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Introduction: The selection of antiseizure medication usually requires a trial-and-
error process. Our goal is to investigate whether genetic markers can predict the
outcome of perampanel (PER) use in patients with epilepsy.

Method: The studied participants were selected from our previous epilepsy
genetics studies where whole exome sequencing was available. We reviewed
the medical records of epilepsy patients older than 20 years old treated with PER.
The outcome of PER treatment included the response to PER, the occurrence of
any adverse drug reaction (ADR), the presence of behavior ADR, and the ability to
adhere to PER for more than 1 year. We investigated the association between the
rare variants of the glutamate receptor genes and the outcomes of PER use.

Result: A total of 83 patients were collected. The gene group burden analysis
showed that enriched genetic variants of the glutamate receptor gene groupwere
statistically significantly associated with the occurrence of ADR, while the
glutamate ionotropic receptor delta type subunit had a nominal association
with the occurrence of ADR. The gene collapse analysis found that GRID1 had
a nominal association with the occurrence of ADR and GRIN3A had a nominal
association with the occurrence of behavior ADR. However, these nominal
associations did not remain statistically significant once adjusted for multiple
testing.

Discussion: We found that enriched rare genetic variants of the glutamate
receptor genes were associated with the occurrence of ADR in patients taking
PER. In the future, combining the results of various pharmacogenetic studies may
lead to the development of prediction tools for the outcome of antiseizure
medications.
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Introduction

The treatment of epilepsy requires the use of antiseizure
medications (ASMs) to cease or control seizures. To choose the
optimal ASMs, the treating physicians often consider the patient’s
seizure types, age, gender, co-medications, and comorbidities
(Perucca and Tomson, 2011) before offering the ideal drug.
However, the response to ASMs is unpredictable and the treating
physician can only balance the effect and adverse drug reactions
(ADRs) of ASMs in a trial-and-error process, which relies heavily on
the physician’s judgment and experience. During this process, the
patient would suffer from inadequate seizure control from low ASM
dose to prevent ADR or endure unpleasant ADR due to the rapid
titrating of ASM to control the seizures. There is an unmet need for
biomarkers that can guide or suggest the optimal ASM for individual
patients to achieve the goal of “no seizures, no side effects” (Glauser,
2011).

Perampanel (PER) is a non-competitive α-amino-3-hydroxy-5-
methyl- 4-isoxazole propionic acid (AMPA) receptor antagonist
(Plosker, 2012) that inhibits the excitatory neurotransmission to
achieve its antiseizure activity (Rogawski and Hanada, 2013). PER is
a new-generation ASM that effectively controls both focal and
generalized seizures (Tsai et al., 2018). It had the advantage of
few drug-drug interactions (Kwan et al., 2015) and long potency
(Villanueva et al., 2016a), making it easier to use for physicians and
increasing adherence for patients. One of its drawbacks is behavior
disturbance including irritation, aggression, or other psychotic
symptoms (Fong et al., 2022). Hence, an objective indicator
predicting the outcome of PER use may greatly enhance the
ability of treating physicians to achieve seizure control and
minimize ADRs.

The advance of massively parallel genetic sequencing has
expanded our understanding of the relationship between genetic
factors and phenotype. This technology allows the incorporation of
pharmacogenomic data into the clinical decision-making process
(Balestrini and Sisodiya, 2018). One example was the association of
HLA-B*1502 and the development of Stevens-Johnson syndrome/
toxic epidermal necrolysis in Taiwanese and Southeast Asian
populations (Chung et al., 2004) that led physicians to perform a
genetic test before prescribing aromatic ASMs to these ethnic groups
to prevent severe skin ADR. The association between ASM
responsiveness and genetic variants was not as robust as that for
dermatological side effects. The association between the
responsiveness of sodium channel-blocking ASMs and sodium
channel genes is by far the most extensively studied but the
results are inconsistent among different ethnic groups (Abe et al.,
2008; Sanchez et al., 2010; Manna et al., 2011; Haerian et al., 2013;
Kumari et al., 2013; Ma et al., 2014; Angelopoulou et al., 2017; Lin
et al., 2021). A large study conducted by EpiPGX Consortium
suggested the resistance of ASM may be related to damaging
genetic variants (Wolking et al., 2020a). The accumulation of
data from these pharmacogenetic studies may 1 day provide
robust genetic data to assist the decision-making of physicians in
prescribing ASM.

We hypothesize that genetic variants in the glutamate receptor
genes may affect the binding between PER and the glutamate
receptors or interfere with the interaction of various subtypes of
glutamate receptors. These alternations change the downstream

neurotransmission and result in differences in the outcome of
PER treatment. Currently, no research has focused on the
association between the genetic variants in glutamate receptors
and the effect of PER. In this study, we searched the
pharmacogenomic relationship between genetic variations of the
glutamate receptors and the outcome of PER treatment.

Material and methods

Ascertainment of subjects

The studied participants were selected from our previous
epilepsy genetics studies where whole exome sequencing (WES)
was available. All participants are Taiwanese aged more than
20 years old and provided written, informed consent before
sequencing. The studies were approved by the Chang Gung
Medical Foundation Institutional Review Board.

Patients with a history of psychogenic nonepileptic seizures were
excluded due to the difficulty in determining reliable seizure
frequency. Clinical data including gender, onset age of seizure,
types of seizure, etiology of seizure, seizure frequency, other
medical diseases, the types and maintenance dose of ASMs,
ADRs, electroencephalograms, and brain images were collected.

Outcomes related to perampanel treatment

We defined four separate outcomes regarding the result of using
PER, which were the response to PER, the occurrence of ADR, the
presence of behavior ADRs, and the 1-year retention of PER. These
outcomes represent different aspects of treating with PER. The
response to PER was to evaluate its effectiveness in controlling
seizures. The ADRs and behavior ADRs are annoying side effects to
the patient, caregiver, and healthcare provider, which may result in a
decreased quality of life or withdrawal of the medication (Hansen
et al., 2018). The 1-year retention denotes a balance between the
effects and side effects of PER, patients with acceptable seizure
control and tolerable side effects may have better adherence to the
medication being used (Im et al., 2021).

The response to PER was defined according to the seizure
frequency after its prescription and categorized according to the
International League Against Epilepsy (ILAE) consensus (Kwan
et al., 2010) and EpiPGX Consortium (Androsova et al., 2017;
Wolking et al., 2020b). Responding to PER was defined as seizure-
free under ongoing PER treatment for at least 1 year and before
initiation of any other treatment. Failure to respond to PER was
defined as still having seizures during the use of PER or the need
for initiation of any other treatment. The occurrence of ADR was
defined as PER-related adverse events (Tsai et al., 2018) both occurring
after PER use and deemed to be caused by PER by the treating
physician. The PER-related ADRs included dizziness, somnolence,
headache, fatigue, behavior problems, and falls (Steinhoff et al.,
2013; Leppik et al., 2017). The presence of behavior ADRs was
defined as irritation, violent behavior, and/or psychotic symptoms
that occurred after PER use and were considered caused by PER by
the treating physician. One-year retention was defined as patients who
kept PER use for more than 1 year.
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Gene group and genotype

We specifically focus on the glutamate receptor genes obtained
from the HUGO Gene Nomenclature Committee at the European
Bioinformatics Institute (https://www.genenames.org/) (Seal et al.,
2023). The glutamate receptor gene list includes 26 genes, GRIA1-4,
GRID1-2, GRIK1-5, GRIN1, GRIN2A-D, GRIN3A-B, and GRM1-8,
which is further separated into five functional subunit gene groups.

We followed the grouping method of HUGO, including 1. The
glutamate ionotropic receptor AMPA type subunit (GRIA1-4), 2.
The glutamate ionotropic receptor delta type subunit (GRID1-2), 3.
The glutamate ionotropic receptor kainate type subunit (GRIK1-5),
4. The glutamate ionotropic receptor N-methyl-D-aspartate
(NMDA) type subunit (GRIN1, GRIN2A-D, and GRIN3A-B), and
5. The glutamate metabotropic receptor (GRM1-8).

Statistical analysis

In our study, we focused on the rare variants of the glutamate
receptor genes and defined them asminor allele frequency (MAF)&
0.05 in gnomAD (https://gnomad.broadinstitute.org/) (Karczewski
et al., 2020). We excluded all synonymous single nucleotide variants.

First, we conduct a gene group burden analysis to search for the
different enrichment of rare variants in the gene group that might be
associated with the outcome of PER use. This was done by testing the
association between the presence/absence of phenotypes and the

number of rare variants in each gene group using the
Mann–Whitney U test. Second, a gene collapse analysis was
performed to find the association between the presence/absence
of phenotypes and the presence/absence of at least one rare variant
in each glutamate receptor gene using the Fisher exact test.
Significance was defined as p-values of less than 0.05 but to cope
with the problem of multiple testing, we adjusted p-values by the
Bonferroni correction. The clinical statistics were presented as
percentages for categorical data and median plus interquartile
range for skewed continuous variables.

Results

Demographic characteristics

Overall, 83 Taiwanese patients who took PER for seizure control
were collected for this study. The demographic data is presented in
Table 1. In the study cohort, we included 35 females and 48 males.
There were 76 patients (91.6%) with focal seizures, four (4.8%)
generalized seizures, and three (3.6%) unclassified. The etiology of
seizure included genetic in seven patients (8.4%), immunologic in four
(4.8%), infectious in four (4.8%), metabolic in one (1.2%), structural in
33 (39.8%), and unknown in 34 (41.0%). The age of seizure onset was
13.5 (interquartile range (IQR) = 6.0–23.0) years old and the age at PER
use was 37.0 (IQR = 28.0–46.0) years old. Ten patients had an
underlying intellectual disability and one with an autism spectrum
disorder. The interval from seizure onset to the use of PER was 22
(IQR = 8.5–33) years and the duration of PER use was 885 (IQR =
339.5–1626.5) days. Themedian number of ASMs used before PERwas
4 (IQR = 2–6) and three patients underwent non-medical treatment
before the use of PER. One had callosotomy, another received deep
brain stimulation, and the other received vagus nerve stimulation. In
our cohort, 14 patients were responding to PER, and 69 failed;
22 patients had ADRs and 61 did not; 14 patients had behavior
ADRs and 69 did not; a total of 61 patients were able to adhere to
PER formore than 1 year, and 22were not. Among patients withADRs,
five had dizziness, three had somnolence, and 14 had behavior ADRs.
Behavior ADR occurred in two patients with underlying intellectual
disability and one with an autism spectrum disorder. There were no
patients with psychiatric histories before PER use in the study cohort.
Neither the types of seizure, the etiologies of seizure, nor the interval
from seizure onset to the use of PERwas associated with the outcome of
perampanel use, the result was presented in Supplementary Table
S1–S3, respectively.

Burden analysis of glutamate receptor genes
and outcomes related to PER

We first analyzed the association between the rare variants of the
glutamate receptor gene group, which includes 26 genes, and the
outcomes of PER therapy. The result showed that enriched genetic
variants of the glutamate receptor gene group were statistically
significant associated with the occurrence of ADR (OR = 0.35,
CI = 0.14–0.75, p = 0.0093; Figure 1). No statistically significant
association between the enrichment of rare variants and the
response to PER, behavior ADR, or 1-year retention (Figure 1).

TABLE 1 The demographic data of our study cohort.

N = 83

Seizure onset age (years) 13.5 (6.0–23.0)

Male 48 (57.8%)

Female 35 (42.2%)

Seizure type

Focal 76 (91.6%)

Generalized 4 (4.8%)

Unspecified 3 (3.6%)

Age at the use of PER (years) 37.0 (28.0–46.0)

Duration of PER use (days) 885 (339.5–1626.5)

Number of patients responding to PER 14 (16.9%)

Number of patients not responding to PER 69 (83.1%)

Number of patients with ADRs 22 (26.5%)

Number of patients without ADRs 61 (73.5%)

Number of patients with behavior ADRs 14 (16.9%)

Number of patients without behavior ADRs 69 (83.1%)

Number of patients who adhere to PER for ≥1 year 61 (73.5%)

Number of patients who adhere to PER for <1 year 22 (26.5%)

Continuous variables were presented as median (interquartile range).

Categorical variables were presented as n (%).

Abbreviations: ADR, adverse drug reaction; PER, perampanel.
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Next, we performed burden analysis to find associations between
the rare variants of each of the five function sub-groups (AMPA,
NMDA, delta, kainate, and metabotropic) and the outcomes of PER
treatment. The occurrence of the ADR had a nominal association
with having more rare variants in the glutamate ionotropic receptor
delta type subunit compared to those without ADRs (OR = 0.24,
CI = 0.03–1.16, p = 0.0354; Figure 2A.). With five function sub-
groups in the analysis, Bonferroni correction was applied to correct
for multiple testing, defining a p-value threshold for significance of
0.01. Therefore, this nominal difference did not remain statistically
significant after the Bonferroni correction. Neither the response to
PER, the presence of behavior ADR, nor the 1-year retention of PER
was associated with the enrichment of rare variants in any of the five
subgroups (Figure 2).

Gene collapse analysis of glutamate
receptor genes and phenotypes related
to PER

We performed a gene collapse analysis to find the association
between the presence of the rare variants in the glutamate receptor
genes and the outcomes of PER use. In terms of ADR, the presence of
rare variants inGRID1 had a nominal associationwith the occurrence of
ADR (OR = 5.54, CI = 0.966–39.36, p = 0.0278, Figure 3A) compared to
those without. Two variants were observed, GRID1:c.1585G>A and
GRID1:c.1287_1288delinsGG. GRID1:c.1585G>A results in changing
the amino acid from valine to isoleucine (NM_017551.3:p(Val529Ile))
in the agonist binding domain (ABD) of GluD1. GRID1:c.1287_
1288delinsGG results in a non-frameshift substitution of methionine
to valine (NM_017551.3:p(Met430Val)) between the N-terminal
domain (NTD) and ABD of GluD1.

For behavior ADRs, the presence of rare variants in GRIN3A had a
nominal association with the occurrence of behavior ADR (OR = 4.64,
CI = 1.16–18.97, p = 0.0143, Figure 3B) compared with those without.
Five variants were identified, including GRIN3A:c.55C>T, GRIN3A:
c.322C>G, GRIN3A:c.1438C>G, GRIN3A:c.1462A>G, and GRIN3A:
c.2501_2502delinsCA.GRIN3A:c.55C>T results in changing the amino
acid from proline to serine (NM_133445.3:p(Pro19Ser)) in the

N-terminal signal peptide of GluN3A. GRIN3A:c.322C>G results in
changing the amino acid from proline to alanine (NM_133445.3:
p.(Pro108Ala)) in the NTD of GluN3A. GRIN3A:c.1438C>G, and
GRIN3A:c.1462A>G result in changing the amino acid from
arginine to glycine (NM_133445.3:p.(Arg480Gly)) and lysine to
glutamate (NM_133445.3:p.(Lys488Glu)), respectively, in the ABD of
GluN3A. GRIN3A:c.2501_2502delinsCA results in a non-frameshift
substitution of aspartate to asparagine (NM_133445.3:p.(Asp834Asn))
in the transmembrane domain of GluN3A.

Rare variants of the glutamate receptor genes were neither
associated with the response to PER nor 1-year retention (Figure 3).

With 26 genes involved in our gene collapse analysis, Bonferroni
correction was again applied to correct for multiple testing, defining
a p-value threshold for significance of 1.92*10–3. As a result, none of
the above-mentioned nominal associations remain statistically
significant after the Bonferroni correction.

Two variants in GRID1 and five in GRIN3A were observed in our
cohort. The location of the amino acid changes in their corresponding
proteins is demonstrated in Figure 4. The distribution of these variants
in our cohort and functional predictions by PolyPhen-2
(Polymorphism Phenotyping v2) (Adzhubei et al., 2010), Mutation
Taster (Schwarz et al., 2014), and SIFT (Sorting Intolerant From
Tolerant) (Sim et al., 2012) as well as variant classification according
to the American College of Medical Genetics and Genomics guideline
(Richards et al., 2015) are presented in Table 2.

Discussion

We analyzed the association between the rare variants of the
glutamate receptor genes and the outcomes of PER therapy. The
gene group burden analysis revealed a statistically significant
association between the occurrence of ADR and enriched rare
variants of the glutamate gene group. Further analysis revealed
the enriched rare variants in the glutamate ionotropic receptor
delta subunit had a nominal association with the occurrence of
ADR. Furthermore, the gene burden analysis showed that GRID1
had a nominal association with the occurrence of ADR and GRIN3A
had a nominal association with the occurrence of behavior ADR. In

FIGURE 1
The association of the outcomes and the enrichment of rare variants in the glutamate receptor gene group. Abbreviations: ADR, adverse drug
reaction; CI, confidence interval; PER, perampanel.
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the end, the nominal association we found did not remain
statistically significant after the Bonferroni correction.

Perampanel (PER) is a non-competitive AMPA receptor
antagonist (Plosker, 2012), which belongs to one of the glutamate
receptors, along with the NMDA receptor, kainite receptor, delta
receptor, and metabotropic glutamate receptor (Hansen et al., 2021).
These glutamate receptors work in harmony to mediate the
excitatory neurotransmission of glutamate (Reiner and Levitz,
2018). The AMPA and NMDA receptors are located in the
postsynaptic density at the postsynaptic membrane just opposite
the presynaptic vesicle release site and participate in synaptic signal
transmission (Scheefhals and MacGillavry, 2018). The metabotropic
glutamate receptor was located outside but surrounding the
postsynaptic density and served to integrate the function of
synapse at high-frequency glutamate release (Rondard and Pin,
2015). The kainite receptor regulates synaptic plasticity with the
AMPA and NMDA receptors (Nair et al., 2021). The delta receptors
participate in the synaptic organization (Burada et al., 2022) and
may alter the number of AMPA receptors in the synapse (Yamasaki
et al., 2011). In line with our finding that enriched genetic variants of
the glutamate receptor gene group are associated with the presence
of ADR. This could be partially explained by the fact that the

combined effect of the genetic variants might alter the global
interaction of different types of glutamate receptors. These
alternations result in changing the overall reaction of the
glutamate receptors after PER use and lead to an increase in the
risk of ADR in susceptible patients. It is known that PER binds to the
AMPA (Yelshanskaya et al. 2016) and kainite receptor (Taniguchi
et al. 2022) but our study did not find variants in their corresponding
genes, GRIA1-4 and GRIK1-5, respectively, to be associated with
PER response through either gene group or gene burden analysis.
This could be the result of a relatively small sample size. Genetic
variants of glutamate receptors are also linked to epilepsy, such as
polymicrogyria is associated with mutations in GRIN1 (Fry et al.
2018), epilepsy-aphasia spectrum disorders with mutations in
GRIN2A (Carvill et al. 2013), epilepsy and movement disorders
with GRIN2B (Platzer et al. 2017), epileptic encephalopathy with
GRIN2D (Li et al. 2016), and developmental epileptic
encephalopathy with GRIA2 (Salpietro et al. 2019). We did not
find the association of PER responsiveness to be related to variants
among these genes.

The nominal association of the presence of ADR after PER use with
enriched rare variants in glutamate ionotropic receptor delta type
subunit as well as GRID1 suggests the delta receptors could have

FIGURE 2
The association between outcomes [(A). Adverse drug reaction, (B). Behavior ADR, (C). One-year retension, and (D). Response to PER)] with the use
of perampanel and the enrichment of rare variants in the glutamate receptor subunit gene groups.
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some role in PER-associated ADRs. Two types of glutamate ionotropic
receptor delta-type subunits are identified, glutamate receptor delta 1
(GluD1) and glutamate receptor delta 2 (GluD2) (Burada et al., 2022).
Their role ismainly tomediate the synaptic formation and organization,
regulate the function of other glutamate ionotropic receptors, and
control the trafficking of other glutamate ionotropic receptors
(Burada et al., 2022). In the hippocampus, GluD1 enhances the
AMPA and NMDA current as knockdown of GluD1 results in the
reduction of excitatory synaptic transmission (Tao et al., 2018); in the
cerebellar, GluD2 helps the formation of synapses between parallel
fibers-Purkinje cells (Yuzaki, 2013). Most interestingly, there was
evidence that knock-out of GluD1 decreased the expression of
AMPA and NMDA receptors in mice (Yadav et al., 2012; Gupta
et al., 2015) and coupling of GluD2 with synaptic organizer complex
may trigger the internalization of the AMPA receptor (Elegheert et al.,
2016). Therefore, functional alternation from genetic variants of the
delta receptormight cause different expression or activity of AMPA and
NMDA receptors on the neuronal membrane. This may result in a
different response of AMPA receptors when interacting with PER and
possibly increase the risk of the presence of ADRs. There is also
evidence that GluD is a functional ion channel that interacts with
the G protein-coupled glutamate metabotropic receptor (Kumar et al.
2023). They exert a tonic current (Lemoine et al. 2020; Copeland et al.

2023) to maintain the resting membrane potential and activate
glutamate metabotropic receptor to promote bursts of action
potential (Prisco et al. 2002; Zheng and Johnson 2002). GluD1 is
expressed strongly in the cortex, basal ganglia, hippocampus, thalamic,
dorsal raphe, and hypothalamic nuclei, while GluD2 in the cerebellum
and hypothalamic nuclei (Nakamoto et al. 2020). This wide distribution
of GluD1 could explain the association between variants in the GRID1
and the overall occurrence of ADR. In our cohort, GRID1:c.1585G>A
was predicted to have functional consequence. There are evidences
linking the variants of GRID1 with schizophrenia and bipolar disorder
(Treutlein et al., 2009; Greenwood et al., 2011). In vivo study have
demonstrated the coupling of glutamate metabotropic receptor 1/5 and
GluD1 is essential to the firing of dopamine neurons in the midbrain
(Benamer et al., 2018) that are correlated with the physiopathology of
schizophrenia (Paladini and Roeper, 2014; Stopper and Floresco, 2015).
Although variants of GRID1 are not linked to behavior ADRs in our
cohort, our findingmaywarrant a further investigation of this variant to
elucidate its role in the function of glutamate delta receptors.

Our cohort revealed that GRIN3A had a nominal association with
behavior ADR. GRIN3A encoded the GluN3A subunit of the NMDA
receptor (Eriksson et al., 2002). The GluN3A-containing NMDA
receptor had a reduction of the NMDA-induced current (Sasaki
et al., 2002). This phenomenon usually occurs at the early stage of

FIGURE 2
Continued.
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development, mostly in utero, when the GluN3A-containing NMDA
receptor serves as a negative modulator to limit or eliminate the
formation of weakly connected synapses and stabilized the highly
specific and durable synaptic connections (Roberts et al., 2009;
Kehoe et al., 2014). The effect of GluN3A on synaptic formation

implicated its role in memory and cognitive functions. Genetic
studies had linked this subunit to other psychiatric diseases, such as
schizophrenia (Takata et al., 2013), nicotine dependence (Yang et al.,
2015), and delirium (Kazmierski et al., 2014). In our cohort, one of the
GRIN3A variants, c.1438C>G, was also found to be associated with

FIGURE 3
The association between rare variants of glutamate receptor genes and the outcomes [(A). Adverse drug reaction, (B). Behavior ADR, (C). One-year
retension, and (D). Response to PER)] of using perampanel (PER).
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schizophrenia (Takata et al., 2013). The roles that GluN3A involved
with cognitive function and various psychiatric diseases might make
patients harboring variants in GRIN3A more susceptible to behavior
ADR. Of note, variants among the GRIN3A are considered to be more
relevant to autism spectrum disorders or schizophrenia (Tarabeux et al.
2011), while GRIN1, GRIN2A, GRIN2B, and GRIN2D are more

epilepsy-related (Xu and Luo 2018). This may explain why variants
of the GRIN3A are associated with behavior ADR but not the overall
occurrence of ADR.

To our best knowledge, our study is the first to evaluate the
association between the rare variants of the glutamate receptor genes
and the outcomes of PER treatment. The development of ADRs after

FIGURE 3
Continued.
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PER might occur in 66.5% of the patients but were usually tolerable
(Tsai et al., 2018). Most ADRs are associated with high dose or fast
titration while dizziness, falls, and behavior ADRs may be prevented by
slow titration (Tsai et al., 2018). Bedtime administration also reduces the
occurrence of somnolence and dizziness (Takata et al., 2013). Around

5%–15% of patients taking PER may develop irritation, violent
behavior, and/or psychotic symptoms (Gil-Nagel et al., 2018; Tsai
et al., 2018). These behavior ADRs could be catastrophic to patient
care and decrease their quality of life. Another ASM that might cause
behavior ADR was levetiracetam (Chen et al., 2017). A

FIGURE 4
The location of the genetic variant inGRID1 andGRIN3Awith its corresponding amino acid change on GluD1 and GluN3A proteins. (A) Two variants
were identified in GluD1 with the red denotes NM_017551.3:p.(Met430Val) and green denotes NM_017551.3:p.(Val529Ile). (B) Four variants were
identified in GluN3A with the red denotes NM_133445.3:p.(Pro108Ala), yellow denotes NM_133445.3:p.(Arg480Gly), green denotes NM_133445.3:
p.(Lys488Glu), and blue denotes NM_133445.3:p.(Asp834Asn). NM_133445.3:p.(Pro19Ser) is in the N-terminal signal peptide that is not presented in
the mature protein. The 3D structure was generated by the Swiss-Pdb Viewer (Guex and Peitsch 1997).
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pharmacogenomic study of psychiatric ADR and levetiracetam revealed
no association in either common or rare genetic variants (Campbell
et al., 2022). However, Campbel et al. utilized a hypothesis-free analysis
that included a greater number of genes, and no statistically significant
results were found after correction for multiple comparisons. Thus, we
proposed a hypothesis based on the pharmacokinetics property of PER
that variants in the glutamate receptor genes might alter the response of
PER. This approach enabled us to find some associations relevant to the
pharmacokinetic property of PER. PERmainly acts onAMPA receptors
to exert its antiseizure effect (Ceolin et al., 2012). It is currently
unknown whether GluD1 and GluN3A interact with the AMPA
receptor (Hansen et al., 2021). Perhaps, a future study allocating
function MRI to study patients with and without ADR after PER
use may reveal the change in brain function, such as that used in the
neuropsychiatric studies in patients with systemic lupus erythematosus
(Mikdashi 2016). Therefore, the impact of the GRID1 and GRIN3A
variants is still largely unknown based on the available literature.
Nevertheless, our findings give a glimpse into the possible
underlying genetic variants that may affect the response of the drugs.

Although the variants observed in GRID1 and GRIN3A only had a
nominal association with the occurrence of ADR and behavior ADR,
respectively, the fact that some of the variants are located in NTD is
interesting. NTD is the site that regulates the assembly, trafficking, and
function of glutamate receptors (Hansen et al., 2021). Currently, there is
no functional evaluation regarding the consequences of the variants we
found and the exact interactions of different glutamate receptors remain
unknown. However, NTD has the important function of forming a
trans-synaptic complex to maintain the integrity of synapses by
recruiting neurotransmitter receptors and postsynaptic scaffolding
proteins (Sheng and Hoogenraad 2007). It is essential in the
formation of excitatory and inhibitory synapses (Fossati et al. 2019)

and changes resulting from genetic variants of this region could affect
the interaction of various receptors. Since PER acts mainly on AMPA
receptors, indirect evidence suggests that non-AMPA glutaminergic
receptors, such as glutamate ionotropic receptor delta type subunit and
NMDA can affect the function of AMPA receptors. Glutamate
ionotropic receptor subunit GluD1 affects the expression of AMPA
and NMDA receptors in mice (Yadav et al., 2012; Gupta et al., 2015).
The AMPA and NMDA receptors aggregate together in the
postsynaptic area to maintain synaptic transmission (Scheefhals and
MacGillavry, 2018). As a result, functional changes of non-AMPA
glutaminergic receptors may alter the response of AMPA receptors to
PER and lead to different outcomes.

In our cohort, 16.9% of patients achieved seizure-free for 1 year
after the use of PER. A real-world observational study revealed that
7.2% of patients achieved seizure-free after receiving PER for 1 year
(Villanuevaet al. 2016b).With amedian of fourASMs before PER use in
our cohort and a mean of 7.8 ASMs in the work of Villanueva et al.,
these patients were having drug resistance epilepsy defined by the
International League Against Epilepsy (Kwan et al., 2010). This may
explain the reason for the low responder rate in both studies. Various
mechanisms contribute to drug resistance epilepsy, including the
change of structure or expression of the target of ASMs, alteration
of the drug delivery system across the brain, the pharmacodynamic
modification that reduces the absorption of ASMs, or formation of the
abnormal neural circuits (Loscher et al., 2020). Our study only focused
on the association of outcome and the genetic variants in the glutamate
receptors. Other genetic variants in the drug-transporting system of the
CNS or drug metabolism may also contribute to the responsiveness of
PER, which warrants further studies. Besides the change caused by
genetic variants, the prolonged seizuremay change the expression of the
ASM target, such that the expression of sodium channels in human

TABLE 2 The genetic variants of GRIND1 and GRIN3A with their distribution and functional prediction.

Variants Patients with
ADR (n = 22)

Patients without
ADR (n = 61)

Prediction methods Variant classification
according to ACMG

guidelinePolyPhen-2 Mutation
taster

SIFT

GRIND1

GRID1:c.1585G>A 5 (22.7) 3 (4.9) Probably
damaging

Disease causing Deleterious Benign

GRID1:
c.1287_1288delinsGG

2 (9.1) 1 (1.6) N.a N.a N.a VUS

Variants Patients with behavior
ADR (n = 14)

Patients without
behavior ADR (n = 69)

GRIN3A

GRIN3A:c.322C>G 1 (7.1) 0 (0.0) Benign Harmless
polymorphism

Tolerated VUS

GRIN3A:c.55C>T 0 (0.0) 1 (1.4) Possibly damage Disease causing Deleterious VUS

GRIN3A:c.1462A>G 1 (7.1) 3 (4.3) Benign Disease causing Tolerated Likely benign

GRIN3A:c.1438C>G 3 (21.4) 1 (1.4) Possibly damage Disease causing Deleterious VUS

GRIN3A:
c.2501_2502delinsCA

2 (14.3) 7 (10.1) N.a N.a N.a VUS

Categorical variables were presented as n (%).

Abbreviations: ADR, adverse drug reaction; ACMG, american college of medical genetics and genomics; N.a., not available; Polyphen-2, Polymorphism Phenotyping v2; SIFT, sorting intolerant

from tolerant; VUS, variants of uncertain significance.
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hippocampal tissue is decreased in patients with temporal lobe epilepsy
(Remy and Beck, 2006). Currently, no evidence has suggested a similar
mechanism existed for AMPA receptors (Lukawski and Czuczwar,
2021) to explain the resistance of PER andmay be an interesting topic of
future research.

Our study had several limitations. First, our cohort only included
Taiwanese patients. Our findings might not be able to apply to patients
with different ethnic backgrounds. Just as the association of HLA-
B*1502 and Stevens-Johnson syndrome was mainly found in Southeast
Asian populations (Chung et al., 2004). Second, we had a relatively low
number of patients in our cohort. This limited our ability to find an
association between the responsiveness of PER and 1-year retention of
PER use. A larger cohort will be needed to validate our findings. Despite
the small sample group we had, our research did suggest genetic
variants in the glutamate receptor gene group were associated with
ADR after PER use. Third, our study only examines the impact rare
variants have on the responsiveness of PER, common variants may also
have contributions. One study regarding the common variants of the
AMPA receptors and the response to antidepressants revealed no
association between the two (Chiesa et al. 2012). However, the
association between the common variants of the AMPA receptor
and the responsiveness of PER has not been studied, which may
also provide valuable data for the application of predicting the
outcome of PER use. In addition, analysis of the common variants
requires a larger patient group to achieve adequate statistical power to
find any significant difference. Fourth, we only focused on the glutamate
receptors, while auxiliary proteins that interact with glutamate receptors
could also affect its response during PER use. Transmembrane AMPA
receptor regulatory proteins (TARPs), for example, enhance the
conductance level of AMPA receptors (Zhang et al. 2014) and alter
their pharmacological properties (Tomita et al. 2006). Variants of the
TARPs could result in changing the interplay of TARPs and AMPA
receptors leading to different responses to PER use.With ongoing study
and the advances in genetic analysis methods, we hope the combination
of more genetic association data can reach the ultimate goal of
providing patients with the most suitable ASM based on genetic testing.
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