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Recently, organoids have emerged as revolutionizing tools with the
unprecedented potential to recreate organ-specific microanatomy in vitro.
Upon their derivation from human pluripotent stem cells (hPSCs), organoids
reveal the blueprints of human organogenesis, further allowing the faithful
recapitulation of their physiology. Nevertheless, along with the evolution of this
field, advanced research exposed the organoids’ shortcomings, particularly
regarding poor reproducibility rates and overall immatureness. To resolve these
challenges, many studies have started to underscore the relevance of mechanical
cues as a relevant source to induce and externally control hPSCs differentiation.
Indeed, established organoid generation protocols from hPSCs havemainly relyed
on the biochemical induction of fundamental signalling pathways present during
kidney formation in mammals, whereas mechanical cues have largely been
unexplored. This review aims to discuss the pertinence of (bio) physical cues
within hPSCs-derived organoid cultures, while deciphering their effect on
morphogenesis. Moreover, we will explore state-of-the-art mechanobiology
techniques as revolutionizing means for understanding the underlying role of
mechanical forces in biological processes in organoid model systems.
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Introduction

The kidney plays a vital role in regulating bodily fluids and maintaining their
composition. It performs crucial tasks such as blood filtration, hormone regulation, and
waste removal, all of which are essential for maintaining organism homeostasis. The kidney’s
remarkable anatomy enables it to carry out these functions effectively: its highly vascularized
structure allows for efficient filtration from the blood vessels, while its connection to the
urinary tract facilitates the excretion of waste in the form of urine. These processes are
carefully regulated by signalling hormones within the body, which are essential for
maintaining blood pressure, electrolyte concentration and acid-base balance.

The kidneys contain approximately 1 million nephrons, which are the functional units
(Bertram et al., 2011). Each nephron consists of two major components: the renal corpuscle,
responsible for blood filtration, and tubular structures that facilitate the uptake and secretion
of solutes. At the distal end of each nephron, waste and excess water are drained into a
network of collecting ducts, which eventually converge into the ureter.

In humans, the formation of nephrons (nephrogenesis), is completed around 36 weeks of
pregnancy, ensuring the kidney’s complexity is established by birth. Throughout this
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developmental time, various environmental cues and genetic factors
guide the precise localization and formation of tissue components
within the organ. While the genetic and biochemical cues involved
in kidney development are well understood, the role of mechanical
cues has remained largely unexplored.

Given the kidney’s intrinsic complexity and its vital role in
maintaining overall organism homeostasis, it has gathered
significant interest in the scientific community. Researchers have
been particularly focused on unravelling the morphogenetic
principles that govern kidney development from early embryonic
stages until birth. Advancements in developmental studies,
including the use of human pluripotent stem cells- (hPSCs) or
adult stem cell-derived organoids, have pushed the boundaries of
our understanding of organogenesis and disease progression in this
complex organ. However, despite these major breakthroughs, the
precise mechanisms underlying the (bio) mechanical machinery that
contributes to renal fate specification and the overall tissue
organization in vivo remain unknown.

As the recognition of mechanical cues in development grows,
there is an increasing demand for sophisticated bioengineering
solutions to understand the mechanical signals and responses
involved in organogenesis. Mechanobiological techniques, as
reviewed in (Gómez-González et al., 2020), can help uncover the
role of mechanical cues in tissue morphogenesis. At the same time,
the generation of a more representative developmental architecture
using hPSCs-derived organoids, as discussed in (Garreta et al.,
2021), holds tremendous promise for gaining a deeper
understanding of the interplay between the genetic and (bio)
mechanical machinery contributing to organogenesis.

This review aims to summarize current knowledge on
mammalian kidney development and provide insights into the
state-of-the-art methodologies for in vitro kidney organoid
differentiation, which pose as valuable tools for studying
development and disease. The review will also discuss what is
known so far regarding the presence of mechanical cues during
embryo and organ development and will highlight state-of-the-art
techniques commonly employed in the field of tissue mechanics to
probe cell-to-tissues responses. At the same time, here we aim to
provide a comprehensive view on how these tools may be translated
to understand kidney morphogenesis exploiting hPSCs-derived
kidney organoid technology. Finally, the review will explore the
rising need for more interdisciplinarity between the fields of classical
developmental biology andmechanobiology, which can significantly
enhance our understanding of organ development and disease
progression in humans.

The permanent adult kidney rises from
the metanephros

The development of the adult mammalian kidney begins during
embryogenesis with the formation of three precursor structures:
pronephros, mesonephros and metanephros. The prior two are
transient, yet still necessary structures, the absence of which have
been associated with renal agenesis. The metanephros on the other
hand is the permanent structure that gives rise to the functional
adult kidney (Reidy and Rosenblum, 2009). Primitive urinary
system commitment occurs at the blastula-stage of embryonic

development, where the blastocyst undergoes an invagination,
referred to as the primitive streak (PS). At those early stages of
development, antero-posterior (A-P) patterning information is
conveyed by the movement of cells through the PS at different
time points that consequently affects the expression of kidney genes.
Importantly, other kidney-inductive signals are present along the
whole axis, including anterior non-kidney-generating regions. Then,
the posterior end of the PS, as largely demonstrated by making use of
embryonic mouse experiments [reviewed in (Dressler, 2009; Halt
and Vainio, 2014)] further evolves to the Intermediate Mesoderm
(IM), from where the urogenital system -the kidneys, the gonads,
and their respective duct systems-will be derived. Upon polarization,
the IM will be segmented into the anterior IM (AIM) and posterior
IM (PIM). The AIM eventually epithelializes into the Wolffian duct,
also known as the mesonephric duct which are tubular structures
leading to the cloaca (future bladder). In humans, at the 5th week of
gestation, a small protrusion of the mesonephric duct is observed,
named the ureteric bud (UB), indicating the initiation of the
metanephros formation. This structure is rapidly enclosed by
cells from the metanephric mesenchyme (MM) lineage which
further aggregate surrounding the bud’s ends, forming cap-like
structures, namely, the cap mesenchyme. From this stage
onwards, reciprocal interactions between cells from the UB and
MM lineage are established, guiding their co-development. MM cells
produce GDNF, ultimately stimulating UB branching
morphogenesis to form a urine draining tubular network. In
parallel, canonical Wnt signals from UB cells to the MM
population induces the mesenchymal-to-epithelial transition
(MET) of nephron progenitor cells (NPCs). Upon activation of
the Wnt pathway, differentiated NPCs further cluster together
forming lumen-presenting spherical aggregates termed renal
vesicles (RVs). These are then polarized, elongated and undergo
a series of structural changes to eventually segment into the different
sections of the mature nephron (Dressler, 2006; Lindström and
Tran, 2018b; Khoshdel Rad et al., 2020).

These RV structures elongate into polarized comma-shaped
bodies, then S-shaped bodies, readily connected to the UB-
derived collecting duct. S-shaped bodies reportedly evolve into
mature nephrons, exhibiting glomerulus and tubular structures,
including the proximal tubule, loop of Henle and distal tubule.
All these structural changes are known to be guided by the genetic
blueprint. In humans nephrogenesis repeats until shortly before
birth.

Like any other developmental process, kidney organogenesis
exhibits a remarkable sensitivity. Indeed, disruptions or impairment
at any stage of kidney morphogenesis can precipitate a cascade of
severe inborn conditions, ultimately known as congenital anomalies
of the kidneys and urinary tract (CAKUT). As such, CAKUT
encompasses a family of urinary system malformation at birth,
including kidney defects such as renal agenesis or hypoplasia, as
well as ureteric malfunctions (Nicolaou et al., 2015). These
anomalies, although generally associated with mutations in
specific genes involved in the urinary system formation, may also
be due to improper physical interactions between UB and MM cells
(Jain and Chen, 2019). For instance, supernumerary kidneys, which
present multiple ureters, arise upon impaired UB and MM
interaction, where UB bifurcation occurs prior MM invasion. In
the case of kidney hypoplasia, which manifests as small kidneys with
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low nephron number, reduced branching morphogenesis events of
the UB have been recorded.

Several CAKUT manifestations have been reported to be
clinically associated with hypertension, ultimately leading to, in
certain occasions, end stage renal disease (ESRD). There is
therefore an urge to understand the mechanisms underlying
CAKUT anomalies in the human context. Indeed, several works
have been developed in knock-out animal models, however, the
phenotypical manifestation of the pathological mutations may vary
from species to species (Khan et al., 2022).

Mammalian kidney development is
evolutionarily conserved among
species

Mammalian kidney development is a fascinating process that
exhibits remarkable evolutionary conservation across species. The
study of human-specific kidney development throughout gestation
has been challenged by limited access to human embryonic kidney
samples and the ethical concerns surrounding their origin. However,
this limitation has been overcome by utilizing animal models of
lower complexity, such as rats and mice, to investigate the intricate
cellular and molecular processes involved in kidney organogenesis.
By leveraging the remarkable conservation of embryogenesis across
mammalian species, findings from these animal models have
provided valuable insights into human kidney development
(Cullen-McEwen et al., 2015). In fact, these studies have
contributed to our understanding of the different stages of
kidney morphogenesis and have identified fundamental signalling
pathways, including the canonical Wnt pathway, that play a crucial
role in this process (Carroll et al., 2005; Lindström and Tran, 2018b).

Comparison of embryonic kidney development across diverse
mammalian species has revealed high levels of similarity. Notably,
studies have documented shared morphological features between
mouse and human embryonic and adult tissues, demonstrating clear
parallels in tissue architecture at species-specific gestational
timepoints (Lindström and Tran, 2018b). The blueprint of
nephron morphology and positioning relative to other cell
lineages within the kidney is conserved between both species.
Nephron-patterning events also exhibit strong conservation, as
observed through immunocytochemistry studies: the polarization
of renal vesicles, primitive nephron-oriented structures,
segmentation into proximal and distal sections can all be
observed in mammalian species.

Despite the diversity of mammalian species, the fundamental
principles and mechanisms governing kidney development remain
remarkably similar. Indeed, our current understanding of kidney
organogenesis has been derived from mouse and rat embryonic
kidney samples. Shared anatomy, patterning and signalling
pathways have emphasized the utility of mouse embryonic
models in recapitulating kidney development when human
samples are unavailable. And while the overall process of
embryonic kidney development remains evolutionarily conserved
among mammalian species, inter-species molecular and anatomical
variations still exist (O’Brien et al., 2016; Lindström and Tran,
2018b). Indeed, some divergent features have been observed
when comparing mouse to human embryonic nephrogenesis

(O’Brien et al., 2016). For example, only a minority of previously
established mouse anchor genes, which are expected to distinctly
encode kidney structures, display a conserved expression pattern in
humans (Lindström and Guo, 2018a). Discrepancies in nephron
number have been reported, with mouse kidneys containing
approximately 12–16,000 nephrons, while human kidneys include
an average of 1 million nephrons. This difference in nephron
quantity is due to variations in time of gestation (9 months in
humans, approximately 20 days in mice) and the overall kinetics
of nephrogenesis (O’Brien and McMahon, 2014).

With regards to inborn conditions affecting the kidney, the
mechanisms underlying CAKUT, for instance, have been more
challenging to address in non-human models. Importantly,
heterozygous or homozygous mutations in mice models have
caused either embryonic or postnatal lethality, making it difficult
to study the underlying pathophysiology (Stone et al., 2016).

Human pluripotent stem cells derived
organoids: how to model kidney
development and disease

The establishment of human embryonic and induced
pluripotent stem cell lines (hESCs and hiPSCs, referred as
hPSCs) has significantly impacted how scientists study human
development and diseases outside of the human body (Thomson
et al., 1998; Takahashi and Yamanaka, 2006; Takahashi et al., 2007).
The capability of hPSCs to expand indefinitely while preserving
pluripotent differentiation features (that is to give rise to cells of the
three-germ layer of the embryo in vivo and in vitro) allows for the
interrogation of early stages of cell lineage specification and
differentiation. Thanks to this, specific cell culture conditions
sustaining and promoting cell differentiation have been identified
and are now consistently used as a tool in developmental research.
For more than 2 decades researchers world-wide have started to
define external conditions aiming to guide hPSCs differentiation
while exploiting inherent characteristics of these cells, that are
capable of self-organization and symmetry breaking (Armstrong,
1989). While initial studies of hPSCs differentiation promoted early
stages of cell lineage specification and commitment in two
dimensional culture conditions (Laflamme et al., 2007), seminal
studies started to address these questions making use of embryoid
bodies (EBs) as surrogates of differentiation and cell specification
along the three germ lineages of the human embryo (Yang et al.,
2008; Chambers et al., 2009).

A technical evolution of EB culture systems led to the overall
explosion of the organoid field from hPSCs. This was based on the
seminal work from Yoshiki Sasai on the establishment of the first
self-patterned stratified cortical tissues generated by plating EBs in
serum-free medium on a coated surface (Eiraku et al., 2008). At the
present time, the term “organoid” refers to a three-dimensional (3D)
collection of cells that resembles an organ [reviewed in detail in
(Lancaster and Knoblich, 2014)]. To achieve resemblance, this 3D
structure comprises of several different cell types that are
characteristically present in the native organ. In vivo, different
cell types arise from stem cells through a process of lineage
commitment and cell sorting, that allow a spatial organization
like an organ during development. In vitro, self-organized
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collection of hPSCs-derived cell types can recapitulate, until certain
extent, specific functions of an organ.

Cutting-edge research from laboratories around the world have
led to the generation of kidney organoids from hPSCs by mimicking
in vitro renal inductive signals that occur during kidney
organogenesis (Xia et al., 2014; Freedman et al., 2015; Morizane
et al., 2015; Takasato and ErPei, 2015; Taguchi and Nishinakamura,
2017; Garreta et al., 2019). These studies have revealed specific
morphogens and cytokines that can drive the differentiation of PSCs
towards a renal specification ex vivo (Takasato et al., 2014; 2016; Xia
et al., 2014; Morizane et al., 2015; Takasato and ErPei, 2015; Taguchi
and Nishinakamura, 2017; Uchimura et al., 2020). Collectively,
procedures allowing the generation of organoids resembling
separate components of the mammalian kidney have been
established (Figure 1), including: nephron progenitor (NP),
ureteric bud (UB) and even stromal progenitor (SP) organoids
(Zeng et al., 2021; Palakkan et al., 2022; Tanigawa et al., 2022;
Vanslambrouck et al., 2022).

Of note, the metanephric adult kidney as an organ comprises a
highly complex tissue architecture. The current state-of-the-art of
procedures in kidney organoid differentiation show a remarkable
resemblance to the first/second trimester human embryonic kidney
(Garreta et al., 2019). Yet, these methodologies still lack a higher
order of anatomical resemblance, where the developing nephrons
would connect with the collecting duct to allow for filtration and re-
absorption of nutrients. To address these limitations, specialized
tissue culture techniques are being widely explored to drive organoid
maturation forward, particularly in terms of nephron development
(bioreactors), collective duct development (patterned substrates),
and vascularization (microfluidics) that better mimic
physiologically-relevant cues (Czerniecki et al., 2018; Przepiorski
et al., 2018; Homan et al., 2019; Glass et al., 2020; Shi et al., 2023).

One of the advantages of using hPSC-based organoid systems is
that they are highly adaptable for genetic manipulation, making it
possible to mimic genetic kidney diseases by introducing alterations
in the corresponding genes. Patient-derived and/or gene-edited
hPSCs have been an excellent source for studying adult kidney
disorders such as chronic kidney disease (CKD) and polycystic
kidney diseases (PKD), among others [reviewed in more detail in
(Karp et al., 2022; Liu et al., 2022)]. While studies with hPSC-
derived organoids capturing the PKD genetic background have been
seminal in modelling cyst formation (Freedman et al., 2015) and
response to drugs (Cruz et al., 2017; Tran et al., 2022), the immature
nature of in vitro kidney organoids makes it difficult to model
diseases exhibiting adult anomalies. In contrast to chronic-related
manifestations, CAKUT maybe effectively studied exploiting
hPSCs-derived kidney organoids.

In this regard, CAKUT is an umbrella term encompassing an
extensive spectrum of embryonic kidney and urinary tract
malformations that affect approximately 1 in 100–500 new-borns
(Westland et al., 2021). The phenotypical profile of CAKUT
anomalies is quite heterogeneous: the most typical observed
phenotypes include hypoplasia, dysplasia, agenesis, ureteral
abnormalities among others. More than twenty genes have been
identified as liable for the onset of syndromic and non-syndromic
CAKUT, potentially explaining the heterogeneous clinical
presentation of these congenital anomalies (Nicolaou et al.,
2015). Mutations in PAX2, HNF1B, BMP7, RET, GATA3, SALL1,

SIX5, and EYA1 among others developmental genes have been
previously reported.

Paired box gene 2 (PAX2) is an important developmental gene in
kidney organogenesis, expressed throughout nephron
differentiation: starting from progenitors to epithelial renal
vesicles to distal fragments of the renal tubules. Particularly, in
mice, Pax2 was shown to play an indispensable role in MET of NPs,
and the positioning and outgrowth of the ureteric bud (Torres et al.,
1995; Brophy et al., 2001). The latter phenomenon is likely
responsible for the renal agenesis phenotype observed in mice
with an absence of this gene. In humans, on the other hand,
frameshift mutations have been associated with the development
of renal coloboma (Sanyanusin et al., 1995; Bower et al., 2012; Chang
et al., 2022). Interestingly, in vitro research performed by Kaku &
Nishinakamura et al. has demonstrated that PAX2 is in fact
dispensable for MET in NPs developed from hPSCs (Kaku et al.,
2017). In their study, PAX2-null hPSCs could still develop into
nephron progenitors, and even epithelialize into tubular and
glomerular structures. However, while human PAX2 may not be
necessary for MET to occur, it is needed for the proper
differentiation of parietal epithelial cells of the glomeruli (Kaku
et al., 2017).

Hepatocyte nuclear factor 1—β (HNF1B) has been shown to play
an important role in nephrogenesis. Studies in zebrafish have
identified the role of this transcription factor in nephron
patterning and segmentation, where embryos lacking hnf1ba/b
would not express markers characteristic for distal and proximal
segments, yet still form an epithelial tubule (Naylor et al., 2013).
Similar findings have been observed in murine and xenopus
nephrogenesis, where a disruption or overexpression of this gene
leads to a failure in SSB patterning and segmentation (Naylor et al.,
2013). In humans, mutations in HNF1B, together with mutations in
PAX2 account for approximately 15% of known CAKUT cases
(Nicolaou et al., 2015). Human iPSC-derived kidney organoids
have been used as a platform to mimic congenital kidney
anomalies involving HNF1B by generating biallelic deletions in
the gene. Przepiorski et al. have demonstrated that organoids
with disrupted HNF1B fail to develop regions positive for
markers of proximal and distal tubules, similar to phenotypes
previously observed in Hnf1b conditionally deficient mice
(Przepiorski et al., 2018).

Mutations in the receptor tyrosine kinase RET gene are also
more commonly found in the spectrum of congenital urinary
anomalies like renal agenesis and aplasia. A cohort study found
that mutations along the GDNF-RET signalling pathway are present
in about 5% of patients with CAKUT and that the nature of the
mutations affects the penetrance of CAKUT clinical presentation
(Chatterjee et al., 2012). Studies on mutant mice carrying genetic
alterations along the GDNF-Gfra1-Ret axis have shed light on the
expression patterns of Ret throughout the kidney and lower urinary
tract [reviewed in detail in (Jain, 2009)]. Briefly, Ret plays a crucial
role in early UB induction and branching, among other roles,
without which extreme phenotypes such as renal agenesis or
prenatal fatality can be observed. Human PSC-derived UB
organoids have been successfully used to mimic congenital
anomalies resulting from mutations in RET, proving the
feasibility of modelling such diseases by in vitro genetic editing
and 3D culture (Zeng et al., 2021). In their study, the authors have
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FIGURE 1
Comparison of protocols for hPSC-derived kidney organoid differentiation. A schematic detailing the compounds used for driving PSCs towards Metanephric Mesenchyme (MM) or Ureteric Bud (UB) progenitor
states. The cell types induced by each step of differentiation are denoted above in pink. More specific details regarding the protocols can be found in the corresponding publications (Taguchi et al., 2014; Freedman
et al., 2015; Morizane et al., 2015; Takasato et al., 2015; Taguchi and Nishinakamura, 2017; Mae et al., 2018; Przepiorski et al., 2018; Garreta et al., 2019; Low et al., 2019; Uchimura et al., 2020; Howden et al., 2021; Shi
et al., 2023).
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demonstrated how RET-null organoids fail to undergo branching
and exhibit a phenotype like renal agenesis.

Similarly, hPSC-derived kidney organoid systems have been
successfully utilized to model certain podocytopathies by either
genetically introducing mutations into wild type PSCs, or by
inducing them from patient-specific cells (Kim et al., 2017; Hale
et al., 2018). Together, all these studies provide a promising outlook
on the use of hPSC-derived kidney organoids as a platform to study
early stages of kidney development and diseases, where cases of
CAKUT could be of particular interest.

A major advantage of using in vitro kidney organoid systems to
model organ development and CAKUT is that they can be
interrogated via a variety of functional, physiological, and
molecular techniques. One of the simplest and most accessible
techniques is morphological analysis by brightfield microscopy,
where structures like RVs, complex nephron like structures and
cysts (in case of disease modelling) can be roughly identified during
the differentiation protocol (Taguchi and Nishinakamura, 2017;
Przepiorski et al., 2018; Garreta et al., 2019; Schutgens et al.,
2019). Moreover, these structures can be subjected to more
detailed histological or immunofluorescence analysis by confocal
microscopy, where either whole organoids or tissue sections can be
stained for markers such as PAX2, WT1, LHX1, JAG1,

E-CADHERIN, and NEPHRIN, corresponding to different
segments of the developing nephron (Figure 2A).

Single cell transcriptional profiling of human foetal tissue has
been also a key tool in understanding the many intermediate
transcriptional states of kidney development. Applying this
technique to analyse kidney organoids at different stages of
differentiation has also helped map the different cell types
present more accurately, as well as provide a transcriptional
comparison to human embryonic kidney development
(Lindström et al., 2021; Wilson et al., 2022).

Organ development and disease are
guided by mechanical forces

Developmental biology has largely focused on discovering the
function of morphogens and the molecular processes that drive
embryogenesis and tissue formation. However, it has become more
evident that tissue formation and morphogenesis do not solely rely on
biochemical and genetic cues. In fact, these processes are also influenced
by intrinsic and extrinsic biomechanical forces [reviewed in detail in
(Heisenberg and Bellaïche, 2013; Goodwin and Nelson, 2021)]. On a
subcellular level, cells can experience phenomena such as actomyosin

FIGURE 2
(A) (top) Schematic representation of steps in nephrogenesis: PTA (pre-tubular aggregates) -> RV (renal vesicles) -> CSB (comma-shaped body) ->
SSB (s-shaped body) -> nephron. (middle) Brightfield andH&E representations of 3D kidney organoids during in vitro nephrogenesis (from day 10 until day
20 of differentiation). Scale bar = 100 µm. (bottom) Immunofluorescence microscopy images depicting stages of nephrogenesis in 3D kidney
organoids>: WT1 (Wilms Tumour 1) in green, E-CADHERIN in red and LTL in magenta. Scale bar = 100 µm. (B) (top) Schematic representation of a
stepwise methodology for generating micropatterns on substrates. Briefly, substrates of interest (PDMS, PAA) are polymerized to a rigidity mimicking
embryonic stiffness (1–100 kPa), functionalized and micropatterned (for example, with photoactivation). Then the substrates are decorated with an ECM
protein of interest (e.g., fibronectin, collagen, etc.,) upon which progenitors can be seeded for further 2D culture under geometric confinement. (middle)
Brightfield microscopy images of hPSC-derived kidney organoids at day 9 of differentiation, subjected to geometric confinement (circles, squares and
triangles of 0.07 mm2 area). (bottom) Immunofluorescence microscopy image of hPSC-derived kidney organoids at day 10 of differentiation, marked by
PAX2 in yellow and B-CATENIN in magenta. Scale bar = 100 µm.
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contractility, membrane stretching and tension during cell division or
upon exposure to very stiff microenvironments (Colombo et al., 2003;
Krieg et al., 2008; Daley et al., 2011). Extracellularly, cells can undergo
compression and extrusion during events like apoptosis and tissue
remodelling (Yang et al., 2000; Eisenhoffer et al., 2012). On a much
grander tissue scale, contractions, for example, by muscle fibres can be
observed (Harrington, 1979). Extrinsic forces can even be observed on
an organismal level, an example of which is the effect of gravity.

Nowadays, in developmental biology there has been a shift
towards investigating how mechanical forces impact the
development of tissues and understanding the physical
mechanisms that facilitate morphogenesis. The idea that tissue
morphogenesis is in fact a biomechanical process has been
reviewed by pioneers in the 1980–1990 s (Wolpert, 1981;
Beloussov et al., 1994). In fact, they brought forward the ideas
that biochemical and mechanical morphogenesis within the
developing tissue are not necessarily distinct, as the physical
properties of local regions can affect the shape of morphogen
fields and the movement of cells can alter how tissues respond to
molecular gradients.

Quite like biochemical signalling molecules that instigate an
intracellular sequence of events leading to changes in gene
expression, mechanical stimuli can trigger a similar cascade.
Here, cell adhesion complexes localized on cell membranes can
adhere to components of the extracellular matrix (ECM) and create
connections like cell-to-ECM and cell-to-cell junctions that are
necessary for transmitting the biomechanical signals towards the
nucleus and ultimately affect cell function. This ability of cells to
sense their mechanical microenvironment is termed
mechanosensing, while the signalling cascade of events is known
as mechnotransduction. Cell fate decisions that are ultimately
influenced by the cell’s mechanical microenvironment include
migration, differentiation, proliferation, and cell death, among
others.

During embryo development and organogenesis, the
composition, stiffness and viscoelasticity of the ECM represent
key factors previously reported to influence stem cell fate and
differentiation [reviewed in detail in (Guilak et al., 2009;
Elosegui-Artola, 2021)]. Indeed, in utero, the embryonic
microenvironment contains a plethora of ECM proteins (such as
fibronectin, collagen, laminin, etc.,) and a highly viscoelastic matrix
(ranging from 0.1 to 100 kPa in stiffness) which has been shown to
influence the fate of stem cells within the forming tissue (Guilak
et al., 2009; Rozario and DeSimone, 2010; Chaudhuri et al., 2020).

A seminal example of this phenomena is the effect of ECM
elasticity on lineage specification of mesenchymal stem cells (MSCs).
Studies have shown how upon exposure to soft matrices, these
multipotent MSCs can be driven to the adipogenic lineage, while
stiffer microenvironments can induce osteogenesis in the same naïve
stem cells (Engler et al., 2006; Guilak et al., 2009; Huebsch et al.,
2010). Vascular progenitors in vitro have been shown to differentiate
into endothelial lineage when exposed to soft microenvironments,
while stiff matrices guide them to the smooth muscle cell fate (Wong
et al., 2019). Specific ECM conditions are also crucial for the
maintenance of tissue homeostasis. For example, the maintenance
of mammary gland tissue homeostasis requires a soft and laminin-
rich microenvironment (Alcaraz et al., 2008).

At the same time, stiffer matrices with altered ECM protein
composition/density are typically conditions that support tumour
growth and metastasis (Wullkopf et al., 2018; Bauer et al., 2020). A
fascinating study on obesity and cancer invasion has shown how
changes in the adipose tissue microenvironment, such as stiffening
of the ECM from enrichment of myofibroblasts in obese mice, can
increase the malignant potential of breast cancer cells (Seo et al.,
2015; Ling et al., 2020). This study demonstrates the effect of ECM
stiffness on tumorigenesis and the importance of mechanical stimuli
on cell fate decisions (Elosegui-Artola, 2021). Meanwhile, the
viscosity vs. elasticity of the ECM is becoming increasingly
recognized as an additional modulator of cell fate decision
(Chaudhuri et al., 2020; Elosegui-Artola et al., 2022). Matrix
viscoelasticity has been demonstrated to guide single cell
behaviour, as well as collective behaviours of spheroid/organoid
growth and differentiation (Elosegui-Artola et al., 2022). Apart from
the biophysical properties of the ECM, fluid flow in the
extraembryonic environment has been shown to influence cell
behaviour too [reviewed in (Freund et al., 2012)]. Briefly, fluid
flow has been previously shown to influence left-right symmetry
breaking during organ development (Tanaka et al., 2005), regulation
of vascularization and sprouting (Song and Munn, 2011), and
normal renal tubule function (Nauli et al., 2003).

The effect of fluid flow has also been explored on kidney
organoid differentiation in vitro (Homan et al., 2019). By
applying a fluid flow, Homan et al. were able to enhance kidney
organoid vascularization and stimulate the maturation of podocytes,
a specialized cell type in the kidney. The stiffness of the extracellular
environment has also been explored in embryonic kidney
differentiation. Garreta et al. and others have shown how a soft
synthetic hydrogel can mimic the in utero mechanical
microenvironment and enhance the maturation of kidney
organoids cultured in vitro (Garreta et al., 2019; Ruiter et al.,
2022). These studies highlight the importance of mechanical
stimuli in regulating the differentiation of hPSCs into renal
lineages and the generation of mature kidney organoids.

In adult kidneys, Choudhury et al., have explored the role of
mechanical forces that drive fluid transport across the tubule
epithelial cells. They described differences in fluid flux and pressure
gradients in human healthy kidney cells vs. autosomal dominant
PKD cells, which shed light on the importance of mechanical forces in
kidney function and their implications in pathophysiological
conditions (Choudhury et al., 2022). In efforts to understand PKD
pathophysiology better, Cruz et al. have looked into the role of the
microenvironment on disease progression. PKD is associated with
the formation of fluid filled cysts from kidney tubular epithelia.
The authors have identified that the microenvironment of tubule
organoids can substantially increase or decrease the probability of
cyst formation (Cruz et al., 2017).

These findings have significant implications for the development of
newmodels for studying kidney development and disease, as well as the
potential use of human kidney models in regenerative medicine.

All these studies demonstrate how mechanical input from the
surrounding environment and the cell’s ability to mechano-sense
these signals contribute to cell fate decisions during healthy tissue
development and disease evolution. Nowadays, insights on how
these mechanical signals are sensed and internalized by the cells to
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elicit a genetic response are being slowly uncovered (Discher et al.,
2005; Heisenberg and Bellaïche, 2013; De Belly et al., 2022).

State-of-the-art- techniques to
interrogate organoid mechanobiology

Mimicking the extraembryonic
microenvironment

The discovery of Matrigel (Orkin et al., 1977), a natural ECM
substitute composed of basement membrane proteins extracted
from a murine tumour, has kickstarted an exponential growth of
in vitro research (Kubota et al., 1988; Kibbey et al., 1992). This
ECM surrogate has been extremely useful in assays of cell invasion
and angiogenesis, formation of spheroids and the growth of
organoids (Barker et al., 2010; Huch et al., 2013; Stange et al.,
2013; Wang et al., 2017). However, in the age of translational
research, where organoid systems could be potentially used for
organ disease modelling and drug screening, the poorly defined
and cancerous nature of Matrigel makes it unattractive for use.
Furthermore, batch-to-batch differences in Matrigel production
severely impact the extent of organoid differentiation and thus
hamper comparative studies. For these reasons, the organoid field
quickly started deriving well-defined and synthetic materials
towards the generation of organoid models suitable for disease
modelling and interrogations.

The progress in the field has led to the definition of substrates
of tuneable stiffness and/or viscoelasticity as well as protein
composition. Natural substrates include the derivation of
biomaterials from decellularized ECM, the use of natural ECM
proteins such as collagen or alginate. Interestingly, several works
have demonstrated the use of synthetic hydrogels, such as
polyacrylamide (PAA), polydimethylsiloxane (PDMS), and
polyethylene glycol (PEG), among others. In this section the
use of natural and synthetic substrates for organoid generation
and disease modelling applications will be revisited.

Natural substrates

Decellularized ECM (dECM) has the advantage of maintaining
the natural architectural composition of tissues in vivo, making it a
perfect candidate for long term maturation of hPSC-derived
organoids in vitro [reviewed in detail in (Garreta et al., 2017)].
Depending on the de-cellularization treatment, dECM-derived
scaffolds can maintain the mechanical and biological properties
of the native tissue, allowing for cell attachment, migration and
differentiation of new cells introduced into the empty scaffold. This
approach has been successfully used for liver, intestinal, pancreatic
and kidney-derived cells, among others (Orlando et al., 2013;
Guyette et al., 2014; Batchelder et al., 2015; Hong et al., 2018).
However, the process of using dECM scaffolds still faces several
challenges: variations in decellularization protocols (dependent on
tissue origin), difficulty of accurately re-populating the dECM with
different cell types present in the native tissue, need for oxygen
perfusion in areas of thicker tissue formation, lack of sufficient
human material/dependence on organ donation, among others.

Naturally occurring ECM proteins, such as collagen or laminin
can also be used to generate scaffolds for tissue engineering purposes
[reviewed in (Glowacki and Mizuno, 2008)]. Collagen scaffolds are
made up of collagen molecules (most commonly types I, II, and III)
that, when covalently bound to one another, are termed collagen
fibrils (Dong and Lv, 2016). These fibrils are further grouped into
bundles, also known as fibres. The collagen fibres eventually provide
the entire substrate with a specific biomechanical architecture that
has been shown to support cancer cell migration, metastasis, and the
maintenance of a few types of organoids (Wang, 2005; Han et al.,
2016; Kopanska et al., 2016; Jee et al., 2019). However, collagen-
based matrices are often not enough to fully support the
development of tissues and require additional support from co-
culture cells and additional ECM proteins (Wang et al., 2016).

Organoids have also been grown in natural polysaccharides like
alginate, an inexpensive, biocompatible and readily-tuneable
substrate suitable for biological application [reviewed in (Cattelan
et al., 2020; Chen et al., 2020)]. Several studies have demonstrated
the use of different modifications of alginate to study the growth and
development of organoids of brain, kidney, lungs, intestine and
pancreas (Wilkinson et al., 2018; Capeling et al., 2019; Liu et al.,
2020; Geuens et al., 2021; Cassel De Camps et al., 2022). However,
much like Matrigel, alginate is a biologically-derived material,
meaning that it is also subjected to batch-to-batch variability (Fu
et al., 2010).

Synthetic substrates

Synthetic polymers, on the other hand, allow a precise control
over the mechanical, chemical and structural elements of the
substrate. By adjusting the composition of synthetic substrates, it
becomes possible to mimic the viscoelasticity, porosity and density
of certain tissues and study the effects of mechanical and chemical
cues on cell fate decisions.

Polyethylene glycol (PEG) is a nontoxic and biocompatible
polymer, increasingly utilized for cell culture and controlled
release of biomolecules within in vitro tissues (Mellott et al.,
2001; Drury and Mooney, 2003) [see in more detail in (Lin and
Anseth, 2009)]. It is a highly tuneable substrate, adjustable via a
variety of cross-linkers and functional groups, making it a unique
‘blank substrate’ for bioengineering purposes. PEG hydrogels allow
the encapsulation of entire cell clusters/organoids, and have been
shown to support a wide variety of cell types in culture (Lutolf et al.,
2003; Moon et al., 2010; Phelps et al., 2012; Chaudhuri et al., 2016;
Gjorevski et al., 2016; Ng et al., 2017).

Polyacrylamide (PAA) hydrogels can be tuned to a wide variety
of stiffnesses (ranging from 0.2 kPa up to 200 kPa) depending on the
compositional ratio of acrylamide and bis-acrylamide. In 1997,
using this synthetic hydrogel, it was demonstrated for the first
time that substrate stiffness can indeed affect cell adhesion,
spreading and migration (Pelham and Wang, 1997). Following
that, PAA and other synthetic materials became widely utilized
to study the effects of stiffness as a mechanical cue on cell fate
decisions (Engler et al., 2006; Wen et al., 2014).

Polydimethylsiloxane (PDMS), a material primarily intended
for microfluidic applications (Duffy et al., 1998) has been gaining
increasing recognition for cell culture purposes in mechanobiology
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TABLE 1 List of techniques to measure cellular and tissue level forces.

Technique Principle of action Citations

Traction Force Microscopy (2D & 3D TFM) • Uses compliant viscoelastic substrate and fluorescent
microbeads

• Cells seeded on top (2D) or embedded within (3D) a hydrogel
• Cells exert forces that generate a deformation in the hydrogel.
Gel deformation allows the generation of a displacement map

• Computational methods can be used to obtain traction forces
exerted by the cells

Dembo and Wang (1999), Butler et al. (2002), Trepat
et al. (2009), Han et al. (2015), Bergert et al. (2016)

Cantilevers (AFM) • Allows the application and quantitative measurement of
mechanical force on a cell/tissue

• Based on the use of a calibrated cantilever with known
mechanical properties that can deflect when in contact with a
surface (for example, cells)

• The displacement/bending of the cantilever can be used to
calculate the forces exerted by the cell as well as determine the
stiffness/rheology of the tissue

Krieg et al. (2008), Badique et al. (2013),
Taubenberger et al. (2014), Schillers et al. (2017)

Micropillars • An array of cylindrical columns made of a deformable elastic
substrate with cells on top

• Depending on the stiffness of the pillars, cells can exert forces
that are able to deform these pillars

•Mapping the deformations of the pillars and comparing to their
undeformed state, allows to calculate the forces exerted by the
cells

Tan et al. (2002), Rajagopalan and SaifTaher (2011)

Droplets & Inserts • Microdroplets of deformable compliant viscoelastic materials
• Can be used to evaluate the mechanical properties of a tissue in
vivo

• Can be injected into a tissue of interest, imaged, and compared
to their undeformed state, to gain a map of local tissue stresses

Träber et al. (2019), Mongera et al. (2023)

Fluorescence Resonance Energy Transfer (FRET)
sensors

• Used to study cellular forces like tension between cell, and their
surround ECM.

• Contain two fluorescent proteins (energy acceptor and donor),
linked by a tension sensitive linker (spring)

• When a force is applied to the linker, the distance between the
fluorophores changes, resulting in a change in energy transfer. This
change can be recorded by fluorescence lifetime imaging
microscopy (FLIM) and translated to tension measurements

Grashoff et al. (2010)

Micropipette aspiration • Involves a glass micropipette of 0.5–10um diameter to apply a
controlled suction force to a single cell

• The suction force generates an indentation in the cellular
membrane

• The deformation of the membrane can be measured through
microscopy and can help determine other mechanical
properties of the cell: elasticity, viscosity, and tension along the
membrane

von Dassow et al. (2010), Maître et al. (2015), Irianto
et al. (2016)

Laser ablation (LA) • Uses a focused laser beam to dissect/disrupt a local tissue or
cellular structures

• Can be specifically targeted at mechanical components of the
cell: focal adhesions, cytoskeletal components, intercellular
junctions, etc.

• The movement/deformation of tissues can be used to infer
whether the tissue before was in a tense or compressed state,
and to further calculate the extent of these forces

Kiehart et al. (2000), Samarage et al. (2015)

Optical Tweezers (OT) • Uses focused laser beam to trap amicrobead that can be used to
apply force to another subject, such as a cell

• Position of the laser beam can be manipulated to control the
forces being exerted by the trapped object

• Resulting deformations on the cell membrane can be measured:
cell indentation, cell stretching, and active rheology

Zhang and Liu (2008)
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and bioengineering (Brown et al., 2005; Chuah et al., 2015). Its
tuneable stiffness, transparent nature, minimal autofluorescence and
ease of use have made it a suitable candidate for studying cell-
biomaterial interactions and understanding the effects of substrate
stiffness on cell fate decisions (Mata et al., 2005). Here, techniques
for surface chemistry activation have made it possible for cell
attachment on the originally highly hydrophobic surface of the
polymer.

Ultimately, the use of such versatile biocompatible natural and
synthetic materials allows a much closer resemblance of in vitro
culture conditions to natural in vivo tissue microenvironments.
Moreover, since synthetic tuneable materials allow a tight control
of substrate stiffness, porosity, density, etc., it becomes possible to
perturb the mechanobiological environment of cells and question
the way tissues respond to mechanical input from their
environment.

Measuring forces exerted by tissues and
cells

Thus far, many studies have evidently demonstrated how
mechanical stimuli like stiffness, viscoelasticity and fluid flow can
influence cell fate decisions (Vining and Mooney, 2017), and have
therefore prompted mechanobiologists to investigate methods for
measuring the physical forces felt and exerted by cells. To this day,
there are a variety of techniques that allow the measurement of
forces exerted directly by cells [reviewed in (Roca-Cusachs et al.,
2017)], techniques to probe cellular responses to forces exerted
exogenously on them and techniques to measure the stiffness and
rheology of certain tissues [reviewed in (Campàs, 2016; Polacheck
and Chen, 2016)] (see Table 1).

Mechanical forces are involved in various biological processes,
including cell division, tissue growth, and organ function. The ability
to measure these forces in vivo, in vitro, and ex vivo can provide
valuable insights into the underlying mechanisms of these processes.

Most techniques in mechanobiology rely on the deformation of
a viscoelastic material of known mechanical properties: traction
force microscopy (TFM), micropillars, microdroplets/micro-inserts,
cantilevers/atomic force microscopy (AFM). These techniques can
be reliably used to measure cellular forces in vitro (most) (Dembo
and Wang, 1999; Zimmermann et al., 2000; Tan et al., 2002;
Rajagopalan and SaifTaher, 2011; Harris et al., 2012), ex vivo
(AFM) (Moore et al., 1995), and even in vivo (AFM,
microdroplets) (Feroze et al., 2015; Mongera et al., 2023).

Other techniques, like FRET tension based sensors, rely onmolecular
linkers/fluorophores that can allow the measurement of tensile forces
between cells and their extracellular environment (Grashoff et al., 2010)
and even at the level of the nucleus (Andreu et al., 2022).

The mechanical properties of whole embryos (xenopus,
zebrafish) at early stages of development have been widely
explored with the use of micropipette aspiration and laser
ablation techniques (von Dassow et al., 2010; Chaigne et al.,
2013; Maître et al., 2015). Here the viscoelasticity of the tissue,
the tension and contractile forces maintaining the whole structure
together have been investigated (Rauzi et al., 2008; Samarage et al.,
2015). While the mechanical properties of early embryos have been
extensively studied in animals, the challenges and limitations

associated with studying human embryos have made it more
difficult to investigate these properties in humans. Due to the
scarcity of human embryonic material and the ethical regulations
forbidding the culture of human embryos past day 14 of
development, the in vivo study of mechanical forces within
developing organs seems practically impossible.

While these techniques can effectively allow the mechanical
probing of living tissues, it is unfortunately not possible to assess in
vivo the cellular stresses/forces acting within and upon the
developing organs in humans.

Combining experimental
mechanobiology techniques with
organoid technology to advance
fundamental knowledge on organ
development and disease

To this day, mechanical stimuli like substrate stiffness, physical
confinement and fluid flow have been clearly proven to affect cell fate
decisions in 2D-in vitro environment (s) [see reviewed in (Mammoto
et al., 2012; Wagh et al., 2021)]. In vivo, however, tissues are far more
complex, where viscoelasticity plays a key role dictating cell behaviour
(Cheng et al., 2008; Geerligs et al., 2008; Safshekan et al., 2017). Here, a
multitude of cellular and extracellular components, including the
cytoskeleton, ECM proteins, membrane adhesion complexes, cellular
cortex, among others, can influence the biomechanical signalling
pathway and lead to variable cellular responses in time and space.
Moreover, the practical difficulty of accessing organs and tissues during
development in vivo increases the complexity of studying their
mechanics. All this makes the measurement and probing of the
mechanical environment of living tissues in vivo far more complicated.

However, with the rise of organoid technologies it has become
possible to mimic embryonic organ development in vitro more
closely and to investigate the mechanical changes occurring during
early steps of organogenesis in a dish. By combining organoid
technology with experimental mechanobiology techniques, it
becomes possible to study the mechanical properties of cells and
tissues and how they influence organ development and disease in a
more controlled and physiologically relevant environment. This can
provide new insights into the role of mechanical forces in these
processes and help develop new therapeutic strategies for a variety of
diseases.

There are several ways to study the mechanobiology of organoid
development: through bioengineering of their microenvironment
(exposure to synthetic and natural hydrogels, micropatterning,
microfluidics devices, etc.), application of mechanobiology
techniques (micro-rheology, TFM, optical tweezers, laser ablation,
etc.,) and genetic manipulation of key genes involved in
mechanosensing and transduction pathways (YAP/TAZ—HIPPO
pathway, WNT signalling pathway, SRF pathway).

Mimicking the extraembryonic environment
through synthetic hydrogels

To closely mimic and bioengineer the extraembryonic
environment, organoids can be encapsulated in hydrogels of
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varying stiffness, composition, and viscoelasticity. The effect of these
substrates can be evaluated qualitatively by the rate of maturation
(expression of markers by immunofluorescence microscopy,
histology, gene expression) and attainment of certain organ-
specific functionality.

Interestingly, studies have shown that separate stages of
organoid development can require varying mechanical inputs
from their surrounding ECM. For example, a fibronectin-rich
and stiff ECM is a requirement for intestinal stem cell expansion,
while for their differentiation and formation of intestinal organoids,
a softer laminin-decorated matrix is preferred (Gjorevski et al., 2016;
Broguiere et al., 2018). Similarly, encapsulation of kidney organoids
into synthetic PEG-based hydrogels during later stages of
differentiation has been shown to reduce undesirable fibrosis and
promote a slight further maturation in organoids generated from
hPSCs (Geuens et al., 2021; Ruiter et al., 2022). Similar studies have
also been demonstrated in organoids of other organs, for example,
the brain (Cassel De Camps et al., 2022).

While encapsulation in elastic hydrogels can provides the
organoid with a mechanically stimulating surrounding, synthetic
hydrogels can also physically limit the expansion and
morphogenesis of the organoid during development (Wang and
Heilshorn, 2015; Ranga et al., 2016). To overcome this limitation,
PEG-based hydrogels can be effectively engineered to dynamically
rearrange the constituting bonds, so that the surrounding synthetic
ECM can adapt to the expanding organoid and support its
morphogenesis (Chrisnandy et al., 2022). Such synthetic matrices
allow a more reliable system to follow the mechanics of organ
formation over time.

To quantitatively study the mechanical forces being exerted
by organoids during development, fluorescent microbeads
incorporated into a hydrogel of known viscoelastic properties
can be used for traction measurements (TFM) (Bergert et al.,
2016). 3D TFM on encapsulated organoids can provide valuable
information on the directionality of tissue growth, the stresses
and tensions necessary for the maintenance of their shape and the
internal pressures that guide growth in specific directions
(Steinwachs et al., 2016; Ban et al., 2018; Broguiere et al.,
2018; Mulligan et al., 2019). Moreover, certain studies on
morphogenesis of epithelial tissues have demonstrated how
three-dimensionality is not always necessary for guiding tissue
growth and differentiation (Pérez-González et al., 2021). In 2D,
organoid systems can gain a degree of simplicity that allows a
more reliable measurement of cellular forces (2.5D TFM),
without compromising the morphogenetic process [reviewed
in (Matejčić and Trepat, 2023)].

Alternatively, cellular forces exerted from within the developing
organoid can also be studied by measuring deformations on hydrogel-
based microdroplets inserted into organoids. The deformations caused
on the microdroplets can be studied to identify the local forces exerted
by cell structures (Girardo et al., 2018). Although this technique has
been predominantly used to study forces within developing embryos
(Träber et al., 2019; Mongera et al., 2023), under the same conditions,
they could be used within organoids to study local forces arising during
organogenesis. Indeed, further cell-specific functionalization with
antibodies of the microbeads could allow for the control of
localization of the microbeads within the organoids, allowing for
force measurements at specific structures.

While such methods offer a great general overview of the types
of forces present in and around tissues, it is crucial to stay aware of
their limitations. Traction force measurements in both 2D and 3D
settings often assume the surrounding matrix to be linearly elastic,
neglecting inelastic effects. Relying solely on elastic assumptions
may indeed lead to inaccuracies in calculating forces, especially
when dealing with large 3D tissue structures such as organoids and
taking into consideration timeframes involving significant
remodelling of the ECM around the cells.

While the pursuit of more accurate force measurement
techniques should be prioritized, currently available techniques
based on displacement measurements can still provide a
thorough overview into the mechanics of tissue systems (Clark
et al., 2022). In the case of inelastic materials, where relaxation/
trypsinization based force calculations are unfeasible, tissue and cell
dynamics can still be reliably monitored (Godeau et al., 2022;
Yamaguchi et al., 2022). Nevertheless, in this young field, there
are still several unexplored avenues for mechanobiological research
in organoid systems, one of which could involve, for example, load
history quantifications.

Using geometry and microfluidics to guide
organoid morphogenesis

While substrate stiffness does indeed play a crucial role in
in vitro tissue morphogenesis, recent studies have additionally
been pointing towards the effect of geometry on tissue
organization and differentiation. Seminal studies from Warmflash
et al. have demonstrated how a simple geometrical confinement is
enough to trigger self-organization in hPSCs (Warmflash et al.,
2014). Others have explored how these geometries generate nodes of
cell adhesion tension, that have been shown to guide mesoderm
specification in hESCs (Muncie et al., 2020). Geometry has also been
demonstrated to influence the morphogenesis past gastrulation in
organoids in vitro. In kidney morphogenesis, geometries can be used
in combination with ECMmimicking substrates to explore the effect
of mechanical input on in vitro differentiation (Figure 2B). Curved
geometries have improved brain region specification of human
cerebral organoids, while controlled circular patterns seem to
promote cardiac beating in human cardiac organoids (Ma et al.,
2015; Sen et al., 2021). Micropatterning geometries in 2D also allow
a higher control over tissue morphogenesis in events, like the
formation of the neural tube (Karzbrun et al., 2021). Karzbrun
et al. have beautifully demonstrated how a precise control of pattern
size, shape and 2D hPSC monolayer density can lead to the process
of neural tube folding and lumenogenesis. In a similar manner,
Gjorevski et al. have engineered geometrically defined microwells
that allow a controlled generation of intestinal crypts and villi from
stem cells (Gjorevski et al., 2022). Such approaches are paving the
way to effectively studying human synthetic morphogenesis in vitro.

During organogenesis, certain organs such as the brain and
the gut, undergo a high level of tissue folding. These phenomena
are particularly fascinating: during the start of morphogenesis,
these organs start their development from 2D monolayers of
epithelia, which over time are subjected to buckling and folding,
giving rise to complex structures such as the gyri of the brain and
villi of the intestine [reviewed in detail in (Nelson, 2016)]. With
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the rise of organoid technologies, the mechanical and physical
stimuli guiding such events, for example, the folding of the brain,
have been effectively explored (Karzbrun et al., 2018). Here, the
physical forces accompanying morphogenesis can be studied by
engineering a microchip/microfluidics model of the organ of
interest and measuring angles of bending/bulging/deformations/
flow rates during development [reviewed in (Polacheck et al.,
2013)].

In the framework of kidney development, the mechanisms
involved in the branching of the UB and the organization of
collecting tubules has been a topic of increasing interest. While
it has been well established that the branching of the UB into
the MM is driven by morphogenetic signalling in the
developing kidney, the nature of how biomechanical defects
lead to CAKUT phenotypes is still an open question. In this
regard, other studies have investigated the tissue forces and
dynamics of tubule organization under geometric confinement
of the bud tips at the surface of the developing kidney (Viola
et al., 2022; Prahl et al., 2023). Indeed, these works provided a
model that explains the packing of the collecting duct tubules in
murine kidney development during healthy and UB defect
scenarios. While there is no doubt on the effect of
morphogenetic signalling on healthy kidney development,
studies such as Prahl et al. shed light on the importance of
tissue forces and dynamics in the overall organization of such
complex organs (Prahl et al., 2023).

Using mechanosensing and
mechanotransduction machinery to
investigate organoid morphogenesis

While the review has so far focused on the study of mechanics of
organoids from a top-down approach (i.e., manipulating the
extracellular environment to elicit a cellular response from
transcriptional activation), such mechanics can also be studied
bottom-up. By modulating key players of the mechanotransduction
signalling pathways, it is possible to interrogate how mechanosensitive
protein activation and gene transcription influences tissue
morphogenesis [mechanosensitive mechanisms in transcription have
been carefully reviewed in (Mammoto et al., 2012)].

When cells are exposed to an external mechanical stimuli, the
first line players that initiate the mechanotransduction pathway
are mechanosensitive membrane proteins (Ranade et al., 2015).
These include the mechanosensitive ion channels of the Piezo
protein family, an example of which is Piezo1. In the past decade,
several studies have investigated the role of Piezo1 as a
mechanotransducer and have identified its role in vascular,
neural and bone development (Pathak et al., 2014; Ranade
et al., 2014; Li et al., 2019). In the urinary system, Piezo
proteins are highly important in sensing shear stress and wall
tension to ensure proper flitration (Li et al., 2022). While the
exact implication of these proteins in kidney development and
disease are yet to be explored, the potential importance of these
mechanosensitive ion channels in the urinary tract cannot be
ignored (Dalghi et al., 2019).

The high sensitivity of these membrane proteins to instigate
mechanotransduction further down the cell, makes it a potent

candidate for tissue engineering purposes. By regulating such ion
channels through, for example, genetically induced light activation,
it could become possible to control cellular responses in the absence
of mechanical stimuli.

Further down the mechanotransduction pathway are
mechanosensitive transcription factors that inititate the activation
of genes in the nucleus to prompt a cellular response to mechanical
stimuli.

Yes associated protein (YAP)/Transcriptional coactivator with
PDZ-binding motif (TAZ) are one of the most known
mechanosensitive transcriptional regulators, which evidently play
an important role in organogenesis (Mosqueira et al., 2014; Piccolo
et al., 2014). They are modulated by both biochemical [HIPPO
signalling (Meng et al., 2016)] and mechanical [ECM stiffness, shear
stress, stretching (Aragona et al., 2013; Elosegui-Artola et al., 2016)
cues, depending on which they are localized either in the cytoplasm
or nucleus.

In the kidneys, TAZ activity has been shown to be associated
with cystogenesis in PKD, implying the important effect of
mechanotransduction during kidney disease progression (Lee
et al., 2020).

At the level of stem cells, depletion of this key transcription
factor (YAP) has been shown to result in a loss of pluripotency, while
constituent expression leads to maintenance of stemness (Lian et al.,
2010). Studies have shown that control of stem cell fate through
mechanical stimuli such as substrate stiffness is dependent on YAP
localization (Mosqueira et al., 2014; Musah et al., 2014; Totaro et al.,
2017), where stiff matrices promote nuclear localization by
stretch of the nucleopores (Elosegui-Artola et al., 2017; Andreu
et al., 2021; 2022). Such seminal studies imply that by directly
regulating YAP/TAZ localization, it is possible to effectively direct
mechnotransduction, and in the end cell fate, without the application
of external environmental forces.

These studies demonstrate the importance of understanding
the mechanosensing and mechanotransduction machinery in
cells as a bottom-up approach to control morphogenetic
events during development. Here the use of human PSC-
derived organoids can serve as a framework to question the
mechanical aspects of organ development, where bioengineering
advances can aid in the realization of these studies in a controlled
and reproducible manner.

Conclusion

Altogether, accumulated findings within the last decades have
revealed the immense value of hPSC-derived models as a platform
on which organogenesis could be recapitulated. By investigating the
specification of stem cells towards the kidney lineage in vivo,
researchers gained an in-depth knowledge regarding the
principles governing nephrogenesis, an invaluable asset to
ultimately recreate this process in vitro. While in vitro models of
human kidney organogenesis can to some extent faithfully
recapitulate the organ’s microanatomy and physiology, there are
still major limitations in reproducibility, control of cell type,
composition, and lack of vascularized and innervated structures.
Here, by acknowledging the mechanical microenvironment of in
vivo tissues during development, and by closely mimicking these
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external cues, it becomes possible to drive organoid maturation a
step further and gain a better understanding of organogenesis and
disease progression.

While current advances in bioengineering and mechanobiology
are paving new strategies for studying and guiding tissue
morphogenesis in vitro, there is still a long way to go. In order
to guide cells in the direction of organ development, biochemical
and mechanical signalling cascades within and between cells need to
be perfectly coordinated to navigate through the complex dynamics
of tissue patterning. Hence in kidney organogenesis, more consistent
efforts are needed to truly understand the underlying biomechanical
machinery and how it works in concert with the genetic program.
Only then will it be possible to engineer functional kidney tissues.
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