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Background: Infectious keratitis (IK) is a sight-threatening condition requiring 
immediate definite treatment. The need for prompt treatment heavily depends 
on timely diagnosis. The diagnosis of IK, however, is challenged by the drawbacks 
of the current “gold standard.” The poorly differentiated clinical features, the 
possibility of low microbial culture yield, and the duration for culture are the 
culprits of delayed IK treatment. Deep learning (DL) is a recent artificial intelligence 
(AI) advancement that has been demonstrated to be highly promising in making 
automated diagnosis in IK with high accuracy. However, its exact accuracy is not 
yet elucidated. This article is the first systematic review and meta-analysis that 
aims to assess the accuracy of available DL models to correctly classify IK based 
on etiology compared to the current gold standards.

Methods: A systematic search was carried out in PubMed, Google Scholars, 
Proquest, ScienceDirect, Cochrane and Scopus. The used keywords are: “Keratitis,” 
“Corneal ulcer,” “Corneal diseases,” “Corneal lesions,” “Artificial intelligence,” 
“Deep learning,” and “Machine learning.” Studies including slit lamp photography 
of the cornea and validity study on DL performance were considered. The primary 
outcomes reviewed were the accuracy and classification capability of the AI 
machine learning/DL algorithm. We analyzed the extracted data with the MetaXL 
5.2 Software.

Results: A total of eleven articles from 2002 to 2022 were included with a total 
dataset of 34,070 images. All studies used convolutional neural networks (CNNs), 
with ResNet and DenseNet models being the most used models across studies. 
Most AI models outperform the human counterparts with a pooled area under the 
curve (AUC) of 0.851 and accuracy of 96.6% in differentiating IK vs. non-IK and 
pooled AUC 0.895 and accuracy of 64.38% for classifying bacterial keratitis (BK) 
vs. fungal keratitis (FK).

Conclusion: This study demonstrated that DL algorithms have high potential in 
diagnosing and classifying IK with accuracy that, if not better, is comparable to 
trained corneal experts. However, various factors, such as the unique architecture 
of DL model, the problem with overfitting, image quality of the datasets, and the 
complex nature of IK itself, still hamper the universal applicability of DL in daily 
clinical practice.
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1 Introduction

Keratitis is a sight-threatening condition that requires rapid and 
accurate management to prevent irreversible outcomes. Among all 
etiologies, infectious keratitis (IK) is the most common cause to 
corneal blindness, with an estimated incidence ranging from 2.5 to 
799 per 100,000 population-year (1). Globally, it is among the top five 
leading causes of vision impairment and blindness, accounting for 
1.5–2.0 million cases of blindness yearly (2). IK can be caused by 
extensive range of microbial organisms, including bacteria, fungi, 
viruses, parasites and polymicrobial infections. It was once considered 
as a ‘silent epidemic’ in low-income and middle-income countries 
(LMICs) with an incidence of 113–799 per 100,000 populations per 
year compared to high-income countries (HICs) with an incidence 
rate of 2.5–4.3 per 100,000 populations per year (1, 3, 4). It is very 
highly likely that occupational factors, such as agricultural work, 
environmental factors, and abuse of traditional eyedrops or eye wash 
contribute to the high incidence number in LMICs. These factors 
precipitated by limited access to primary and secondary care 
consequently leads to the patients to suffer from intractable infection 
and at higher risk of losing eyesight (1, 5, 6). Moreover, as IK usually 
affects patients in their productive years, it has magnified the financial 
burden of both individuals and the countries affected.

It is critical to note that the outcome of IK depends heavily on 
prompt treatment following a timely and accurate diagnosis. 
Current practice of IK diagnosis that involves utilizing slit lamp 
photography of infectious cornea disease among cornea specialists 
has been reported to only yield 66.0–75.9% of accuracy in 
differentiating bacterial and fungal keratitis (7). Corneal scraping 
and biopsy come as the ‘gold standard’ method for definitive IK 
diagnosis. However, these approaches are oftentimes dampened by 
the challenges in LMICSs where there may be  a lack of access 
ophthalmic units with clinical experts and standardized investigating 
equipment, resulting in reliance in empirical treatment and delay in 
definitive treatment. Moreover, even when the option of 
microbiological workups is available, this procedure might also take 
days before producing any results. These challenges may be held 
accountable for poorer clinical outcome and higher risk of 
irreversible sequalae. On the other hand, poorly differentiated 
clinical feature may also lead to misdiagnosis, which may result in 
disastrous cascade of inappropriate treatment, increasing the risk of 
unidentified clinically essential lesions (8), making human decision-
making for diagnosis even more difficult.

Artificial intelligence (AI) has captured the attention of medical 
specialties, such as ophthalmology, dermatology, and radiology, 
where visual analysis and interpretation skill are highly demanded to 
create diagnosis. Deep learning (DL), a subfield of AI, has shown 
promising potential in assisting automated clinical diagnosis and 
decision-making by performing high-dimensional analyzes, 
henceforth improving healthcare efficiency. The ophthalmology field 
is not a stranger to DL itself, with previous studies have reported 
diagnostic accuracy that, if not better, is comparable to clinical 
experts in making the diagnosis of posterior segment diseases, 
including macular degeneration, glaucoma, and diabetic retinopathy 
(9–14). One DL-based technology has also been reported with 
remarkable sensitivity and specificity, with the respective number of 
91.3 and 91.1% in detecting vision-threatening diabetic retinopathy 

(14). Apart from its accuracy, availability of DL may also enable 
clinician to provide better care without needing to accommodate 
resources in constant purchasing, maintaining, training, and 
upgrading expensive capital for diagnostic laboratory equipment and 
technicians. Furthermore, it may also assist ophthalmologists and 
even empower untrained clinicians to diagnose IK in resource-scarce 
regions and take the needed actions, therefore diminishing its 
progressivity to debilitating corneal-related blindness. Despite its 
promising potential and the number of studies demonstrating high 
accuracy of DL in IK diagnosis and recognizing IK apart from other 
ocular diseases (8, 15–20), its diagnostic accuracy remains to 
be elucidated.

To the best of our knowledge, there is no published systematic 
review and/or meta-analysis on this topic to this date. Accordingly, 
we conducted a comprehensive systematic review and meta-analysis 
aiming to evaluate the accuracy of the available artificial intelligence 
algorithms to correctly classify infectious keratitis based on the 
etiology compared to its respective gold standard, i.e., the human 
counterparts. It is expected that this systematic review and meta-
analysis may be a strong basis for the consideration of DL deployment 
into clinical practice, therefore preventing delay and providing better 
care for IK patients.

2 Materials and methods

2.1 Search strategy

Literature was searched in six online scientific databases (PubMed, 
Google Scholar, ProQuest, ScienceDirect, Cochrane, and SCOPUS) 
on December 10th, 2022. Search phrases include a combination of all 
main keywords and their related terms: “artificial intelligence” and 
“keratitis,” as described in Table 1. Reference lists of each study were 
also analyzed for potentially relevant articles. Identification of new 
studies via other methods was not performed. There was no restriction 
in the publication year.

2.2 Study selection

Based on the search strategies previously described, articles were 
considered eligible to be  reviewed if the article met the following 
criteria: (1) study on human; (2) corneal images were based on diffuse 
slit lamp photography of the eye; (3) validity study on DL performance. 
The flow chart of the literature search was described in Figure 1 based 
on preferred reporting items for systematic reviews and meta-analyzes 
(PRISMA) flow chart.

2.3 Internal validity assessment

Validity assessment of articles previously met our criteria using an 
appraisal tool for diagnostic study by the Center for Evidence-Based 
Medicine (CEBM), University of Oxford. Data validity, result, and 
applicability were assessed in all included studies. A total of 5 
parameters were used, each with the results of Yes, No, or Unclear. All 
authors discussed discrepancies in the assessment results.
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2.4 Data processing and extraction

The information extracted from each study includes the authors, 
the year the study was reported or published, baseline characteristics 

of subjects, number or proportion of dataset and test images, and AI 
algorithm name. The primary outcomes reviewed were the accuracy 
and classification capability of the AI/machine learning/deep learning 
algorithm in terms of Receiver Operator Characteristic (ROC) curve 

TABLE 1 Online databases used and the respective search strategy.

No. Database Search terms

1
PubMed® [Keratitis OR “corneal ulcer” OR “corneal diseases” OR “corneal lesion”(MeSH Terms)] AND [“Artificial intelligence” OR “machine 

learning” OR “deep learning”(MeSH Terms)]

2 Google scholars (Keratitis OR “corneal ulcer” OR “corneal diseases” OR “corneal lesion”) and (“artificial intelligence” or “deep learning” or “machine 

learning”)

3
Proquest® mainsubject (keratitis OR “corneal ulcer” OR “corneal diseases” OR “corneal lesion”) AND mainsubject (“artificial intelligence” OR 

“deep learning” OR “machine learning”)

4
ScienceDirect® (Keratitis OR “corneal ulcer” OR “corneal diseases” OR “corneal lesion”) and (“artificial intelligence” or “deep learning” or “machine 

learning”)

5
Cochrane® (Keratitis OR “corneal ulcer” OR “corneal diseases” OR “corneal lesion”) in All Text AND (“artificial intelligence” or “deep learning” or 

“machine learning”) in All Text - (Word variations have been searched)

6
Scopus® [TITLE-ABS-KEY (keratitis OR “corneal ulcer” OR “corneal diseases” OR “corneal lesion”) AND TITLE-ABS-KEY (“artificial 

intelligence” OR “deep learning” OR “machine learning”)]

FIGURE 1

PRISMA 2020 flow diagram for updated systematic reviews that included searches of databases and registers.
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or Area Under the Curve (AUC), sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV).

2.5 Data analysis

The extracted data were then analyzed with the MetaXL 5.2 
Software. All data on accuracy and AUC on the performance of AI on 
infectious keratitis diagnosis were pooled and shown in the form of 
forest plots and summary tables for visualization.

3 Results

3.1 Search results

A total of eleven articles were included in this review. These 
articles study the accuracy of various machine learning algorithms in 
solving the classification of keratitis based on diffuse slit lamp 
photography as compared with the human counterparts and cross-
referenced with the respective laboratory diagnosis as the 
confirmatory tests.

3.2 Validity assessment

All eleven relevant articles were assessed for validity using 
standardized critical appraisal tools for diagnostic study by CEBM 
before proceeding to data synthesis. Validity assessment based on the 
CEBM Diagnostic Study Appraisal Worksheet was summarized in 
Table 2.

3.3 Included studies’ characteristics

Eleven eligible studies published between 2003 and 2022 were 
assessed (Table  3). Studies were conducted mainly in Asian and 
Australian populations, with samples acquired from the People’s 
Republic of China, India, Japan, Thailand, and Australia with 34,070 
data from slit-lamp images.

Nine out of the eleven studies classify IK based on two or more 
etiologies in which all the five studies have bacterial keratitis group; 
other etiologies of IK, such as fungal, viral, or parasitic are not 
continually assessed separately. Two studies by Li et al. (15) and Gu 
et al. (25) did not classify IK based on the causative microorganisms 
(6,055 and 845 IK images of non-specific etiologies respectively). 
However, these two studies compared normal cornea, infectious, and 
non-infectious keratitis (corneal dystrophy, degeneration, or 
neoplasm). No other study assessed normal corneas, with a striking 
amount of 6,055 [Li et al. (15)] and 870 [Gu et al. (25)] total images in 
their dataset. Four studies [Zhang et al. (22), Koyama et al. (16), Kuo 
et al. (26), Xu et al. (8)] specified viral keratitis as herpes simplex 
keratitis (HSK), but Sajeev et al. (24) did not specify the specific virus 
in the classification as the causative agent of the IK. The complete 
dataset classification can be seen in Figure 2 (Supplementary Table S1).

Seven of the eleven studies compare the performance of AI 
models with clinicians’ diagnoses made by trained ophthalmologists, 
corneal specialists, or non-corneal specialists. Redd et al. (21) have 

twelve local expert cornea specialists performing a remote 
interpretation of the images used in the same test set to enable 
direct comparison against CNN performance. Zhang et  al. (22) 
invited three corneal specialty ophthalmologists to assess the 
external validation set to make a clinical diagnosis. Zhang et al. (22) 
invited three corneal specialty ophthalmologists to assess the 
external validation set to make a clinical diagnosis. Saini et al. (20) 
used only two corneal clinicians as a comparison. Other studies 
went to a greater extent to assess the human-machine comparison. 
Xu et  al. (8) used 21 ophthalmologists trained with 120 images 
before the grading process, Gu et  al. (25) enrolled 20 trained 
ophthalmologists as well as two corneal specialists to diagnose slit-
lamp images of healthy and abnormal cornea conditions clinically, 
and Koyama et al. (16) tested 35 board-certified ophthalmologists 
including 16 faculty members of corneal specialist diagnosis 
accuracy against their AI algorithm using a diagnostic software 
named “KeratiTest.” Kuo et al. (26) evaluated the machine learning 
algorithm against two different levels of human expertise in corneal 
diseases: assessing a group of 3 non-cornea specialists against three 
corneal specialists to show if there is any difference in accuracy 
between the subgroups.

All eleven studies use respective laboratory examinations such as 
culture or direct microscopy or PCR as the reference standard for 
diagnosis based on the patient’s medical records in the database and 
prospective data. Although Sajeev et al. (24) and Gu et al. (25) did not 
explicitly state that the diagnoses retrieved from their database were 
based on a confirmatory laboratory test. The article by Saini et al. (20), 
however, went a step further to evaluate the correct diagnosis of IK 
based on the clinical improvement of the treated eye as an additional 
parameter of accurate diagnosis.

The established AI models presented in this review are listed in 
Table 4 (DenseNet121, DenseNet169, DenseNet201, EfficientNet-b0, 
EfficientNet-b3, EfficientNet-b5, EfficientNet-b7, Ensemble, GBDT, 
GoogleNet-V3, Inception-V3, InceptionResNetV2, Mobile-NetV2, 
ResNext101_32x8d, ResNext101_32x16d, ResNet18, ResNet34, 
ResNet50, ResNet101, ResNet152V2, VGG16, VGG19, Xception) 
were all based on convolutional neural network (CNN), a class of 
artificial neural network, most commonly applied to analyze visual 
imagery. Three studies by Sajeev et al. (24), Gu et al. (25), and Saini 
et  al. (20) developed their algorithm to evaluate its accuracy or 
compare it to other established deep learning algorithms in classifying 
IK. Zhang et al. (22) used model blending technology and constructed 
KeratitisNet, their final chosen modeling method from the 
combination of RexNext101_32x16d and DenseNet169. The detailed 
training and validation process and number of images enrolled in each 
step were only explicitly documented in four out of ten articles [Zhang 
et al. (22), Hung et al. (18), Sajeev et al. (24), and Kuo et al. (26)].

All eleven studies used diffuse illumination slit-lamp photography 
of the corneal surface as the input. However, Hung et al. (18) removed 
the conjunctival and palpebral region to focus the observation area on 
the corneal area.

The number of image datasets used to train and validate the deep 
learning algorithm in the ten included studies varies greatly. The 
highest number of images for training per causative microbes’ 
classification is 1,690 fungal keratitis photographs in Zhang et al. (22). 
Study by Saini et al. (20) included 63 combination images of IK from 
bacterial and fungal origin. Li et al. (15) collected 6,055 IK images of 
unstated microorganism origin.
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TABLE 2 Validity assessment matrix (CEBM, Oxford University®).

Domains Explanatory 

questions

Redd et al. 

(2022) (21)

Zhang et al. 

(2022) (22)

Ghosh et al. 

(2021) (23)

Koyama et al. 

(2021) (16)

Hung et al. 

(2021) (18)

Sajeev et al. 

(2021) (24)

Li et al. 

(2021) (15)

Gu et al. 

(2020) (25)

Kuo et al. 

(2020) (26)

Xu et al. 

(2020) (8)

Saini et al. 

(2003) (20)

Validity Was the 

diagnosis test 

evaluated in a 

representative 

spectrum of 

patients?

Y Y Y Y Y Y Y Y Y Y Y

Was the 

reference 

standard 

applied 

regardless of 

the index test 

result?

Y Y Y Y Y Y Y Y Y Y Y

Was there an 

independent, 

blind 

comparison 

between the 

index test and 

an appropriate 

reference 

(‘gold’) 

standard of 

diagnosis?

Y Y Y Y Y U U Y Y Y Y

Results Are test 

characteristics 

presented? (Sn, 

Sp, PPV, NPV, 

AUC, accuracy)

Y Y Y Y Y Y Y Y Y Y Y

Applicability Were the 

methods for 

performing the 

test described 

in sufficient 

detail to permit 

replication?

Y Y Y Y Y Y Y Y Y Y Y

Y, Yes; N, No; U, Unclear.
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3.4 Performance of deep learning model

In the paper by Li et al. (15) and Gu et al. (25), which assessed the 
performance of DL algorithms to differentiate between IK and non-IK 
without classifying it based on the causative organism, the highest 
average accuracy was achieved by DenseNet121 with 98.0% accuracy, 
and ResNet50 achieved the lowest accuracy of 95.8%. All DL 
architectures in these two studies could successfully differentiate IK 
from non-IK with an AUC of 0.908–0.991. In classifying IK based on 
its respective etiologies, various available models such as InceptionV3, 
ResNet, and DenseNet had shown a considerable performance of 
70–80% accuracy. One of the earliest DL models utilizing CNN to 
classify BK vs. FK was by Saini et  al. (20) in 2003, which had an 
accuracy rate of 90.7%. The later model achieves 81.2 accuracy at 
maximum [BK vs. VK by Sajeev et al. (24)]. The latest study by Zhang 

et al. (22) compared nine model development methods and introduced 
KeratitisNet, demonstrating the highest average accuracy in this study. 
Another study by Li et al. (15) also included smartphone macro corneal 
photography as a dataset. It surprisingly yielded a favorable outcome, 
with the best algorithm reaching an AUC of 0.967 in keratitis detection. 
A summary of all the reviewed DL models is presented in Table 4.

3.5 Comparing the performance of deep 
learning model and human

Eight of the eleven included studies reviewed the performance of 
ophthalmologists of varying experience or affiliation and whether 
additional information or training improved visual diagnostic of IK 
from the available slit-lamp image data. The results showed that 

TABLE 3 Characteristics of the included studies.

Title of Article Author Year Country Keratitis classification

Image-based differentiation of 

bacterial and fungal keratitis 

using deep convolutional neural 

networks

Redd et al. 2006–2015 India BK, FK

Deep learning-based classification 

of infectious keratitis on slit-lamp 

images

Zhang et al. June 2007 – May 2018 China BK, FK, HSK, AK

Deep learning for discrimination 

between fungal keratitis and 

bacterial keratitis

Ghosh et al. 2012–2020 Thailand BK, FK

Determination of probability of 

causative pathogen in infectious 

keratitis using deep learning 

algorithm of slit-lamp images

Koyama et al. August 2005 – December 

2020

Japan BK, FK, HSK, AK

Using slit-lamp images for deep 

learning-based identification of 

bacterial and fungal keratitis: 

Model development and 

validation with different 

convolutional neural networks

Hung et al. 1 January 2010–31 

December 2019

Taiwan BK, FK

Classifying infective keratitis 

using a deep learning approach

Sajeev et al. October 2018 – March 2020 Australia BK, VK

Preventing corneal blindness 

caused by keratitis using artificial 

intelligence

Li et al. Unspecified China IK, non-IK

Deep learning for identifying 

corneal diseases from ocular 

surface slit-lamp photographs

Gu et al. April 2017 – October 2017 China IK, non-IK

A deep learning approach in 

diagnosing fungal keratitis based 

on corneal photographs

Kuo et al. 1 June 2007–31 May 2018 Taiwan FK, non-FK

Deep Sequential Feature Learning 

in Clinical Image Classification of 

Infectious Keratitis

Xu et al. May 1998–2018 China BK, FK, HSK

Neural network approach to 

classify infective keratitis

Saini et al. Unspecified India BK, FK

AK, amebic keratitis; BK, bacterial keratitis; FK, fungal keratitis; HSK, herpes Simplex Keratitis IK, infectious keratitis; N, normal; Oth, others; PK, parasitic keratitis; VK, viral keratitis.
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classifying the etiology of IK based on visual clues alone is not trivial 
for human experts. For instance, the study by Redd et al. (21) with 
AUC of 0.76 compared to 0.84 in CNN ensemble or Zhang et al. (22) 
with experts’ diagnostic accuracy of 31–59%. Additional patient 
history information, IK lesion training, and experience in cornea 
diseases improve human performance, as found in Li et al. (15) with 
increased accuracy in 6 years-experienced compared to 3 years-
experienced. However, the level of accuracy was not satisfactory in 
almost all studies, with the highest accuracy performance being only 
75% for fungal keratitis by corneal specialists in Kuo et al. (26) and did 
not exceed any higher than 58% even for ophthalmologists who were 
actively involved in teaching hospitals in Xu et al. (8). Only in a study 
by Li et al. (15) can a corneal specialist with 3 to 6 years of experience 
achieve 96% accuracy.

The AUC and accuracy in the classification of IK by the currently 
developed deep-learning models were summarized in Table  5. In 
almost all the studies, the deep-learning model was on par at a 
minimum compared with humans in classifying IK. In fact, in seven 
of the eight studies, AI models outperformed their human counterparts.

3.6 Data analysis

The data analysis was conducted using the data on AUC and 
accuracy as the performance metrics. The AUC analysis of bacterial 
keratitis vs. fungal keratitis used datasets from two included studies. 
The pooled results have shown the Receiver Operating Characteristics 
(ROC) curve area of 0.895 (95% CI: 0.512–1.000; p < 0.001), with 

FIGURE 2

Number of dataset images of each included studies.
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TABLE 4 AUC and accuracy of different deep learning models used in the classification of IK in each study.

No Author, year Model AUC Average accuracy

1 Redd et al. (2020) (17)

MobileNet BK vs. FK: 0.83 NA

DenseNet BK vs. FK: 0.83 NA

ResNet BK vs. FK: 0.82 NA

VGG BK vs. FK: 0.75 NA

Exception BK vs. FK: 0.75 NA

Ensemble BK vs. FK: 0.84 NA

2 Zhang et al. (2022) (22)

ResNet18 BK:0.82; FK:0.88; AK:0.95; HSK:0.96 68.3

ResNet50 BK:0.84; FK:0.89; AK:0.95; HSK:0.98 72.3

DenseNet121 BK:0.82; FK:0.87; AK:0.95; HSK:0.96 70.0

DenseNet169 BK:0.85; FK:0.90; AK:0.95; HSK:0.98 74.0

ResNet101_32x8d BK:0.85; FK:0.89; AK:0.96; HSK:0.98 74.2

ResNet101_32x16d BK:0.84; FK:0.90; AK:0.96; HSK:0.98 75.8

EfficientNet-b0 BK:0.85; FK:0.88; AK:0.95; HSK:0.97 72.9

EfficientNet-b5 BK:0.82; FK:0.87; AK:0.96; HSK:0.97 72.1

EfficientNet-b7 BK:0.83; FK:0.89; AK:0.97; HSK:0.98 74.4

KeratitisNet BK:0.86; FK:0.91; AK:0.96; HSK:0.98 77.8

3 Ghosh et al. (2021) (16)

VGG19 BK vs. FK: 0.86 78.0

ResNet50 BK vs. FK: 0.60 68.0

DenseNet121 BK vs. FK: 0.73 71.0

Ensemble BK vs. FK: 0.90 83.0

4 Koyama et al. (2021) (16)
ResNet-50 BK:0.82; FK:0.78; AK:0.84; HSK:0.73 88.0

InceptionResNetV2 BK:0.87; FK:0.86; AK:0.99; HSK:0.93 87.0

5 Hung et al. (2021) (18)

DenseNet121

BK: 0.78 FK: 0.78

78.8

DenseNet161 78.6

DenseNet169 79.3

DenseNet201 78.4

EfficientNetB3 76.1

InceptionV3 78.9

ResNet101 80.0

ResNet50 77.3

6 Sajeev et al. (2021) (24)
256×256 input, two CL BK vs. VK: 0.801 75.3

64×64 input, three CL BK vs. VK: 0.856 81.2

7 Li et al. (2021) (15)

DenseNet121 IK: 0.988–0.990 98.0

Inception-v3 IK: 0.976–0.989 96.8

ResNet50 IK: 0.977–0.991 95.8

8 Gu et al. (2020) (25)

Own Model IK: 0.930 (0.904–0.952) NA

InceptionV3 IK: 0.950 NA

ResNet IK: 0.938 NA

DenseNet IK: 0.954 NA

Ensemble IK: 0.908 NA

9 Kuo et al. (2020) (26) Own Model FK vs. Non-FK: 0.650 69.4

10 Xu et al. (2020) (8)

VGG16 (image-level)

Average: 0.94 BK: 0.92 FK: 0.92 HSK: 0.96

55.24

GoogLeNet-v3 (image-level) 57.73

DenseNet (image-level) 61.04

VGG16 (patch-level) 45.34

GoogLeNet-v3 (patch-level) 44.19

DenseNet (patch-level) 59.30

ROPs (sequence-level) 74.23

SOPs (sequence-level) 75.14

SOSs (sequence-level) 78.73

11 Saini et al. (2003) (20) Own Model NA 90.7

ROPs, Random-ordered patches; SOPs, Sequential-ordered patches; SOSs, Sequential-ordered sets.
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TABLE 5 Performance of ophthalmologist to classify infectious keratitis based on slit lamp images.

No Study, year IK Classification Methods Results

Human vs Human Human vs DL

1 Redd et al. (2022) (21) BK, FK

Twelve Indian cornea specialists 

interpreted images used in the 

dataset via a web-based portal

Graders AUC varied between 

0.42–0.79. Human Grader 

Ensemble: 0.76

The CNN ensemble achieved a 

statistically significantly higher 

AUC (0.84) than the human 

ensemble (0.76; p < 0.01)

2 Zhang et al. (2022) (22) BK, FK, HSK, AK

Three experienced cornea 

specialists were invited to assess the 

external validation data set and 

make a clinical diagnosis. The 

confusion matrix was then 

calculated, and diagnostic accuracy 

was analyzed between the models 

and ophthalmologists

NA The recall rate of chosen DL in 

diagnosing BK, FK, AK, and 

HSK (70, 78, 84, 80%) was 

significantly higher than 

experts (47, 63, 31, and 59%)

3 Koyama et al. (2021) (16) BK, FK, HSK, AK

35 board-certified 

ophthalmologists throughout 

Japan, including 16 corneal 

specialists of faculty members, 

diagnostic accuracy was assessed 

using a diagnostic application 

software named “KeratiTest” in 

which the AI algorithm diagnosed 

the single images

NA The algorithm outperformed 

ophthalmologists for all types 

of keratitis. (AUC BK 0.82 vs. 

0.58; FK 0.78 vs. 0.52; HSK 

0.73 vs. 0.59; AK 0.84 vs0.59)

4 Li et al. (2021) (15) IK, non-IK

Two corneal specialists with 3 and 

6 years of experience

3 years-experience accuracy: 

96.2%. 6 years-experience: 

accuracy: 97.3%

Comparable to human expert 

with 3 years of experience. 

Deep learning accuracy: 96.7%

5 Gu et al. (2020) (25) IK, non-IK

32 ophthalmologists were trained 

with 90 images vs. 2 senior corneal 

specialists until k-value of 0.75 or 

more. 20 ophthalmologists 

qualified. Each photo was graded 

via face-to-face communication 

between two ophthalmologists. 

Algorithm tested against 10 

ophthalmologists

NA. Deep-learning model 

outperformed the average 

value of all trained 

ophthalmologists in sensitivity 

and specificity for IK and 

non-IK. ROC of the algorithm 

for each IK classification 

>0.910

6 Kuo et al. (2020) (26) FK vs. non-FK

3 cornea specialists with >7 years of 

qualification in the specialty 

(26 years, 15 years, and 8 years) VS 

3 non-cornea specialists, with 

comparable qualifications in 

clinical practice (25 years, 16 years, 

and 12 years). No significant 

difference in the average work 

experience (p = 0.8474). To grade 

whether the digital photos on a 

28-inch liquid crystal display 

monitor were FK or non-FK. NCS-

Oph vs. expert’s diagnosis

Average diagnostic sensitivity 

and NPV (negative predictive 

value) significantly lower in 

non-corneal specialists. But no 

significant difference in 

specificity and PPV. Average 

diagnostic accuracy: corneal 

spec > non-corneal specs

The comparable average 

accuracy of around 70%. 

Higher sensitivity than NCS-

oph (52%, p < 0.01) but lower 

specificity than NCS-Oph 

(83%, p < 0.01)

(Continued)
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homogenous data (Figure  2). On the contrary, the data of AUC 
analysis on infectious keratitis vs. non-infectious keratitis were 
heterogenous with I2 (inconsistency) of 98.51%. On the random effects 
analysis, the pooled AUC value was 0.851 (95% CI: 0.693–1.000) 
(Figures 3, 4). It has shown both studies’ relatively high performance 
of the artificial intelligence model.

Based on the results of the analysis of accuracy rate, the total 
accuracy value of the twelve tools tested in two studies was obtained, 
the study by Hung et al. (18) and Ghosh et al. (23) in differentiating 
between bacterial keratitis and fungal keratitis amounting to 64.38% 
(Figure 5). at the same time, the accuracy value of the 3 tools tested by 
Li et al. (15) was 96.6% (Figure 6).

4 Discussion

Our systematic review has shown the performance of artificial 
intelligence, particularly the DL model in identifying infectious 
keratitis. Most models perform fairly well, as seen in high accuracy 
and AUC analysis. The highest being DenseNet121 by Li et al. (15). 
Meanwhile, on the comparison between DL and human experts, DL 
has significantly higher accuracy than human experts in all studies, 
which shows a good performance of DL in IK diagnosis. On the 
pooled analysis, an AUC value of 0.895 on identifying bacterial 
keratitis vs. fungal keratitis, while AUC of 0.851 were retrieved for 
identifying infectious vs. non-infectious keratitis. On the accuracy 
analysis, pooled accuracy on BK vs. FK was 64.38%. However, the 
accuracy in identifying infectious vs. non-infectious keratitis was 
96.6%, showing a high DL accuracy rate. The DL-based systems can 
learn to recognize more complex patterns and therefore have gained 
a particular reputation for complex applications such as 

ophthalmology, which require extensive image recognition tasks to 
identify specific clinical patterns for accurate diagnosis. Despite its 
growing popularity, the DL framework in ophthalmology is still in its 
earliest stage (27). Most DL models used to classify IK in the ten 
included studies used CNNs as the main framework. The CNN is the 
most popular neural network model for image classification. The main 
idea behind CNNs is to decompose image understanding into more 
straightforward mapping, each described by a layer in the model. For 
example, to recognize an apple, we teach the computer to progressively 
recognize lines, edges, corners, textures, and eventually apple. This 
notion brings about the practical advantage of requiring less feature 
engineering for object identification which eventually results in a 
more time-efficient and adequate training of the machine 
learning models.

4.1 Why did certain algorithms perform 
better than others?

Finding the best DL model for classifying IK is not trivial. It 
involves tuning various hyper-parameters that affect the performance 
and accuracy of the model. However, some studies have shown that 
more novel architectures, such as DenseNet, outperform other models 
in this task. DenseNet is a new neural network architecture for visual 
object recognition with a dense connectivity pattern. It means that 
each layer is connected to every other layer and reuses them in all the 
subsequent layers, hence the name Densely Connected Convolutional 
Network. This feature enhances the model by allowing it to learn more 
diverse and rich features from the input data. However, DenseNet is 
one of many possible architectures that can achieve good results on IK 
classification. Furthermore, models with larger capacities, e.g., deeper 

TABLE 5 (Continued)

No Study, year IK Classification Methods Results

Human vs Human Human vs DL

7 Xu et al. (2020) (8) BK, FK, HSK

421 ophthalmologists of different 

levels of expertise, experience 

years, affiliations trained with 120 

images. 1st step is the image-only 

diagnosis 2nd step is the image and 

medical history

Teaching hospitals are far 

better than city hospitals/

community clinics (p < 0.001). 

Attending ophthalmologist & 

fellow better than resident 

(p < 0.001 & p = 0.003) No sig. 

Correlation between 

employment duration and 

diagnosis accuracy

Deep learning model is much 

more accurate than 

ophthalmologists on average, 

especially for HSK. Human 

diagnosis using image only: 

Average 49.27% (46.55% BK, 

45.56% FK, 65.01% HSK). Even 

with medical history, only: 

57.16% (55.55% BK, 56.28% 

FK, 73.25% HSK). Sequence-

level SOSs: Average 80.00% 

(53.33% BK, 83.33% FK, 

93.33% HSK) SOPs: Average 

79.17% (73.33% BK, 70.00% 

FK, 96.67% HSK)

8 Saini et al., 2003 (20) BK, FK

2 corneal clinicians NA AI accuracy is better than 

human clinicians. AI Average: 

90.7% (BK 100%, FK 76.47%). 

The human average is 62.7% 

(BK 61.5%, FK 64.7%)

FK, fungal keratitis; BK, bacterial keratitis; VK, viral keratitis; N, normal; IK, infectious keratitis; HSK, herpes simplex keratitis; PK, parasitic keratitis; Oth, others; NA, not available.
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or broader networks, can eventually outperform smaller models when 
more extensive data is provided. Therefore, future works should 
continuously evaluate multiple architectures and compare their 
performance and characteristics on this problem.

4.2 The quest to find the 
one-model-to-fit-all

Even if DenseNet seemed to have the highest average accuracy, 
some models have better accuracy in performing a specific 
classification of IK. For example, in the algorithms developed by Xu 
et al. (8), the sequence-level classification model using ROPs (74.2%) 
may have a lower average accuracy than SOSs (78.7%). However, 
ROPs performance in diagnosing bacterial keratitis outperformed 
SOSs by nearly 10% (75.3% vs. 65.1%, respectively). Hence, using 
more than one model for each type of IK is one way to push the limit 
for diagnostic supremacy further. This approach is referred to as 
model ensemble and is an effective strategy in improving the 
performance of machine learning algorithms (28). Redd et al. (21) 
evaluated five CNNs using images of culture-proven IK and reported 
a higher diagnostic accuracy than cornea experts in diagnosing BK 
and FK (area under the ROC = 0.84 vs. 0.76). Zhang et al. (22) combine 

ResNext101_32x16d and DenseNet169, giving birth to the chosen 
final modeling method named KeratitisNet, which demonstrated the 
best performance and highest accuracy in diagnosing BK, FK, HSK, 
and AK compared with 9 other individual models. The danger of 
overfitting could also threaten the early development of the DL model. 
The pioneering model by Saini et al. (20) in 2003 correctly classified 
all 63 cases in the training set and performed significantly better at 
90.7% accuracy, while the clinicians could only yield 62.7%. Hence, 
overfitting could explain how such a model could perform significantly 
better than the later models with more images despite containing the 
least number of training datasets. An overfitted function will tend to 
require more information and be less flexible to be applied to the real-
world dataset than an optimal function. Multiple deep learning 
architectures with better performance are introduced every year. 
Given enough data, it is likely that more powerful networks will 
achieve better performance for the task at hand. However, the quest 
to find the one-model-to-fit-all may be  challenging. Classifying a 
corneal ulcer may not be a straightforward function as the real-world 
application will not be  as simple as bacterial and fungal alone. 
Duration of onset, other classes of microbial infection, mixed 
infection, and image quality may add to the complexity of the model.

4.3 Is a machine better than a human?

The overall performance of the deep learning algorithm in the 
included studies showed that the model outperformed the average 
ophthalmologist and was comparable to or better than the experience 
corneal specialist with years of experience in classifying IK, especially 
for bacterial and viral keratitis. For fungal keratitis, Xu et  al. (8) 
reported diagnostic rates of 83.3% (higher than that of bacterial 
keratitis of 53.3% accuracy) using a deep sequential-level learning 
model with slit-lamp photographs. The accuracy of their model 
exceeded that of the humans by an impressive number (49.3% ± 11.9%) 
for over 120 test image samples. The study by Zhang et  al. (22) 
showcases that the algorithm outperformed ophthalmologists for all 
4 causative types of keratitis (BK, FK, HSK, and AK). Exceptions were 
found in the study by Kuo et al. (26) in which the average performance 
of the DL models was not as good as the overall accuracy of experts 
but still better than the non-corneal specialist ophthalmologist. 
However, even if we took a pessimistic stance towards DL classification 
for IK, with its sub-par performance, the DL model can still benefit 
primary care where most patients with IK presented. Even with a 
slightly lower accuracy than the experienced ophthalmologist, it will 
be beneficial to identify fungal keratitis since anti-fungal medications 
are not the empirical therapy for IK and false-negative diagnosis for 
FK can be devastating to the visual prognosis.

4.4 Limitation of DL classification

Diagnosis of less common or more complex IK such as mixed 
infection requires an experienced ophthalmologist or specially trained 
physician, or it may be missed. There is a need for further research 
regarding the deep learning algorithm’s ability to detect such cases 
which will eventually be faced in primary care settings even if it may 
be rare. Another critical group of classification will be the poor-quality 
images. Both poor-quality images and mixed infection are usually 

FIGURE 3

The area under the ROC curve pooled analysis on bacterial keratitis 
vs. fungal keratitis.

FIGURE 4

The area under ROC curve pooled analysis on infectious keratitis vs. 
non-infectious keratitis.
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excluded in many studies with the primary intention to reduce bias or 
if included, will be in a small proportion. Interestingly, one paper by 
Li et al. (15) considered the performance of the best algorithm with 
poor-quality images and showed just a slightly lower AUC (0.004–
0.012 difference); this number may give a hint that the performance 
of DL system classification even in poor-quality images will still 
be considered satisfactory. A study by Koyama et al. (16) also tests the 
algorithm’s robustness by the absence of fluorescein staining and using 
low-resolution web images, resulting in a minimal decrease in 
diagnostic efficacy. Currently, there is no minimum sample size for 
image dataset for a DL system to achieve a minimum acceptable 
performance; it is generally understood that there is no limit and the 
more the better, be it in the quantity or the quality of the image for 
training and validation of a DL architecture. In this review, Li et al. 
(15) study with over 6,567 images for validation, training, and testing. 
Using such datasets, DenseNet 121, Inception V3, and ResNet 50 
could achieve accuracy between 87.1 and 98.9% in differentiating 
infectious keratitis vs. normal cornea and other types. This number 
may appear to be significant in comparison with other conventional 
diagnostic studies, but this number is minuscule for the development 
of a DL network.

To further improve DL accuracy, both the quantity and quality 
of the dataset input are the holy grail. Beyond just the photographs 
of the cornea, additional clinical data such as patient’s history, visual 

acuity, intraocular pressure, onset, progression, and corneal 
sensitivity data may further enhance the diagnostic accuracy of the 
deep learning model. Integration of multiple modalities may also 
improve the diagnostic efficacy as shown in study by Zhang et al. 
(22). The study by Xu et al. (8) which focused on the specific parts of 
infectious lesions, can yield higher accuracy than seeing the whole 
eye illustrate this idea well. In Xu’s study, the DenseNet model 
improved its performance from 60.0 to 66.3% after “voting” in patch-
level classification. ROP (random-ordered patches) method can also 
be  an alternative besides voting. However, SOS (inner-outer 
sequential order classification) is the most promising method to 
achieve the best accuracy of IK diagnosis based on the slit-lamp 
image alone. In addition, an AI system fed with additional clinical 
data or medical history might improve its performance, just like 
when an ophthalmologist’s image-only diagnostic improves when 
more patient information is integrated into the decision-
making process.

4.5 The current environment of AI research

Together with other DL models, such as ResNet, Inception, 
GoogleNet, and VGGNet, they had been made as an open-source 
algorithm that enabled any data scientist or layperson with sufficient 

FIGURE 5

Accuracy pooled analysis on bacterial keratitis vs. fungal keratitis in two included studies [Hung et al. (18) and Ghosh et al. (23)]; ES, Effect size; CI, 
Confidence interval.

FIGURE 6

Accuracy pooled analysis on infectious vs. non-infectious keratitis; ES, Effect size; CI, Confidence interval.
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programming knowledge to reproduce the basic model. This inclusive, 
open science environment has made the development of DL rapidly 
bloom and hopefully remains in such a way. However, certain 
adjustments must be individually modified to refine the accuracy of 
each model. This unique fine adjustment to the base model is usually 
achieved by trial and error and may not be suitable for all corneal 
images with IK worldwide. Hence, some models may perform slightly 
better than others in different geographical conditions, population 
groups, and etiology of IK. However, the excellent accuracy of the 
stated model in the eleven studies comes at a price. It required a good 
amount of training images, in quantity and quality to yield such 
results. Despite the open access nature of the currently available DL 
models, another factor that may also hamper the replicability of the 
DL study is the availability of the sample images or dataset for validity 
and training of the DL algorithm.

4.6 Things that may prevent the 
applicability

Increasingly there has also been an open-source dataset for eye 
disease available to be accessed, such as github.com or kaggle.com. 
However, this dataset was limited by its variety, mainly sourced from 
Google image, and most importantly lacked the correct labeling; 
hence, the dataset was considered unsuitable for serious training 
purposes. Most models in the eleven included studies utilized well-
established datasets from electronic or conventional medical records 
of an academic institution or hospital in the People’s Republic of 
China, Australia, or India. The generalizability of models reviewed for 
use in other populations of IK patients should be concerned, especially 
if used with eyes with a different anatomical structure (e.g., different 
ethnicities, other ocular pathology).

Furthermore, these countries had strict regulations regarding 
personal data protection, especially across borders, which makes 
replicating such studies using the same data samples impossible by 
individual or study group without authority. For example, The 
Australian legislation system has The Privacy Act (1988) which 
protects the handling of personal information about individuals. It 
includes the collection, use, storage, and disclosure of personal 
information in the federal public sector and the private sector. Use 
of Healthcare Identifiers in Australia, and access to the My Health 
Record system, are governed by the Healthcare Identifiers Act 2010 
(HI Act) and the My Health Records Act 2012, the My Health 
Records Rule 2016, and the My Health Records Regulation 2012. 
Whereas in China, the Data Security Law (DSL) sets up a framework 
that classifies data collected and stored in China based on its 
potential impact on Chinese national security and regulates its 
storage and transfer depending on the data’s classification level. 
China’s Personal Information Protection Law (PIPL) is also in force 
starting August 2021, laying out ground rules around how data is 
collected, used, and stored. Multinational corporations (MNCs) 
that move personal information out of the country also will have to 
obtain certification on data protection from professional 
institutions, according to the PIPL. In the case of IK dataset, a 
center that would like to have a comprehensive DL-aided diagnosis 
for IK may have to work itself by collecting high-quality training 
images either from slit-lamp clinical diagnosis made by an 

experienced corneal specialist or through confirmatory lab tests to 
obtain the local rate of accuracy for implementation of DL system 
for IK classification since the commercially available or approved 
system is not available yet to this date despite its promising 
development. Another condition that may hamper the application 
of DL-assisted diagnosis of infectious keratitis is the availability of 
the respective treatment. In an area with a shortage of qualified 
diagnosticians or confirmatory laboratory facilities, scarcity of 
antimicrobial eye drops, be it antibiotic or anti-fungal, will usually 
co-exist. Unless the same effort to improve the availability of IK 
treatment has been achieved, the advantage of having a cheaper, 
faster, or more accurate diagnostic tool may not bring additional 
benefits to the patient.

4.7 Is it economical?

The fact that classification of IK is still very challenging even 
for trained humans with years of experience with IK lesions, 
developing a deep-learning model to help physicians to gain the 
upper hand in the war against IK for accurate diagnosis and prompt 
treatment can be  a worthwhile effort to be  made especially in 
countries where establishing multiple laboratory facilities is 
geographically or financially challenging, or where the availability 
of expert diagnostician is scarce and may take too long to 
be  trained. Although there has not been any cost-effectiveness 
study regarding this yet, with the advent of cloud computing and 
the increasing availability of internet access, it may be  more 
economically sound and efficient to set up one DL-assisted 
diagnostic model which can cover a wider area at a lower cost to 
solve the blindness problem arising from delay or mistreatment of 
IK in less time and with fewer resource than to invest in the high-
cost and high-maintenance laboratory facility. However, cost 
analysis on the use of AI in ophthalmology has shown significant 
cost-saving nature of the implementation, such as a report by 
Huang et al. (29), which shows cost-effective screening of diabetic 
retinopathy using AI compared to traditional screening. 
Ruamviboonsuk et al. (30) also stated a similar report; however, the 
research also suggests the cost of AI implementation system in the 
early years might be enormous and not applicable, particularly in 
low or middle-income countries (22).

4.8 Addressing the black-box nature of DL

The “black box” nature of deep learning will still be an endless 
debate. It may deter skeptical future users from using deep learning-
assisted diagnostic tools because it lacks an explanation despite their 
proven accuracy. However, this issue can be  addressed with the 
GRAD-CAM or GRAD-CAM++ (31, 32) which shows a gradient-
weighted heat map for a visual explanation of what the CNN observed 
as a potential corneal lesion, making cross-checking by humans 
possible. Although currently this system is still far from perfect, with 
these heatmaps, a certain level of accountability and human ‘trust’ for 
the machine-generated visual diagnosis will likely improve as better 
algorithms that adopted in future studies.
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4.9 The limitations of this review

Firstly, even with confirmatory lab examinations, there is still 
room for error in corneal sampling in IK. Not all studies included in 
this review followed the current standard method of sample collection 
in IK by collecting 5–6 specimens from each affected eye using various 
collection devices. This collecting method increases the chance of 
retrieving a responsible pathogen from the corneal tissue, which has 
a relatively low microbial count compared to other anatomical parts. 
Taking multiple corneal scrapes with sharp and uncomfortable 
instruments is troublesome for patients and clinicians. It also increases 
the likelihood of contamination from inappropriate techniques, open 
plates, and specimen handling by non-laboratory-trained personnel 
(33). Not all studies adhered to the strict standard procedure of 
specimen collection; hence, this flaw underlies all current gold 
standard methods of IK diagnosis. In addition to the constraints 
encountered with direct microscopic pathogen identification as the 
gold-standard method, clinical or therapeutic diagnoses made by 
ophthalmologists are even more likely to compromise their accuracy, 
as demonstrated by some studies mentioned beforehand. Using 
studies with suitable sampling methods, can reduce the future 
dependency on a method that had an inherited low-reproducibility 
and low-reliability method, not to mention expensive to 
be maintained. Hence, in the real-world setting, using a combination 
of clinical diagnosis by ophthalmologists, lesion improvement by 
respective microbial therapy, and direct laboratory identification 
might still be closer to the ideal standard of IK diagnosis than just 
relying on one method of diagnosis.

Secondly, the ophthalmologists in each study are of a different 
experience. Even with the implementation of prior standardized 
training such as in the study by Zhang et al. (22), Gu et al. (25), and 
Xu et al. (8), the inter-observer variability data of the clinicians were 
not explicitly reviewed. Hence, comparing the overall performance of 
man vs. machine is difficult.

Lastly, this review only included articles or studies from online 
databases without manual searching. Despite the open science nature 
of AI-related study, the chance for unpublished material for this topic 
is still highly possible from the ever-growing nature of the framework 
and the likelihood of undisclosed research for commercial development.

5 Conclusion

Our study has demonstrated the promising potential of DL to 
diagnose and classify IK with high accuracy that competes with 
trained clinical experts despite the variability within the DL models 
architectures among the reviewed articles. However, the variability of 
the architectures, in addition to the nature of IK itself remain a 

question whether there is one most reliable model to be used in daily 
clinical practice. It is expected that with the continuous growth of DL 
advancement and future studies of DL use in IK, debilitating visual 
impairment or blindness due to IK can be prevented. Therefore, future 
studies that further analyze the accuracy of DL that also weighs in 
other factors are still needed.
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