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Abstract 
A numerical model is developed in this study using finite element method (FEM) to estimate 

relative total uplift force for different positions of holes of drainage gallery in the foundation of 

Guangzhao gravity dam, located in China. The data of the relative total uplift force generated for 

different input combinations using FEM were used to develop machine learning (ML) models. A 

three-layer Artificial Neural Network (ANN) and a new hybrid model known as ANN-Whale 

Optimization Algorithm (ANN-WOA) were used for this purpose. The results showed that R2, 

RMSE, NSE, KGE and RE% for ANN-WOA model in estimation of the relative total uplift 

forces were 0.998, 0.021, 0.989, 0.964 and 3.3% respectively and those for ANN model were 

0.980, 0.023, 0.982, 0.953 and 4.67% respectively, which indicate the higher accuracy of ANN-

WOA model compared to ANN model. The new hybrid model, ANN-WOA with the less RMSE 

and RE% and high KGE and NSE is a more appropriate model for the estimation of the relative 

total uplift force. The extracted metrics of violin plots indicated that the probability distribution 

of the relative total uplift force estimated using ANN-WOA model was very similar to that 

obtained using FEM. 

 

Keywords: Gravity dam; Uplift force; Finite element method; Hybrid artificial neural network-

whale optimization algorithm. 

 

Received: 14 September 2022; Accepted: 28 April 2023 

 

 

 

 

 

 

 
1 Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz-Iran. Email: 

Nourani. E-mail: Nourani.Bahram@tabrizu.ac.ir (Corresponding author) 
2 Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz-Iran. 



B. Nourani, F. Salmasi, M. A. Ghorbani 

 

 
WINTER 2023, Vol 9, No 1, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                  

44 

1. Introduction  
Seepage from the dams and the resulting increase in uplift force is considered as one of the 

most important factors for the destruction of dams. The dams and other hydraulic structures 

associated with water storage are always subjected to water seepage from the foundation, sides 

and sometimes their bodies. The upward force exerted from the bottom of the dam due to water 

seepage through the dam foundation is referred as uplift force. The uplift force sometimes 

becomes high enough to overturn the dam. Therefore, it is very important to make logistics in 

design in order to reduce the amount of uplift force. This is usually done by installing a drainage 

gallery in the dam body where drainage wells are used to collect seepage water from the body of 

the dam, especially from the dam foundation to reduce uplift forces.  

The optimum design of the drainage system is decided through numerical analysis [1]. 

Traditionally, a closed-form (analytical) solution based on seepage theory is used to determine 

the optimal location of drainage gallery system of gravity dams to keep the uplift force minimum 

[2]. 

Salmasi et al. [3] carried out a numerical simulation to measure the effect of relief wells for 

decreasing uplift in a homogeneous earth dam. Relief wells are used extensively to relieve 

excess hydrostatic pressure in pervious foundation strata overlain by impervious top strata, 

conditions which often exist landward of levees and downstream of dams and hydraulic 

structures. Results showed that by decreasing the distance between relief wells and increasing 

the diameter of the relief wells, total uplift pressure decreases. 

The optimum location of the drainage system is not fixed and therefore, different 

arrangements of drain system are numerically solved to find the optimum design of drainage 

system for the reduction of uplift forces (Nourani et al. [4], Salmasi et al. [5]). Salmasi and 

Nouri [6] examined the influence of upstream semi-impervious blanket of earth dams on 

seepage. The reduction of seepage can also decline the uplift force under the dam. 

The examination produces adequate data for common place 2D embankment dam cross-sections 

by numerically solving a varied range of arrangements of a provision of upstream blanket. 

Results indicated that application of impervious of blanket in upstream of the earth dam at 

accurate length and thickness is effective in decreasing seepage and subsequently increasing dam 

stability. Jafari et al. [7] used granular filter below the bed of a canal to decline uplift force. They 

applied numerical investigation with finite element method. Results show that utilize of a filter 

envelope nearby the drain-pipe for declining hydro-static pressure can be beneficial. 

The capacity of Machine learning (ML) models have been implemented successfully in the 

field of geo-science and related hydraulic structure problems (Khosravinia et al. [8], Khozani et 

al. [9]; Maroufpoor et al. [10], Mohammed et al. [11], Sharafati et al.[12], Daneshfaraz et al. 

[13]). In particular, the ML model have been used in recent years for the modelling of drainage 

system (Chinh et al. [14], Baghalian and Nazari, [15], Al-Suhaili and Karim, [16], and Nourani 

et al. [17]). Chinh et al. [14] used a feed-forward artificial neural network (ANN) to model water 

levels in drainage canals in order to study the relations between rainfall and water table of a 

drainage canal in flat and low-lying in an agricultural region. Khan et al. [18] used the ANN to 

model seepage of a channel to analyze the variation of channel seepage using electromagnetic 

imaging (EM31) data, hydraulic conductivity, and the depth and salinity of groundwater. 

Baghalian and Nazari, [15] estimated the uplift pressure below a diversion dam using ANN and 

Genetic Algorithm (GA), where the Laplace’s equation was used to solve for piezometric heads 

and uplift pressures. Al-Suhaili and Karim [16] studied the performance of a GA method 

together with ANN technique to discover the optimal values of upstream and downstream cut-

off lengths, apron length and the required downstream protection length for hydraulic structures 
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to satisfy a safety factor in term of uplift pressure and piping failures.  

Sattar [19] used 140 data from large dams’ failure information to predict breach condition 

based on gene expression programming (GEP). These data are related to earth-fill and rock-fill 

embankments from the world. Dam parameters include geometry, hydraulic and geography 

information. A new empirical formula was presented using the GEP. Nourani et al. [17] applied 

ANN method to predict output hydrograph from the breach in earthen dams using laboratory and 

field data from breaches. They showed that soil cohesiveness and angle of friction are two 

important properties in breach development. In addition, ANN was in good agreement with the 

observed values. Sharghi et al. [20] conducted an ensemble artificial intelligence (AI) based 

model to predict seepage from Sattarkhan earth-fill dam, Iran. The results revealed that the 

assembling technique could enhance the AI modelling by up to 20% in the verification stage. 

Choi et al. [21] used the ANN to estimate the scour depth nearby bridge piers. The database was 

from field-scale scour depth reports. It was presented that data quality evaluation such as the 

Euclidean distance strategy and the Mahalanobis distance strategy significantly develops the 

forecast of the ANN model. One of the newest samples of meta-heuristic algorithms, that has not 

yet been generally explored, is the Whale optimization algorithm (WOA), accessible by Mirjalili 

and Lewis [22]. Du et al. [23] used the WOA as an optimizer in earlier investigations in 

electrical power forecasting. Although, several research evidence the potential of the AI models 

for solving diverse hydraulic engineering problems, the associated problem of the hyper-

parameters optimization is still the major drawback that needs the scholars attention to solve 

(Yaseen et al. [24, 25]). Samadianfard et al. [26] evaluated the ability of MLP hybrid models 

with WOA and GA in predicting wind speed. Various indicators were used to evaluate their 

performance and finally it was determined that the MLP model with WOA (MLP-WOA) has 

more accurate results than MLP-GA. Tuning AI models with reliable optimization algorithms is 

still ongoing research era of computer aid simulation [27]. 

Regarding the aforementioned studies, we can conclude that the estimation of the uplift force 

under dams or other hydraulic structures has not been considered with application intelligence or 

hybrid intelligence methods. To the best knowledge of the current research, a novel hybrid 

model known as Artificial Neural Network-Whale Optimization Algorithm (ANN-WOA) is used 

in this study for the estimation of uplift force in a gravity dam. The Guangzhao gravity dam, 

located in China was used as the case study. The finite element method (FEM) was used to 

simulation and estimation the uplift force for different positions of drainage holes in the 

foundation of the gravity dam. Obtained data using FEM namely, the relative total uplift force 

for different diameters of drains holes, their locations from the dam heel and the distance center-

to-center of drain holes were used for the development of ANN-WOA model. The most goals of 

the present study are examining and analyzing the accurateness of an enhanced artificial neural 

network (ANN) model utilizing the whale optimization algorithm (WOA); where the main 

purpose of the WOA is to specify the optimum parameters of the ANN model. As a results, the 

first target in current study is numerical simulation with finite element method (FEM) that was 

used to estimate the uplift force for different configurations of vertical drain holes of drainage 

gallery in the gravity dam. The second target of the current study is the estimation and sensitivity 

analysis of the relative uplift force obtained from FEM using artificial intelligence. In this study 

used from a novel hybrid optimization tool, namely whale optimization algorithm (WOA), for 

finding the most appropriate parameters of the ANN model for estimating the relative uplift 

force. Therefore, a novel hybrid technique, hybrid neural network with whale optimization 

algorithm is called ANN-WOA, is developed and has been used as intelligence estimating 

model. Also the performance of ANN-WOA model was compared with ANN, FEM (by using of 
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SEEP/W software) and Analytical method in estimation of total uplift force. This is the first 

application of ANN-WOA in the calculation of the uplift force in gravity dams. It is expected 

that the novel technique presented in this study will help in exact estimation of uplift force in a 

gravity dam for better and cost-effective management of dam safety.  

 

2. Materials and Methodology 

2.1. Governing Equations 
The common equation of flow in porous media can be presented using Darcy's equation. 

When Darcy’s equation is combined with the continuity equation of flow and converted to 

Richard's equation, it becomes a partial differential equation that describes seepage flow. The 

common differential equation of seepage flow for two-dimensional (2D) state can be stated as: 

 

(1) 
𝜕

𝜕𝑥
(𝑘𝑥
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where h is the total head (m) that is equal to Z+H and in that Z and H are static and pressure 

head respectively, Q is the applied boundary flux (1/s), θ is the water content in volumetric form 

(m3/m3), kx and ky are the hydraulic conductivities in x and y-directions (m/s), and t is time (s). 

The Eq.1 for steady state condition can be expressed as follows: 
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If the porous media is homogeneous and isotropic (kx = ky = k) and the seepage flow is zero 

(Q=0), Eq.2 can be simplified in the form of Eq. 3, which is known as the Laplace equation: 

 

(3) 
𝜕2ℎ

𝜕𝑥2
+
𝜕2ℎ

𝜕𝑦2
= 0 ⇒ 𝛻2ℎ = 0 

 

The SEEP/W software was used in this study to solve the differential equation for identified 

boundary conditions using the FEM [28]. 

 

2.2 Numerical Simulation using Finite Element Method (FEM) 
A gravity dam namely Guangzhao gravity dam, located in China with the dimensions as 

shown in Fig.1 was considered in this study for numerical simulation as the case study [1]. The 

width of the floor (L) and the length (T) of the dam are 125 and 30 meters respectively.  
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Figure 1. Illustration of the drain-hole row of drainage gallery system in the gravity dam section  

 

The uplift force in gravity dams is a function of the vertical drains of the drainage gallery. 

The effective factors are the diameter of the drain (d=2r, r is radius of drain holes in drainage 

gallery), the center-to-center distance of the drains (n), the distance of drain row from the heel of 

the dam (s), and water surface level of the reservoir (H). The simulation was conducted for the 

foundation of gravity dam without drainage gallery and 12 arrangements of vertical drains inside 

the drainage gallery having different diameters (d), 0.05, 0.10 and 0.15 meters, each of which in 

4 modes of distance (n), 3, 4, 5 and 6 meters. The impact of the drain row distance from the heel 

of dam was also simulated. For this purpose, 12 different distances of drain row from upstream 

of the dam were considered, 0, 5, 10, 15, 20, 25, 30, 40, 60, 80, 100 and 125 meters. The 

aforementioned conditions were used for two states of water surface level (H) in the upstream of 

the reservoir namely, 168 and 130 m. Thus, the effect of water surface level of the reservoir also 

was investigated. Figure 1 indices a schematic view of the location of the drains in the drainage 

gallery and the parameters used in this study. Depending on the conditions used in the present 

study, the plan view model of the SEEP/W software was used to simulate the dam foundation 

along with the vertical drainages. Figure 2 demonstrations the plan-view of dam foundation in 

software media where s, d, n and H are 10, 0. 15, 6 and 130 meters, respectively. 

For numerical simulation, the boundary conditions (BC) at the upstream and downstream the 

gravity dam foundation were considered equal to the water surface level in the pool and tail 

water level in the form of a pressure head respectively. The upstream water surface level was 

considered to vary between 168 and 130 meters, while the water level in the downstream was 

considered zero. Therefore, the pressure heads in the upstream were considered as 168 and130 

meters as the boundary condition. The boundary condition at the vertical drains was considered 

as zero pressure. Since all the analyses were conducted for a steady state condition, volumetric 

water content was not considered. The foundation of dam material according to the 

characteristics Guangzhao gravity dam is deliberated to be homogeneous and isotropic with a 

saturated permeability of Ksat=2.7E-07 m/s (Fig. 2) [1]. 



B. Nourani, F. Salmasi, M. A. Ghorbani 

 

 
WINTER 2023, Vol 9, No 1, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                  

48 

 
Figure 2. Plan view of dam foundation with 5 drains for specified boundary conditions  

(s=10 m, d=0.15 m, n=6 m, H=130 m) 

 

An independence test of mesh was implemented to specify the optimum number of elements 

in the mesh required for the development of the numerical model. For this objective, the percent 

of relative error (RE %) was obtained for the different number of elements. It should be noted 

that the basis of the calculation in estimating the RE% is based on comparing numerical 

simulation results with results of Chawla et al. (1990) in determining the uplift pressure in a 

specific location and similar conditions. The result showed (Fig. 3) that the RE% was nearly 

fixed when the elements number was ≅30,000. Hence, the average element size of 30,000 was 

used in this study. It should be noted that the number of elements varies slightly with the 

changes in the diameter of drains. Figure 4 illustrates the mesh properties (number of elements 

and nodes) for the gravity dam foundation for s, d and n equal to 30, 0. 15 and 6 meters, 

respectively. Finite  element  mesh  used  to  represent  gravity  dam  foundation  configuration  

is shown in the figure 4. The zoomed view of finite elements surrounding a drain is also shown 

in the figure 4 for clarity. 

 
Figure 3. The RE% for different number of elements  
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Figure 4. Finite element mesh used to represent gravity dam foundation configuration and  

zoomed view of elements surrounding a drain  

  

2.3. Artificial Neural Network (ANN)  
An artificial neural network (ANN) is a distributed parallel information processing system 

that resembles the biological neural networks in the human brain, and can be used for storing 

and recalling data, pattern classification, mapping input patterns to output algorithms, and 

grouping similar patterns [31]. The ANN follow two types of learning processes: supervised and 

unsupervised learning. In supervised learning, the network learns by comparing the predicted 

output with the known output. In unsupervised learning, the network does not need a known 

output for comparison and adjusts the strength of connections through repeated learning 

algorithm cycles. The multilayer perceptron (MLP) is the most common type of neural network 

used for supervised learning and widely employed for modeling complex nonlinear processes 

[32, 33]. This study evaluates the application of neural networks for estimating relative total 

uplift force of gravity dams. The MLP network consists of an input layer, an output layer, and 

one or more hidden layers containing weights that are typically determined through system 

training. The hidden layer adds up weighted inputs and uses an activation function to generate an 

output value. Figure 5 shows a three-layered ANN used in this study which is composed of (i) 

input layer, (ii) hidden layer, and (iii) output layer. The independent parameters in the input layer 

comprise: s/L, n/L, d/L and H/L, and the dependent variable is Ud/Uo. The optimum network 

architecture was defined as 4-8-1 which include 4 neurons for input, a single hidden layer with 8 

neurons and 1 output neuron. The sigmoid tangent function for the input layer and the linear 

function for the output layer was selected for optimum performance of the model using the 

Lewenberg Marquard Algorithm (LMA) after 50 iterations. 
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Figure 5. The architecture of artificial neural network used in this study  

 

2.4 Whale Optimization Algorithm (WOA)  
This algorithm is a meta-heuristic optimization process. This algorithm is inspired by 

humpback whales and was proposed by Mirjalili and Lewis [22] as a meta-heuristic optimization 

process. In fact, this method is a population-based algorithm based on the unique pattern of 

whales for catching more fish. The most interesting fact about hunting whales is their unique 

method called bubble net feeding. In this method, wales swirl around a group of fish and 

produce distinctive bubbles to trap the fish, causing them to move towards the water surface. 

They then move towards the fish and hunt them down using this technique (Fig. 6). 

 
Figure 6. The basic concept of whale optimization algorithm (WOA) 

 

Both artificial neural network (ANN)  and hybrid it with whale optimization algorithm  

(ANN-WOA) were used to estimate the relative total uplift force (Ud/Uo) of gravity dam using 

four variables, H/L, d/L, n/L and s/L as input. To achieve this purpose, the data generated by 

numerical method has been used.  The necessary steps to extract data in the numerical model 

include drawing the geometry of the foundation of the concrete dam, defining the materials 

properties (hydraulic conductivity), meshing, boundary conditions for each of the states, which 

after verification with an existing analytical method have used for the development of single and 

hybrid machine learning models. A total of 288 datasets were generated using FEM, of which 
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70% of the data (200 data) was applied for the training and the rest 30% (88 data) was applied 

for the testing of the models. A code was written in the Wolfram Mathematica software to select 

data randomly for training and testing for different runs. Finally, the desired model was selected 

based on the determination coefficient (R2) and the root mean square error (RMSE). After 50 

repetitions, the best conditions in term of R2 and RMSE were found (R2 = 0.995 and RMSE = 

0.0223). After selection of best combination for dataset an artificial neural network (ANN) with 

the Whale Optimization Algorithm (WOA) was used to create novel method (ANN-WOA). The 

approach used for the development of ANN and ANN-WOA methods is revealed in Fig.7. 

 
Figure 7. The methodology used for the development of new hybrid model  

 

 

 



B. Nourani, F. Salmasi, M. A. Ghorbani 

 

 
WINTER 2023, Vol 9, No 1, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                  

52 

2.5 Model Performance Assessment  
In this research, five statistical metrics namely, determination coefficient (R2), root mean 

square errors (RMSE), percent relative error (RE%) [32], Nash-Sutcliffe efficiency (NSE), and 

Kling-Gupta efficiency (KGE) in order to investigation the accuracy of models, were used  [30, 

31] . The metrics are defined in Eqs.11-15 (Table.1). The assessment criteria of a model based 

on NSE and KGE are also given in the table. 

 
Table 1. Statistica criteria applied in this study 
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where Oi is the observed value (obtained from SEEP/W software), Pi is the estimated value of 

ANN and ANN-WOA models, O̅ is the average of observed values, P̅ is the average of estimated 

values, CV𝑝 is coefficient of variation of estimated values, CV𝑜 is coefficient of variation of 

observed values, 𝜎𝑜  is the standard deviation of observed values, 𝜎𝑝 is the standard deviation of 

estimated values and N is the data number. 
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3. Results and Discussion 

3.1. Model Specification and Data Generation 
The pore water pressure was calculated in each point in the porous medium of soil in dam 

foundation using FEM. Figure 8 shows the pressure head contours for flow lines and velocity 

vectors for s, d, n and H equal to 10, 0. 10, 6 and 130 meters, respectively. Pressure head 

contours change from 168 m at the dam upstream to the zero in the vertical drain position. This 

is because the collected seeped waters enter into drain and then is discharged to atmosphere.  

 

 
Figure 8. Pressure headlines at the foundation of the gravity dam with vertical drain  

(for s=10 m, d=0.015 m, n=6 m, H=130 m) 

 
The values of Hd/H against the values of s/L for d/L = 0.0004, H/L=1.344, and n/L=0.048, 

0.040, 0.032 and 0.024 is illustrated in Figure 9. The Figure 9 shows relative pressure head 

(Hd/H) decreases with the decrease of n/L or increase of d/L. In fact, a compressed effects of five 

essential parameters, i.e.  Hd, H, s, L and d are showed in Fig. 9 that can be helpful in design 

considerations. This is accomplished using dimensionless parameters. 

 

 
Figure 9. Changes in Hd/H with s/L for d/L=0.0004 and H/L=1.344 

 

The changes in Ud/Uo with the changes in s/L for d/L = 0.0004, H/L=1.344, n/L=0.048, 

0.040, 0.032 and 0.024 are illustrated in Figure 10. The Figure 10 shows that relative uplift force 

(Ud/Uo) decreases and then increases with the increase of s/L. It means that the optimum location 

drain system plays a significant role in the total uplift force. In design, it is necessary to obtain a 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

H
d

/H

s/L

n/L = 0.048 n/L = 0.04

n/L= 0.032 n/L= 0.024



B. Nourani, F. Salmasi, M. A. Ghorbani 

 

 
WINTER 2023, Vol 9, No 1, JOURNAL OF HYDRAULIC STRUCTURES 

Shahid Chamran University of Ahvaz 

                                                                                  

54 

minimum value for uplift force when using vertical drains for collection of infiltrated waters. 

This is because minimum uplift force, produces a dam design with higher stability against loads 

and also creates an economical design.   

Table 2 shows the optimum values of s/L for H/L equals 1.344, and n/L=0.048,0.040, 0.032 

and 0.024, and d/L=0.0004, 0.0008 and 0.0012 for which Ud/Uo is minimum. Table 2 indicates 

that for a constant upstream head, the effect of drains diameter is less than drains distance from 

each other (center-to-center) in the determination of the best position of the drains. 

 

 
Figure 10. Variation of relative uplift force (Ud/Uo) with s/L for d/L=0.0004 and H/L=1.344 

 

Table 2. Optimum location of vertical drains (s/L) for different values of d/L and n/L when H/L = 

1.344 
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The results obtained in the present study using numerical simulations were validated with the 

results obtained by Chawla et al. [2] using analytical method for the same conditions. The 

variations of the relative total uplift forces with relative distance from the upstream of the dam 

estimated by Chawla et al. [2] and numerical simulations in the this research are shown in Fig. 

11. A good agreement was observed between the results obtained from the two methods. It can 

be noted that analytical methods usually suffer from some simplifications in partial differential 

equations (PDE), but numerical modelling deletes these simplifications and solve full the PDE. 

For example, the complexity in analytical methods arise in soil heterogenic and soil anisotropic.   
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Figure 11. Comparison of variations of the relative total uplift forces with relative distance from the 

upstream of the dam estimated by Chawla et al. [2] and numerical simulations 

 

The statistical summary of the input and output variables used in the training and testing 

phase of the models given in Table 3. The data for training and testing were selected for which 

the highest R2 and the lowest RMSE were obtained. The statistics include minimum, maximum, 

mean, standard deviation and coefficient of variation. 

 
Table 3. Statistical summary of the parameters during training and testing of models  

Testing data Training data  
Ud

Uo
 

H

L
 

d

L
 

n

L
 

s

L
 

Ud

Uo
 

H

L
 

d

L
 

n

L
 

s

L
  

0.176 1.04 0.0004 0.024 0 0.162 1.04 0.0004 0.024 0 Min 

1 1.344 0.0012 0.048 1 1 1.344 0.0012 0.048 1 Max 

0.525 1.171 0.0008 0.0301 0.322 0.453 1.208 0.0008 0.0318 0.0317 Mean 

0.287 0.151 0.0032 0.0081 0.306 0.243 0.151 0.0032 0.0087 0.272 SD 

0.547 0.129 0.400 0.269 0.921 0.536 0.125 0.0400 0.273 0.858 CV=SD/Mean 

 

As mentioned earlier, several hydraulically parameters and dam geometric variables are 

affected uplift force beneath the dam foundation. In compressed or dimensionless form, these are 

d/L, s/L, n/L, H/L and Ud/Uo. Thus in the following, the application of ANN and ANN-WOA 

methods are provided for the first time in this study based on previous literature reviews. 

The comparison of the observed and the estimated values of Ud/Uo, using ANN and ANN-

WOA in testing phase is shown using scatter plots in Figs. 12 and 13, respectively. It can be seen 

from the linear line fit equations and R2 values of the scatter plots that the ANN-WOA estimates 

were much closer to the observed values than the ANN estimates, which indicates better 

performance of ANN-WOA than ANN. The results also show that Ud/Uo can be estimated with 

high accuracy using ANN-WOA. 
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Figure 12. Scatter plot of observed and estimated relative uplift force during validation of ANN 

model 

 

 
Figure 13. Scatter plot of observed and estimated relative uplift force during validation of ANN-

WOA model 

 

3.2 Diagnostic Analysis of Model Performance 
The violin plot was also used to evaluate performance of models in estimating the values of 

the relative uplift force. Figure 14 indicates the violin plots for observed and estimated values of 

Ud/Uo using ANN and ANN-WOA models. Based on results of Figure 14, the relative uplift 

force estimated using ANN-WOA resembles more with the observed relative uplift force 

compared to that obtained using ANN. The 3rd (Q3), 2nd (Q2) and 1st (Q1) quartiles along with 

maximum and minimum values for both developed models in order to comparison with 

observation mode are presented in Table 4, which indicates much similarities of ANN-WOA 

estimates with the observed data compared to ANN estimates. 
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Figure (14) Violin plots of observed and estimated relative total uplift force using ANN and ANN-

WOA during model validation 

 
Table 4. Comparison the maximum, Q3, Q2, Q1 and minimum values of the numerically estimated of 

observed relative uplift force, ANN and ANN-WOA estimated 

 FEM (SEEP/W) ANN ANN-WOA 

Maximum 1 0.998 0.998 

Q3 0.814 0.827 0.823 

Q2 0.380 0.372 0.372 

Q1 0.279 0.285 0.280 

Minimum 0.175 0.190 0.187 

 
The statistical metrics (R2, RMSE, NSE, KGE and RE%) in the estimation of relative uplift 

force during training and testing of ANN and ANN-WOA models are given in Table 5. The 

ANN-WOA was found to perform better compared to ANN in term of all statistical metrics. 

Therefore, it can be remarked that ANN-WOA model estimates very near results to that achieved 

using the finite element method in estimating Ud/Uo. 
 

Table 5. Statistical metrics obtained during training and testing of ANN-WOA and ANN models  

Training data Testing data 

KGE* NSE* RE% RMSE R2  KGE* NSE* RE% RMSE R2  

0.989 0.990 3.4 0.023 0.994  0.953 0.982 4.67 0.023 0.980 ANN 

0.990 0.994 2.6 0.017 0.991  0.964 0.989 3.50 0.021 0.998 ANN-WOA 

* NSE and KGE indicate a very good performance of both models. 

 

3.3 Sensitivity Analysis 
To investigate the effect of input variables (d/L, s/L, n/L, and H/L) on Ud/Uo, the R2 and 

RMSE for different combinations of input variables were investigated. The results obtained 

using five different models developed using different combinations of inputs are presented in 

Table 6. The results indicate that the accuracy of the optimal the ANN method decreased when 

s/L was eliminated from input combination which indicates s/L (the ratio of the distance of the 

drains from the dam upstream with respect to the width of the dam foundation) is the most 

sensitive parameter in determining the uplift force in gravity dams. The best performance 
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(R2=0.9961 and RMSE=0.0247) was obtained when H/L was eliminated from the input 

combination. Therefore, it can be remarked that the uplift force in gravity dam can be better 

estimated using AI models with three input variables namely, s/L, n/L and d/L. 

 
Table 6. Effect of various computations of inputs on the accuracy of ANN in the estimation of Ud/Uo 

  ANN (Testing) 

Model Input variables R2 RMSE 

1 All 0.9550 0.0223 

2 Eliminate s/L 0.0987 0.2508 

3 Eliminate n/L 0.9853 0.0495 

4 Eliminate d/L 0.9919 0.0349 

5 Eliminate H/L 0.9961 0.0247 

 

In order to demonstrate comparison of the estimated values by any methods, the results 

obtained by Chawla et al. [2], numerical model using SEEP/W, ANN and ANN-WOA as  an 

example for the conditions of d/L = 0.0004, n/L= 0.048 and H/L = 1.344 and two states of s/L = 

0.24 and 0.32 are presented in Table 7. 

 
Table 7. Estimated results of Ud/Uo for two states s/L=0.24 and s/L=0.32 

s/L=0.32 s/L=0.24  

Ud/U0 Ud/U0 Methods 

0.391 0.350 Chawla et al. (1990) 

0.420 0.369 FEM (SEEP/W) 

0.414 0.371 ANN-WOA 

0.411 0.372 ANN 

  

4. Conclusions 
Gravity dams are huge structures and require a large amount of budget obtained from 

governments. Any attempt that can reduce the total costs in construction of gravity dams, are 

welcomed from agencies. Control of uplift force in the foundation of gravity dams is an essential 

factor due for reduction of the dam construction costs. This study deals for control of uplift force 

using drain pipes in the gravity dams foundation. Guangzhao dam (located in China) was 

selected because of its accessible design parameters.  
A novel machine learning model known as ANN-WOA is proposed in this study for the 

estimation of total uplift force in gravity dams. Obtained results are compared with that obtained 

using ANN. The results revealed that both intelligent models (ANN-WOA and ANN) were able 

to estimate the relative total uplift force with good accuracy. The values of statistical metrics for 

ANN-WOA model are:  R2 = 0.998, RMSE = 0.021, NSE = 0.989, KGE= 0.964 and RE% = 

3.3% while those were 0.980, 0.023, 0.982, 0.953 and 4.67% respectively for ANN model. The 

results indicate a relatively better performance of ANN-WOA compared to ANN. The data 

density and violin plots revealed that the dispersion and the probability distribution of the ANN-

WOA estimates were able to resemble the results of the numerical simulation more accurately 

compared to ANN estimates.  

A two-dimensional (Plan view) model was developed in this study for the simulation of total 

uplift force. A three-dimensional model can be developed in future to assess the effect of depth 

and angle of the drains in reducing the uplift force. The results obtained using the three-

dimensional model can be compared with the results obtained using the machine learning 
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models. Besides, other intelligent models can be used in the estimation of relative total uplift 

force and compare the results with that obtained in the present study using ANN-WOA model. 

An important challenge in optimization in engineering is the accurate estimation of time-varying 

changes. Therefore, a model can be developed in future for the evaluation of the changes in 

uplift force with time. 

 

Notations Abbreviations 
The following notations are used in this study:  

Ud   Total uplift force with drain (kN/m); FEM Finite Element Method 

UO   Total uplift force without drain (kN/m); PDE Partial Differential Equations 

Hd   Water head in position of drains (m); RMSE Root Mean Square Errors 

H   Water surface level in reservoir (m); R2 Determination Coefficient 

L   Dam width in bottom (m); RE% Percent of Relative Error 

S Distance of drains from upstream heel (m); NSE Nash-Sutcliffe Efficiency 

N Distance center to center of drains (m); KGE Kling-Gupta Efficiency 

d    Drain diameter (m); ANN Artificial Neural Network 

T   Dam length (m); MLP Multi-Layer Perceptron 

ksat   Saturated hydraulic conductivity (m/s); WOA Whale Optimization 

Algorithm 

𝜃 Volumetric water content (m3/m3); GA Genetic Algorithm 

h Total head (m); LMA Lewenberg Marquard 

Algorithm 

Q Applied boundary flux (1/s); GEP  Gene Expression 

Programming 

t Time (s); ML  Machine Learning 

g Gravity acceleration (m/s2); AI Artificial Intelligence 

k      Hydraulic conductivity (m/s); SEEP/W Subgroup of Geo-studio 

software 

Oi    Obtained value from the FEM (-)   

 Pi    Estimated value from the intelligence 

methods (-); 

  

 O̅ Calculated values average from FEM (-);   

 P̅    Estimated values average from the 

intelligence models (-); 

  

N    Data number (-);   

x , y    Cartesian coordinates   
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