑔
1 × 𝑒(𝑘) × (−1) × 𝑓2′

(𝑘) × 𝑤2(𝑘) × 𝑓1∗
(𝑘) (23) 

∆𝑔1(𝑘) = 𝜂𝑔
1 × 𝑒(𝑘) × 𝑓2′

(𝑘) × 𝑤2(𝑘) × 𝑓1∗
(𝑘) 

 

(24) 

Now, if the network has two activation layers in such a way that the hidden layer has a 

nonlinear activation function and the output layer has a linear activation function, the previous 

equations will be expressed more simply as follows: 

 

∆𝑔1(𝑘) = −𝜂𝑔
1 × 𝑒(𝑘) × 1 × 𝑤2(𝑘) × 𝑓1∗

(𝑘) 
 

(25) 

And for 𝑔2, no training is done because the activation function of the output layer is linear, 

and the 𝑔 factor is not present in it, so its derivative in terms of 𝑔 is zero. In other words, ∆𝑔2(𝑘) 

is equal to zero. Mathematically, it can be written: 

 

∆𝑔2(𝑘) = 𝜂𝑔
2 × 𝑒(𝑘) × 𝑓2∗

(𝑘) = 𝜂𝑔
2 × 𝑒(𝑘) × 0 = 0 → ∆𝑔2(𝑘) = 0 (26) 

 

In the above equations, the derivative of the nonlinear activation function of the hidden layer 

is defined as follows: 

 

𝑓1∗
(𝑘) =

𝑂1(𝑘)

𝑔1(𝑘)
+

2𝑔1(𝑘) × 𝑁𝑒𝑡1(𝑘) × 𝑒−𝑔1(𝑘)×𝑁𝑒𝑡1(𝑘)

(1 + 𝑒−𝑔1(𝑘)×𝑁𝑒𝑡1(𝑘))
2  (27) 

 

2.2.4. Two-layer perceptron + Rough Model (Type 1) + Gradient Descent 
Some types of neural networks can sometimes fail to provide good approximations when the 

data is polluted with noise. To solve this problem, uncertainty-resistant neural networks have 

been proposed. One such robust neural network is the rough neural network presented by 

Lingras [16]. The main difference between these networks and other multilayer neural networks 

is the backpropagation of neurons and communication weight errors. These networks use 

interval weights instead of considering deterministic weights to include uncertainty, and use 

rough neurons instead of deterministic neurons that can be applied to all layers. In a two-layer 

perceptron, if this operation is applied to the first layer (hidden layer), it is said to be a type 1 

rough model. 

The symbols U and L represent the upper limit and lower limit neurons, respectively. 

According to figure 4, the inputs are entered into the upper and lower limit neurons through 

interval weights. After the effect of the activation function on them, the output 𝑂𝑈 for the upper 

limit neuron and 𝑂𝐿  for the lower limit neuron are produced. The final output can then be 

generated through one of the average or weighted models are shown in figure 4. In this research, 

the average model is used. It should be noted that the average model is a special case of the 
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weighted model where  𝛼 = 𝛽 = 0.5 . In a more general way, the weighted model can be 

defined as follows: 

 
𝛽 = 1 − 𝛼     0 < 𝛼 , 𝛽 < 1 

 
(28) 

𝑂 = 𝛼 × 𝑂𝑈 + 𝛽 × 𝑂𝐿 (29) 

 

 
Figure 4. 

A: A rough neuron model with weighted output (weighted model) 

B: A rough neuron model with average output (average model) 

 

The feedforward equations of the first layer for the type1 rough model with gradient descent 

learning algorithm are as follows: 

 
𝑁𝑒𝑡𝐿

1 = 𝑤𝐿
1 × 𝐼𝑛𝑝𝑢𝑡𝑇 (30) 

𝑁𝑒𝑡𝑈
1 = 𝑤𝑈

1 × 𝐼𝑛𝑝𝑢𝑡𝑇 (31) 

𝑂𝐿
1 = 𝑚𝑖𝑛(𝑓1(𝑁𝑒𝑡𝐿

1) , 𝑓1(𝑁𝑒𝑡𝑈
1 )) = 𝑚𝑖𝑛 (

1

1 + 𝑒𝑥𝑝(−𝑁𝑒𝑡𝐿
1)

 , 
1

1 + 𝑒𝑥𝑝(−𝑁𝑒𝑡𝑈
1)

) 

 

(32) 

𝑂𝑈
1 = 𝑚𝑎𝑥(𝑓1(𝑁𝑒𝑡𝐿

1) , 𝑓1(𝑁𝑒𝑡𝑈
1)) = 𝑚𝑎𝑥 (

1

1 + 𝑒𝑥𝑝(−𝑁𝑒𝑡𝐿
1)

 , 
1

1 + 𝑒𝑥𝑝(−𝑁𝑒𝑡𝑈
1)

) 

 

(33) 

𝑂1 = 0.5 × (𝑂𝑈
1 + 𝑂𝐿

1) 

 
(34) 

And for the output layer, the feedforward equations are as follows: 

 
𝑁𝑒𝑡2 = 𝑤2 × 𝑂1 (35) 

𝑂2 = 𝑓2(𝑁𝑒𝑡2) = 𝑁𝑒𝑡2 (36) 

𝑒 = 𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂2 
 

(37) 

Then the steps of backpropagation of the error are performed, that the gradient descent 

algorithm updates and corrects the weights by propagating the effect of the error from the last 

layer to the first layer. Thus, for the last layer: 

 

∆𝑤2(𝑘) = −𝜂2
𝜕𝐸(𝑘)

𝜕𝑤2(𝑘)
= −𝜂2 × (

𝜕𝐸

𝜕𝑒
×

𝜕𝑒

𝜕𝑂2
×

𝜕𝑂2

𝜕𝑁𝑒𝑡2
×

𝜕𝑁𝑒𝑡2

𝜕𝑤2
) (𝑘) (38) 
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∆𝑤2(𝑘) = −𝜂2 × 𝑒(𝑘) × (−1) × 1 × 𝑂1𝑇
(𝑘) = 𝜂2 × 𝑒(𝑘) × 𝑂1𝑇

(𝑘) 

 
(39) 

𝑤2(𝑘 + 1) = 𝑤2(𝑘) + ∆𝑤2(𝑘) = 𝑤2(𝑘) + 𝜂2 × 𝑒(𝑘) × 𝑂1𝑇
(𝑘) 

 
(40) 

In backpropagation equations for the hidden layer for type1 rough model with 𝛼 = 𝛽 = 0.5, 

the sensitivity functions in both modes 𝑓1(𝑁𝑒𝑡𝐿
1) ≤ 𝑓1(𝑁𝑒𝑡𝑈

1) or 𝑓1(𝑁𝑒𝑡𝐿
1) >  𝑓1(𝑁𝑒𝑡𝑈

1) are the 

same and have no difference. In fact, it can be said in the backpropagation equations of the first 

type Rough model that 𝛼 = 𝛽 = 0.5 is used, 𝑓1(𝑁𝑒𝑡𝑈
1) and 𝑓1(𝑁𝑒𝑡𝐿

1) being larger or smaller 

than each other will not cause sensitivity to the equations of the model, and it will be the same in 

both case. Therefore, to avoid long explanations, only the first case will be presented. 

First case: if for a neuron, 𝑓1(𝑁𝑒𝑡𝐿
1) ≤ 𝑓1(𝑁𝑒𝑡𝑈

1), Then: 

 

𝑂𝐿
1 = 𝑚𝑖𝑛(𝑓1(𝑁𝑒𝑡𝐿

1) , 𝑓1(𝑁𝑒𝑡𝑈
1 )) = 𝑓1(𝑁𝑒𝑡𝐿

1) =
1

1 + 𝑒𝑥𝑝(−𝑁𝑒𝑡𝐿
1)

 

 

(41) 

𝑂𝑈
1 = 𝑚𝑎𝑥(𝑓1(𝑁𝑒𝑡𝐿

1) , 𝑓1(𝑁𝑒𝑡𝑈
1)) =  𝑓1(𝑁𝑒𝑡𝑈

1) =
1

1 + 𝑒𝑥𝑝(−𝑁𝑒𝑡𝑈
1)

 

 

(42) 

𝑂1 = 0.5 × (𝑂𝑈
1 + 𝑂𝐿

1) 

 
(43) 

 

Setting the weights of the lower limit of the hidden layer: 

 

∆𝑤𝐿
1 = −𝜂1 × (

𝜕𝐸

𝜕𝑒
×

𝜕𝑒

𝜕𝑂2
×

𝜕𝑂2

𝜕𝑁𝑒𝑡2
×

𝜕𝑁𝑒𝑡2

𝜕𝑂1
×

𝜕𝑂1

𝜕𝑂𝐿
1 ×

𝜕𝑂𝐿
1

𝜕𝑁𝑒𝑡𝐿
1 ×

𝜕𝑁𝑒𝑡𝐿
1

𝜕𝑤𝐿
1 ) (𝑘) 

 

(44) 

∆𝑤𝐿
1 = −𝜂1 × 𝑒(𝑘) × (−1) × 1 × (𝑤2(𝑘) × 𝑓1′

(𝑘))
𝑇

× 0.5 × 𝐼𝑛𝑝𝑢𝑡(𝑘) 

 
(45) 

𝑓1′
(𝑘) = 𝑑𝑖𝑎𝑔(𝑂𝐿

1(𝑘) × (1 − 𝑂𝐿
1(𝑘))) 

 
(46) 

𝑤𝐿
1(𝑘 + 1) = 𝑤𝐿

1(𝑘) + ∆𝑤𝐿
1(𝑘)

= 𝑤𝐿
1(𝑘) + 𝜂1 × 𝑒(𝑘) × (𝑤2(𝑘) × 𝑓1′

(𝑘))
𝑇

× 0.5 × 𝐼𝑛𝑝𝑢𝑡(𝑘) 
 

(47) 

And then, Setting the weights of the upper limit of the hidden layer: 

∆𝑤𝑈
1 = −𝜂1 × (

𝜕𝐸

𝜕𝑒
×

𝜕𝑒

𝜕𝑂2
×

𝜕𝑂2

𝜕𝑁𝑒𝑡2
×

𝜕𝑁𝑒𝑡2

𝜕𝑂1
×

𝜕𝑂1

𝜕𝑂𝑈
1 ×

𝜕𝑂𝑈
1

𝜕𝑁𝑒𝑡𝑈
1 ×

𝜕𝑁𝑒𝑡𝑈
1

𝜕𝑤𝑈
1 ) (𝑘) (48) 

∆𝑤𝑈
1(𝑘) = −𝜂1 × 𝑒(𝑘) × (−1) × 1 × (𝑤2(𝑘) × 𝑓1′

(𝑘))
𝑇

× 0.5 × 𝐼𝑛𝑝𝑢𝑡(𝑘) 
 

(49) 

𝑓1′
(𝑘) = 𝑑𝑖𝑎𝑔(𝑂𝑈

1 (𝑘) × (1 − 𝑂𝑈
1 (𝑘))) 

 
(50) 

𝑤𝑈
1(𝑘 + 1) = 𝑤𝑈

1(𝑘) + ∆𝑤𝑈
1(𝑘)

= 𝑤𝑈
1(𝑘) + 𝜂1 × 𝑒(𝑘) × (𝑤2(𝑘) × 𝑓1′

(𝑘))
𝑇

× 0.5 × 𝐼𝑛𝑝𝑢𝑡(𝑘) 
(51) 
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Figure 5 shows a generalized form of the training process of a two-layer perceptron neural 

network based on the first type of rough model. 

 

 
Figure 5. A two-layer Rough (type1) perceptron neural network training process. 

 

2.2.5. Two layer perceptron + Recurrent Neural Network (Elman) + Gradient 

Descent 
Elman introduced a different neural network with internal feedback in the hidden layer [17]. 

This neural network is one of the simplest recurrent neural networks whose parameters can be 

adjusted based on the error backpropagation method. If the return weights are not adjustable, the 

Elman network is partially recurrent, and if the return and forward weights are adjustable, the 

Elman network is fully recurrent. In this research, a fully recurrent network has been 

implemented. 

The feedforward equations for the Elman neural network can be written as follows: 

 
𝑁𝑒𝑡1(𝑘) = 𝑤𝑥(𝑘) × 𝐼𝑛𝑝𝑢𝑡(𝑘) + 𝑤𝑐(𝑘) × 𝑥𝑐(𝑘) 

 
(52) 

𝑜1(𝑘) = 𝑓1(𝑁𝑒𝑡1(𝑘)) = 𝑓1(𝑤𝑥(𝑘) × 𝐼𝑛𝑝𝑢𝑡(𝑘) + 𝑤𝑐(𝑘) × 𝑜1(𝑘 − 1)) 
 

(53) 

In the above equations, Input=[𝑥1 , 𝑥2 ,…, 𝑥𝑛0
] is the external input vector, and 𝑥𝑐  is the 

output of the hidden layer in the previous time step that is mathematically expressed as 𝑥𝑐(𝑘) =
𝑜1(𝑘 − 1). Also, 𝑓1is the logarithmic sigmoid activation function (for the hidden layer). 𝑤𝑐 and 

𝑤𝑥are the recurrent and forward weight matrices, respectively. Therefore, the output of the 

hidden layer activation function depends on the information about its previous step, and this 

indicates the depth of the network memory. 
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The feedforward equations for the output layer are: 

 
𝑁𝑒𝑡2(𝑘) = 𝑤𝑦(𝑘) × 𝑜1(𝑘) (54) 

𝑜2(𝑘) = 𝑓2(𝑁𝑒𝑡2(𝑘)) (55) 

 

That 𝑤𝑦 is the forward weight matrix between the hidden layer and output layer. 𝑜2 is the 

final output vector of the neural network. The activation function of the output layer is also 

considered linear. Therefore: 

 
𝑜2(𝑘) = 𝑁𝑒𝑡2(𝑘) (56) 

 

Gradient descent error backpropagation algorithm is used to train network weights. The 

function that shows the performance of the network during the training process is: 

 

𝐸(𝑘) =
1

2
𝑒2(𝑘) =

1

2
(𝑇𝑎𝑟𝑔𝑒𝑡(𝑘) − 𝑜2(𝑘))2 

 

(57) 

The training of the weights between the output and hidden layer by the gradient descent 

method is as follows: 

 
𝜕𝐸(𝑘)

𝜕𝑤𝑦(𝑘)
=  

𝜕𝐸(𝑘)

𝜕𝑒(𝑘)
×

𝜕𝑒(𝑘)

𝜕𝑜2(𝑘)
×

𝜕𝑜2(𝑘)

𝜕𝑁𝑒𝑡2(𝑘)
×

𝜕𝑁𝑒𝑡2(𝑘)

𝜕𝑤𝑦(𝑘)
= 𝑒(𝑘) × (−1) × 𝑓2′

(𝑘) × 𝑜1(𝑘) (58) 

∆𝑤𝑦(𝑘) = −𝜂𝑦

𝜕𝐸(𝑘)

𝜕𝑤𝑦(𝑘)
= 𝜂𝑦 × 𝑒(𝑘) × 𝑓2′

(𝑘) × 𝑜1(𝑘) (59) 

𝑤𝑦(𝑘 + 1) = 𝑤𝑦(𝑘) + ∆𝑤𝑦(𝑘) = 𝑤𝑦(𝑘) + 𝜂𝑦 × 𝑒(𝑘) × 𝑓2′
(𝑘) × 𝑜1(𝑘) 

 
(60) 

Considering that according to the above equation, the information of the previous step is 

present in 𝑜1(𝑘), so the memory depth has also appeared in the above equation. The steps of 

adjusting the forward weight matrix between the hidden layer and the input layer, is done as 

follows: 

 
𝜕𝐸(𝑘)

𝜕𝑤𝑥(𝑘)
=  

𝜕𝐸(𝑘)

𝜕𝑒(𝑘)
×

𝜕𝑒(𝑘)

𝜕𝑜2(𝑘)
×

𝜕𝑜2(𝑘)

𝜕𝑁𝑒𝑡2(𝑘)
×

𝜕𝑁𝑒𝑡2(𝑘)

𝜕𝑜1(𝑘)
×

𝜕𝑜1(𝑘)

𝜕𝑁𝑒𝑡1(𝑘)
×

𝜕𝑁𝑒𝑡1(𝑘)

𝜕𝑤𝑥(𝑘)
 (61) 

∆𝑤𝑥(𝑘) =  𝑒(𝑘) × (−1) × 𝑓2′
(𝑘) × 𝑤𝑦(𝑘) × 𝑓1′

(𝑘) × 𝐼𝑛𝑝𝑢𝑡(𝑘) (62) 

∆𝑤𝑥(𝑘) = −𝜂𝑥

𝜕𝐸(𝑘)

𝜕𝑤𝑥(𝑘)
= 𝜂𝑥 ×  𝑒(𝑘) × 𝑓2′

(𝑘) × 𝑤𝑦(𝑘) × 𝑓1′
(𝑘) × 𝐼𝑛𝑝𝑢𝑡(𝑘) (63) 

𝑤𝑥(𝑘 + 1) = 𝑤𝑥(𝑘) − 𝜂𝑥

𝜕𝐸(𝑘)

𝜕𝑤𝑥(𝑘)

= 𝑤𝑥(𝑘) + 𝜂𝑥 × 𝑒(𝑘) × 𝑓2′
(𝑘) × 𝑤2(𝑘) × 𝑓1′

(𝑘) × 𝐼𝑛𝑝𝑢𝑡(𝑘) 

(64) 

 

In the following, the weights of the recurrent sections are also obtained in the same way by 

the gradient descent algorithm: 

 
𝜕𝐸(𝑘)

𝜕𝑤𝑐(𝑘)
=  

𝜕𝐸(𝑘)

𝜕𝑒(𝑘)
×

𝜕𝑒(𝑘)

𝜕𝑜2(𝑘)
×

𝜕𝑜2(𝑘)

𝜕𝑁𝑒𝑡2(𝑘)
×

𝜕𝑁𝑒𝑡2(𝑘)

𝜕𝑜1(𝑘)
×

𝜕𝑜1(𝑘)

𝜕𝑁𝑒𝑡1(𝑘)
×

𝜕𝑁𝑒𝑡1(𝑘)

𝜕𝑤𝑐(𝑘)
 (65) 
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∆𝑤𝑐(𝑘) = −𝜂𝑐

𝜕𝐸(𝑘)

𝜕𝑤𝑐(𝑘)
 (66) 

 

The chain dependency between the output of the hidden layer and the return weights means 

that 𝑜1(𝑘 − 1) depends on 𝑤𝑐(𝑘 − 1) × 𝑜1(𝑘 − 2). Also, 𝑜1(𝑘 − 2) depends on 𝑤𝑐(𝑘 − 2) ×
𝑜1(𝑘 − 3)  and etc. This chain dependence is called backpropagation through time in the 

calculation of chain derivatives. 

 

∆𝑤𝑐(𝑘) = 𝜂𝑐 × 𝑒(𝑘) × 𝑓2′
(𝑘) × 𝑤𝑦(𝑘) × 𝑓1′

(𝑘) × [𝑥𝑐(𝑘) + 𝑤𝑐(𝑘) ×
𝜕𝑥𝑐(𝑘)

𝜕𝑤𝑐(𝑘)
] (67) 

Or: 

∆𝑤𝑐(𝑘) = 𝜂𝑐 × 𝑒(𝑘) × 𝑓2′
(𝑘) × 𝑤𝑦(𝑘) × 𝑓1′

(𝑘) × [𝑥𝑐(𝑘) + 𝑤𝑐(𝑘) ×
𝜕𝑜1(𝑘 − 1)

𝜕𝑤𝑐(𝑘)
] (68) 

 

If the dependence between 𝑜1 and 𝑤𝑐 is ignored from a certain time before, 
𝜕𝑜1(𝑘−1)

𝜕𝑤𝑐(𝑘)
 can be 

considered equal to zero. It is called truncated backpropagation through time. In this research, 

truncated backpropagation through time was used. Therefore, the above equation is expressed in 

a simplified form as follows: 

 

∆𝑤𝑐(𝑘) = 𝜂𝑐 × 𝑒(𝑘) × 𝑓2′
(𝑘) × 𝑤𝑦(𝑘) × 𝑓1′

(𝑘) × 𝑥𝑐(𝑘) (69) 

𝑤𝑐(𝑘 + 1) = 𝑤𝑐(𝑘) + ∆𝑤𝑐(𝑘) = 𝑤𝑐(𝑘) + 𝜂𝑐 × 𝑒(𝑘) × 𝑓2′
(𝑘) × 𝑤𝑦(𝑘) × 𝑓1′

(𝑘) × 𝑥𝑐(𝑘) (70) 

 
2.3. Accuracy and error evaluation criteria 

In this study, several functions have been used to evaluate the accuracy of the model, which 

include: 

MSE, RMSE, MAE and 𝑅2. In the continuation of this section, the formulation of each of 

these four criteria will be explained: 

 
2.3.1. MSE (Mean Squared Error): 

The MSE index is the mean square of errors and is defined mathematically as the following 

equation: 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (71) 

 

That N is the number of data, 𝑦𝑖 is the i-th target, and 𝑦̂𝑖 is the i-th predicted data. As 𝑀𝑆𝐸 

gets closer to zero, the quality of the results improves. 
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2.3.2. RMSE (Root Mean Square Error): 
The RMSE index is the root mean square of errors and is mathematically defined as the 

following equation: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (72) 

 

In other words, RMSE is equivalent to the square root of MSE. 

 
𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 

 

(73) 

As 𝑅𝑀𝑆𝐸 gets closer to zero, the quality of the results improves. 

 

2.3.3. MAE (Mean Absolute Error): 
In statistics, mean absolute error is a criterion of errors between paired observations 

expressing the same phenomenon. This index means the average of the absolute values of the 

errors and is expressed mathematically as the following equation: 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑁

𝑖=1

 (74) 

 

As 𝑀𝐴𝐸 gets closer to zero, the quality of the results improves. 

 

2.3.4. 𝑹𝟐 (Coefficient of Determination): 

The coefficient of determination, represented by the symbol 𝑅2, expresses the proportion of 

the variation in the dependent variable that is predictable from the independent variable. It is 

expressed mathematically as the following equation: 

 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 (75) 

𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑁

𝑖=1

 (76) 

𝑇𝑆𝑆 = (𝑁 − 1) × 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = (𝑁 − 1) × ∑
(𝑦𝑖 − 𝑦𝑖̅)

2

𝑁 − 1

𝑁

𝑖=1

= ∑(𝑦𝑖 − 𝑦𝑖̅)
2

𝑁

𝑖=1

 (77) 

 

RSS means the sum of squares of residuals, TSS means the total sum of squares, and 𝑦𝑖̅ is the 

mean of data. As 𝑅2 gets closer to 1, the quality of the results improves. 
 

3. Results 
The results implementing the five mentioned models are presented in Table 3. Error indices 

show that the Levenberg-Marquardt method is more efficient than the other methods and 

provides a more accurate prediction. After that, the rough model is in second place and provides 

a more accurate prediction than the other methods. 
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Table 3. Error indices of MLP during the training and testing stage 

Model 𝑅2
𝑇𝑟𝑎𝑖𝑛 𝑅2

𝑇𝑒𝑠𝑡  𝑅𝑀𝑆𝐸𝑇𝑟𝑎𝑖𝑛 𝑅𝑀𝑆𝐸𝑇𝑒𝑠𝑡  𝑀𝑆𝐸𝑇𝑟𝑎𝑖𝑛 𝑀𝑆𝐸𝑇𝑒𝑠𝑡  𝑀𝐴𝐸𝑇𝑟𝑎𝑖𝑛 𝑀𝐴𝐸𝑇𝑒𝑠𝑡  

1 0.83696 0.8442 0.014575 0.011946 0.000212 0.000142 0.011178 0.009455 

2 0.92616 0.94079 0.009808 0.007364 0.000096 0.000054 0.007815 0.005801 

3 0.84946 0.84552 0.014005 0.011895 0.000196 0.000141 0.010940 0.009131 

4 0.91598 0.92205 0.010463 0.008449 0.000109 0.000071 0.008401 0.006305 

5 0.86330 0.84206 0.013346 0.012028 0.000178 0.000144 0.010586 0.008778 

 

According to the results presented in table 3, the second model (Levenberg Marquardt 

algorithm) and the fourth model (Rough Model) were determined as the chosen model of this 

research. The results of the development process of the second model (Levenberg Marquardt 

algorithm) during the training and the test stage are shown in figures (6) and (7), respectively: 

 
Figure 6. ANN development process during the training stage (Levenberg-Marquardt Model) 

 

 
Figure 7. ANN development process during the test stage (Levenberg-Marquardt Model) 
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Figure (8) also shows how error indicators such as MSE, RMSE, and MAE are developed 

during the training and test stage process and reach a stable level. 

 

   
MSE RMSE MAE 

Figure 8. Error indicators development process during training & test stage (Levenberg-Marquardt 

Model) 

 

Then the results of the development process of the fourth model (Rough model) during the 

training and the test stage are shown in figures (9) and (10), respectively: 

 
Figure 9. ANN development process during the training stage (Rough Model) 
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Figure 10. ANN development process during the test stage (Rough Model) 

 

Figure (11) also shows how error indicators such as MSE, RMSE, and MAE are developed 

during the training and test stage process and reach a stable level. 

   
MSE RMSE MAE 

Figure 11. Error indicators development process during the training & the test stage (Rough Model) 

 

 

4. Discussion 
 

In Table 4, a comparison of the results between the current research and the previous research 

is presented. This comparison shows that the results were obtained from the Levenberg-

Marquardt algorithm in this research are better than the research of Parsaie et al. [5]. 
 

Table 4. A comparison between the current research and Parsaie et al. [5] 

Model N.I N.H.L A.F.1 N.N.H.L 𝑅2
𝑇𝑟𝑎𝑖𝑛 𝑅2

𝑇𝑒𝑠𝑡 𝑅𝑀𝑆𝐸𝑇𝑟𝑎𝑖𝑛 𝑅𝑀𝑆𝐸𝑇𝑒𝑠𝑡  
LM (This research) 4 1 logsig 7 0.92616 0.94079 0.009808 0.007364 
LM (Parsaie et. al.) 4 1 logsig 6 0.88 0.84 0.012 0.014 

Notes: LM: Levenberg-Marquardt, N.I: number of inputs, N.H.L: number of hidden layers, N.N.H.L: 

number of neurons in the hidden layer, A.F.1: activation function of hidden layer 
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5. Sensitivity Analysis 
Determining the effective parameters for each problem is very important in soft computing. 

Therefore, in this section, the importance of each parameter in the model’s results is examined. 

For this purpose, various approaches can be considered. In this research, the influence of inputs 

on the model’s performance has been investigated. In this way, every time, by removing one of 

the four input parameters, the model is trained using the remaining three input parameters. 

Therefore, by examining the error indicators in each situation, it is determined which of the 

parameters the model is more sensitive to than other parameters. The results of the sensitivity 

analysis are presented in Table (5). 
 

Table 5. Sensitivity Analysis of ANN  
Input Items Absent Item Target 𝑅2

𝑇𝑒𝑠𝑡 𝑅𝑀𝑆𝐸𝑇𝑒𝑠𝑡 𝑀𝑆𝐸𝑇𝑒𝑠𝑡 𝑀𝐴𝐸𝑇𝑒𝑠𝑡 
𝑦

𝑑⁄  , 𝑏 𝑑⁄  , 𝑏 𝐵⁄  , 𝐻 𝑑⁄  − 𝐶𝑑 0.94079 0.0073645 0.000054 0.005801 

𝑏
𝑑⁄  , 𝑏 𝐵⁄  , 𝐻 𝑑⁄  

𝑦
𝑑⁄  𝐶𝑑 0.86952 0.010932 0.000119 0.008533 

𝑦
𝑑⁄  , 𝑏 𝐵⁄  , 𝐻 𝑑⁄  𝑏

𝑑⁄  𝐶𝑑 0.92073 0.008520 0.000072 0.006746 

𝑦
𝑑⁄  , 𝑏 𝑑⁄  , 𝐻 𝑑⁄  𝑏

𝐵⁄   𝐶𝑑 0.89681 0.009722 0.000094 0.007460 

𝑦
𝑑⁄  , 𝑏 𝑑⁄  , 𝑏 𝐵⁄  𝐻

𝑑⁄  𝐶𝑑 0.74 0.023463 0.000551 0.017498 

 
Based on the sensitivity analysis, it can be seen that the model has minimum sensitivity to the 

dimensionless parameter b/d. Also, the highest sensitivity of the model results is related to the 

dimensionless parameter H/d. 
 

6. Conclusions 
In this research, five different methods based on artificial neural networks were used to 

predict the discharge coefficient of combined weir-gate. The results (presented in Table 3) 

showed that the model trained by the Levenberg-Marquardt algorithm shows a more accurate 

prediction than the other models. Also, in another part of this study, sensitivity analysis was 

performed for all four input parameters of this model. Based on the results presented in table (4), 

the highest sensitivity of the model results is related to the H/d parameter. Also, the model shows 

minimum sensitivity to the b/d parameter compared to others. 
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