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The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1),

also known as CD66a, is a member of the immunoglobulin superfamily.

CEACAM1 was shown to be a prognostic marker in patients suffering from

cancer. In this review, we summarize pre-clinical and clinical evidence linking

CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss

potential CEACAM1-based mechanisms that may affect cancer biology.
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1 Introduction

The glycoprotein Carcinoembryonic antigen (CEA)-related cell adhesion molecule 1

(CEACAM1, also CD66a) is a member of the immunoglobulin superfamily. CEACAM1 is

expressed in a broad range of different tissues and cell types like epithelial cells, vascular

cells, immune cells as well as cancer cells (1–3). Based on its downregulation in early stages

of colorectal cancer (CRC) detected in some of the earlier studies CEACAM1 was initially

regarded as a potential tumor suppressor (4). However, cumulative evidence from pre-

clinical as well as clinical data suggests a more complex influence of CEACAM1 on cancer

biology. For instance CEACAM1 affects anti-cancer immune reactions by modulating the

function of natural killer cells and T-cells (3). Furthermore, later clinical association studies

indicate that CEACAM1 expression seems more likely to be associated with cancer

progression and poor prognosis in most cancer entities. Therefore, the concept of

CEACAM1 as a tumor suppressor needs to be revised. For that purpose, in this review

we will I) summarize the clinical data on CEACAM1 and cancer progression and survival,

II) give an overview of potential underlying mechanisms and III) highlight current

therapeutic approaches and bottlenecks.
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2 CEACAM1 structure and signaling

CEACAM1 is a member of the Carcinoembryonic antigen

(CEA)-related cell adhesion molecule family. CEACAMs are

either transmembrane proteins (CEACAM1, 3, and 4) or

membrane-anchored G protein-coupled receptors (CEACAM 5,

6, 7, and 8). Their ectodomain consists of a variable number of

IgGC2-related domains and a N-terminal IgV-related domain.

CEACAM1 comprises an extracellular, a transmembrane and a

cytoplasmatic domain (5, 6). Due to alternative splicing 12 different

variants exist in humans that differ in the composition of

immunoglobulin (Ig)-like ectodomains as well as in the

cytoplasmatic domain (7). The cytoplasmatic domain exists either

in a long (CEACAM1-L, inclusion of exon 7) or a short (CEACAM1-

S, exclusion of exon 7) version. Only CEACAM1-L possesses two

immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that when

phosphorylated serve as a docking site for SRC homology 2 (SH2)

domain-containing signaling proteins like SRC family kinases (SFKs)

or cytoplasmic tyrosine phosphatases (SHPs). Thereby CEACAM1

can affect intracellular signaling in different ways (8–10). Besides

formation of heterodimers with other CEACAM family members or

serving as a pathogen receptor, CEACAM1 can either act as a

monomer, a homodimer (i.e. two CEACAM1-L) or a heterodimer

(CEACAM1-L and CEACAM1-S) (10–14). This is of particular

interest because CEACAM1 monomers, homo- and heterodimers

show different binding affinities for SFKs and SHPs (8). Thus, the

expression ratio of CEACAM1-L to CEACAM1-S might also affect

CEACAM1 signaling Unfortunately, so far only for breast cancer the

L/S ratio of CEACAM1 was analyzed and found to be altered (15).

Having such data for other cancer entities too might help to explain

divergent results concerning cancer stage-related CEACAM1

expression and patient survival.
3 CEACAM1 in human cancer

Several studies investigated the potential impact of CEACAM1

on cancer in human specimen. Due to an observed downregulation

of CEACAM1 in early CRC, CEACAM1 was originally suggested to

be a tumor suppressor (16, 17). However, these studies have

important limitations. First, they were based only on a small

number of samples. Second, the control tissue was taken from the

same specimen right beside the cancerous tissue. Since CEACAM1

is upregulated under inflammatory conditions the peri-tumor

milieu might have already altered basal CEACAM1 expression in

those controls (18). Finally, in both studies only mRNA expression

was analyzed lacking information on the presence of the functional

protein. In contrast, a later analysis by Kang et al. revealed

upregulation of CEACAM1 protein expression in colon

adenocarcinoma compared to adenoma in a larger cohort (19).

Therefore, the initial hypothesis of CEACAM1 downregulation in

CRC must be revised. This is in line with Ieda et al. who have shown

that CEACAM1-L dominance associates with shorter survival time

in patients (20). The same group reported that CEACAM1-S

located at the invasion front of the primary lesion is associated

with poor prognosis of patients with colorectal liver metastasis (21).
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Besides CRC, several studies indicate a potential role of

CEACAM1 in multiple cancer entities. The majority of these

studies shows enhanced CEACAM1 expression with progressive

tumor stage and/or metastasis. Moreover, in most studies enhanced

CEACAM1 expression correlates with shorter overall patient

survival. However, from those clinical studies at present it cannot

be excluded that CEACAM1 upregulation might be a side effect

rather than a driver of cancer progression and metastasis. As

mentioned above, this could be due to the cancer-associated pro-

inflammatory milieu that might promote CEACAM1 expression

(18, 22). Therefore, to analyze the relation of cause and effect

between CEACAM1 and cancer and the underlying signaling in

pre-clinical cancer models is a prerequisite for a later transition of

experimental findings into clinical applications.

To enable a better overview of different cancer entities clinical

studies are summarized in Table 1. For proper interpretation one

has to keep in mind that CEACAM1 expression was analyzed by

different methods (e.g., RNA expression, histological staining) using

specimen of different origin (e.g., serum concentration, staining of

tissue slides).
4 CEACAM1-dependent mechanisms
in cancer

Despite its well-known association with cancer less is known

about CEACAM1-dependent mechanisms that might affect cancer

biology. To provide an overview we will summarize the current

knowledge and discuss reasons that may account for the conflicting

results reported in the literature regarding CEACAM1 and cancer

cells. Figure 1 summarizes the role of CEACAM1 in tumor biology.
4.1 Tumorigenesis and proliferation

Leung et al. showed that azoxymethane-mediated induction of

colon cancer was aggravated in Ceacam1-/- mice compared to WT

mice suggesting an anti-tumorigenic effect of CEACAM1

expression (68). In line with that, CEACAM1 was also shown to

repress epithelial to mesenchymal transition that is a critical step in

oncogenesis (69).

Conflicting results have been reported regarding the effect of

CEACAM1 on cancer cell proliferation that critically promotes

tumor growth and size. Some studies reported inhibition of

proliferation by CEACAM1. Overexpression of CEACAM1-L in

MCF-7 breast cancer cells reduced EGF-stimulated cell growth

(70). Similarly, CEACAM1 overexpression significantly

suppressed proliferation of U266 and RPMI8266 multiple

melanoma cells. Unfortunately, the underlying signaling

mechanisms were not analyzed in this study (71). Singer et al.

have also shown that overexpression of CEACAM1-L in A549

lung carcinoma cells decreased cell proliferation (72). Finally,

Luebke et al. reported slightly increased proliferation rates due

to the loss of CEACAM1 expression in human prostate cancer

specimens again indicating an inhibitory effect of CEACAM1 on

cancer cell proliferation (49).
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In contrast, Han et al. found that siRNA-mediated CEACAM1

knockdown decreased proliferation in HT29 colon carcinoma cells.

(73). Similarly, Ortenberg et al. have shown that overexpression of

the L-form of CEACAM1 promotes proliferation of 526mel

melanoma cells in a SOX2-dependent manner in vitro .

Consequently, compared to normal 526mel cells, CEACAM1-

overexpressing cells generated tumors with larger volumes when

injected into mice (37).
4.2 Immune evasion

The immune system is capable to eliminate cells that are

foreign to the body or show genetic aberrations as found in
Frontiers in Immunology 03
tumor cells. Thereby the immune system is critical to prevent

cancer. However, cancer cells can evade recognition and

subsequent elimination by the immune system (74). This also

applies to immune cell-based therapies e.g. by chimeric antigen

receptor T cells (CAR T cells) (75) and results in unsatisfactory

efficiency of these immune therapies in solid tumors (76).

Therefore, novel approaches circumventing cancer cell-mediated

inhibition of immune cells are required to unleash the full potential

of anti-cancer immunotherapies. Since CEACAM1 affects the

activation of T cells, B cells and NK cells in the context of

cancer, it might be a promising target (2).

T cells play a critical role in adaptive immune responses.

Although programmed cell death protein 1 (PD1) and cytotoxic

T-lymphocyte-associated protein 4 (CTLA4) are well known

immune checkpoints that guard against autoimmunity under

physiological conditions, these immune checkpoints can also

prevent the ant i-cancer efficiency of endogenous or

therapeutically applied exogenous modified T cells. Therefore,

immune checkpoint inhibition is used clinically in anti-cancer

therapies (75). However, not all patients benefit from immune

checkpoint inhibition equally. This indicates additional

mechanisms that are not covered by these treatments. In that

context activation-induced expression of CEACAM1 has been

shown to inhibit T cell function, particularly the long isoform

(77–80). Upon dimerization CEACAM1-L recruits SHPs to the

TCR/CD3 complex that dephosphorylate adjacent kinases or

adaptor proteins thereby decreasing proliferation and activation

of T cells (80–82). Contrary to this, CEACAM1-L was shown to

decrease Fas-mediated apoptosis in T cells independent of ITIM

phosphorylation via b-catenin signaling modulation (83). In the

context of a colitis model, CEACAM1 was shown to inhibit the

differentiation of naive T cells into Th1 but not Th2 cells (84). In

contrast CEACAM1-S is rather suggested to promote activation of

T cells (85, 86). This may be related to the absence of an ITIM motif

in the short isoform (87).

Furthermore, the heterophilic cis interaction of CEACAM1-L

with T cell-immunoglobulin and mucin-domain containing 3

(TIM3) results in T cell exhaustion and immune tolerance (88). A

similar inhibitory effect was observed in CRC and neck squamous

cell carcinoma by trans interaction of CEACAM1 on tumor cells

with TIM3 on T cells (54, 89). Inhibition of CEACAM1 and TIM3 in

CRC models synergistically stimulated the anti-tumor immune

response. This is in line with observations in hematopoietic

malignancies showing that blocking the CEACAM1-TIM3

interaction results in an attenuated NF-kB signaling (90). In a

clinical study of patients with glioma the expression of CEACAM1

on T cells was negatively correlated with the Karnofsky score (91).

This was attributed to an inhibitory effect of CEACAM1 on T cells.

Similarly a recent study using clinical data and an in vivoCRCmouse

model indicates that CEACAM1marks a suppressive subset of intra-

tumoral regulatory T cells (92).

In addition, trans interaction of CEACAM1 with CEACAM6

was reported in several entities of solid cancers. Interestingly,

CEACAM6 inhibition enhanced the tumor-suppressive T cell

function indicating a crosstalk of CEACAM1 with other CEA

family members (93).
TABLE 1 Correlation of CEACAM1 expression with cancer stage and
patient survival.

Malignancy Association of CEACAM1
expression with

cancer stage patient
survival

Breast cancer - A (23) + A (24)

Lung cancer + (25–28) - (25, 28–30)

Colorectal cancer -B (16, 17) + (16,
17, 19)

-C (20, 21)

Melanoma + (31–36) - (37, 38)

Bladder cancer -D (39) + (40, 41)

Pancreatic cancer + (42–46) - (47)

Cervical cancer + (48)

Prostate cancer - (49–51)

Esophageal/Larynx squamous cell
carcinoma, Head and neck cancer,
Oral cancer

+ (52, 53) - (52, 54, 55)

Osteosarcoma + (56) - (56)

Renal Cell carcinoma + (57, 58) + (58)

Thyroid cancer + (59, 60)

Gastric cancer - (61) +E (62–64) - (61)

Hepatocellular carcinoma - (65) + (66) -F (66, 67) + (65)
This table summarizes clinical data regarding the correlation of CEACAM1 expression with
cancer stage and patient survival. Cancer stage: decreased (-) vs. enhanced (+) CEACAM1
expression with progressive cancer stage. Patient survival: inverse (-) vs. positive (+)
correlation of CEACAM1 expression and patient overall survival. Therefore - indicates that
enhanced CEACAM1 expression goes along with shorter overall survival.
Please note that “CEACAM1 expression” was analyzed in different ways in the listed studies
(e.g., RNA or protein in blood or tissue specimens). For reasons of clarity full information is
not depicted in the table. However, some information are indicated for reasons of
understanding. For further information please refer to the original data.
A Data was reported by the same group within the same year with at least somehow divergent
results: reduced CEACAM1 in breast cancer tissues compared with noncancerous breast
tissues but enhanced CEACAM1 serum concentrations in the malignant group compared to
healthy control group. It is not clear why these observations were not published together.
B Nollau et al.: Data only for early stage adenoma (RNA).
C Yamaguchi et al.: Recurrence of CRC liver metastasis after hepatectomy.
D CEACAM1 is upregulated in endothelial cell adjacent to tumor tissue.
E Shi et al.: Association with lymph nodes metastasis and TNM stage.
F Zhu et al.: Relapse-free survival after curative resection of hepatocellular carcinoma.
Kiriyama et al.: Depending on CEACAM1 L-/S-Form ratio.
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B cells are involved in anti-cancer immune responses by

secretion of antibodies targeting tumor cell-specific antigens as

well as recruitment and activation of other immune cells. The

impact of CEACAM1 on B cells in cancer is still contradictory

discussed (94). Khairnar et al. stated that CEACAM1 positively

regulates B cell proliferation and survival via Syk-mediated NF-kB
signaling (95). In contrast, others found that CEACAM1 co-

localizes with the B cell receptor and prohibits cytokine

production in a PI3K-dependent manner (96, 97). Further

Greicius et al. showed that a CEACAM1-specific antibody

induced the proliferation of mouse B cells in combination with

IgM cross-linking (98). The underling signaling was not

investigated. Interestingly, binding of Opa proteins of Neisseria

gonorrhoeae to CEACAM1 induces apoptosis in B cells (99).

Thereby CEACAM1 could lead to a decreased immune system

activation. This was also shown for T cells in the context of

Fusobacterium nucleatum. This is an anaerobic bacterium that

is associated with several tumor entities and promotes

tumorigenesis (100).

NK cells are cytotoxic lymphocytes of the innate immune

system that contribute to immune surveillance in cancer. Cells

express ligands of activating receptors located on NK cells (e.g.

NKG2D). However, NK cell activation is prevented by ligation of

major histocompatibility complex (MHC) class I molecules
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normally expressed on healthy cells to killer immunoglobulin-like

receptors (KIRs) on NK cells. Since cancer cells often downregulate

MHC I expression to evade recognition by T cells, this inhibitory

signal is lost and the NK cell is activated (100). This results in the

cytolysis of the malignant cells (101).

CEACAM1 is abundantly expressed on activated NK cells and

functions as inhibitory co-receptor (101–104). Homophilic

CEACAM1 interaction between NK cells and tumor cells blocks

the initiation of cytolysis by NK cells via SHP1-dependent

dephosphorylation of guanosine nucleotide exchange factor Vav1

(105). Furthermore, CEACAM1 expression on CRC cells decreases

NK cell-mediated cytolysis by diminishing surface presentation of

NKG2D ligands (106). This effect may be isoform-dependent.

Whi l e CEACAM1-L decrea se s NK ce l l ac t i v i t y v i a

downregulation of the NKG2D ligands MICA and ULBP2 by

enhanced shedding, CEACAM1-3S increases the expression of

NKG2D ligands (107). Clinical data show an upregulation of

CEACAM1 in NK cells by hepatitis C virus (HCV) infection that

was accompanied by reduced NK cell activity in vitro and in

patients. Thereby CEACAM1 might facilitate chronification of

HCV infection and transition to hepatocellular carcinoma (108).

Cancer stem cells (CSCs) are a special subtype of cancer cells,

that are thought to multiply indefinitely and are resistant to

chemotherapy. Epithelial cell adhesion molecule (EpCAM) is a
B C DA

B1 C1 D1A1 C2

FIGURE 1

CEACAM1 in different stages of tumorigenesis and progression. (A) Epithelial-to-mesenchymal transition (EMT). (A1) Tumor cells show increased
expression of CEACAM1 compared to normal epithelial cells. This upregulation of CEACAM1 is thought to promote processes that support tumor
development, i.e. immune evasion, migration and invasion. (B) Proliferation of tumor cells. (B1) CEACAM1-dependent signaling greatly depends on
the status of CEACAM1 molecules. Trans ligation of CEACAM1 molecules on neighboring cells also promotes cis ligation of CEACAM1 molecules
expressed on the same cell. Depending on the expression ratio of long (L) and short (S) isoforms, the resulting dimers can consist of two CEACAM1-
L molecules or of a combination of CEACAM1-L and CEACAM1-S. Whereas SHP phosphatases preferentially bind to CEACAM1-L homodimers, SFK
kinases bind equally well to dimers and monomers. (C) Immune evasion. T cells and NK cells are capable of eliminating tumor cells. However, tumor
cells have developed CEACAM1-dependent mechanisms to evade this immune response. (C1) Trans or cis ligation of CEACAM1 to TIM3 or binding
of CEACAM6 (Cc6) to CEACAM1 on T cells abrogates anti-tumor activity of T cells. (C2) Similarly, trans ligation of CEACAM1 on tumor and NK cells
blocks the cytotoxic effect of the activated NKG2D receptor expressed on NK cells. (D) Tumor vascularization. (D1) CEACAM1 is expressed on
endothelial and tumor cells. Since CEACAM1 promotes angiogenesis, it is reasonable to speculate that interactions between endothelial and tumor
cell CEACAM1 with or without involvement of other molecules might also affect tumor vascularization. However, this still needs to be investigated in
more detail.
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well-established marker of CSCs (109). EpCAM expression in liver

CSCs promotes resistance against NK cell-mediated cytotoxicity via

upregulation of CEACAM1 (110).

Based on these findings, the impact of CEACAM1 inhibition on

NK cell activity was investigated in pre-clinical studies. Antibody-

mediated inhibition of CEACAM1 in head and neck squamous cell

carcinoma cells enhances NK cell anti-cancer activity in vitro (111).

Similar results were obtained in a non-small cell lung cancer in vivo

xenograft mouse model (112). Interestingly first in vitro

investigations also show efficiency of antibody-mediated

inhibition of CEACAM5/CEACAM1 interaction to reduce

CEACAM1-dependent NK cell inhibition in pancreatic and CRC

cells (113). This indicates an interaction of different CEA family

members in this process (101).
4.3 Angiogenesis

Generation of new blood vessels based on preexisting ones,

called angiogenesis, promotes cancer growth and progression by

providing supply with oxygen and nutrients with progressive cancer

size. Therefore, targeting angiogenesis was proposed as anti-cancer

therapy. However, in clinical practice anti-angiogenic treatment has

not been as effective as expected (114). Recent evidence suggests

that this might be due to a pro-angiogenic tumor environment that

cannot be modulated by systemic drug application. Therefore, more

localized interference with angiogenesis might provide better anti-

tumor effects than current therapeutic strategies (115–117).

In this regard, CEACAM1 might be a putative target.

CEACAM1 is expressed in microvessels within and in close

proximity to tumors but not in larger blood vessels (118). This is

of particular interest, since CEACAM1 mediates angiogenesis via

enhanced VEGF/VEGFR-2 expression (18, 118). In line with this

Gerstel et al. reported a crucial role of CEACAM1 for tumor

angiogenesis. Using a murine mammary carcinogenesis model,

they found that CEACAM1 deficiency results in vascular

instability and alterations in ECM structure (119). Furthermore,

CEACAM1 deficiency enhanced the permeability of tumor

vasculature due to increased basal Akt kinase and endothelial

nitric oxide synthase (eNOS) activities (120). This is in line with

the concept that CEACAM1 is required for the establishment of the

endothelial barrier (121, 122). Besides endothelial cells CEACAM1

expression in myeloid cells also promoted angiogenesis as shown by

bone marrow transplantation experiments in mice (123). In

contrast, in two subsequent studies Lu et al. reported that tumor

angiogenesis mediated by myeloid cells is negatively regulated by

CEACAM1 (124, 125). Furthermore, a study of Muturi et al.

suggests that CEACAM1 expression in microvesicles derived

from cancer cells might influence cancer signaling on other cells

including endothelial cells (126).
4.4 Migration and invasiveness

Metastasis accounts for more than 90% of deaths from cancer

(127). Migration and invasiveness of cancer cells are hallmarks of
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cancer metastasis that requires tumor cell dissemination from the

primary tumor into different organs (128). Ebrahimnejad et al.

showed that phosphorylation of CEACAM1-L at position Tyr488

enhances cell migration and matrix invasion of melanoma cells in

an integrin b3-dependent manner (129). This is in line with older

findings in endothelial cells demonstrating that CEACAM1 affects

cell migration and integrin-dependent signaling (130). Forced

expression of CEACAM1 in thyroid cancer cells promoted cell–

matrix adhesion, migration and tumor invasiveness via

upregulation of cyclin dependent kinase inhibitor 1A (p21) and

diminished retinoblastoma protein (Rb) phosphorylation. Since this

was accompanied by reduced tumor growth in xenografted mice it

argues for a pro-metastatic effect of CEACAM1 rather than an effect

on the primary tumor (59). Furthermore, CEACAM1 enhanced

migration in CRC cells that was ascribed to increased N-cadherin

expression (131). Similar, Ieda et al. reported that CEACAM1-L

promotes invasion and migration in CRC cells (20). Based on

association studies in human samples and a colony formation

assay in soft-agar Yamaguchi et al. suggested that expression of

CEACAM1-4S enhances the tumor-initiating property of colorectal

cancer cells (21). However, this study lacks further analysis that is

mandatory for such a statement. In contrast, Yang et al. reported

that the short isoform of CEACAM1 decreased cell migration and

invasiveness of breast cancer cells by affecting the balance between

matrix metalloproteinase 2/tissue inhibitor of metalloproteinase 2

and E-/N-cadherin expression (132). For multiple myeloma cells,

Xu et al. found a decrease in cell migration and invasion by

CEACAM1 (71). Besides, a recent study suggests that

macrophage-cancer cell interaction via CEACAM1 promotes

cancer metastasis. This signaling is mediated by b-catenin that

enhances metadherin expression on cancer cell surface. Metadherin

in turn signals through CEACAM1 expressed on macrophages to

produce the chemokine CCL3 (133).
4.5 Apoptosis and
chemotherapy resistance

Many cancer cells show deregulation of apoptosis that

contributes to chemotherapy resistance (134). Therefore, anti-

cancer agents have been developed that prime cancer cells for

apoptosis (135). One of the first hints that CEACAM1 might

support cellular survival by decreasing apoptosis came from

studies investigating non-cancer cells like granulocytes and

monocytes. Singer et al. showed that tyrosine phosphorylation of

CEACAM1-L reduces apoptosis in granulocytes via an Erk1/2- and

caspase-3-dependent pathway (136). This is in line with

observations in endothelial cells (137). Later, Yu et al. showed

that CEACAM1 decreases apoptosis of human monocytes via

phosphatidylinositol 3-kinase- and Akt kinase-dependent survival

signaling (138). In contrast, CEACAM1 was shown to promote

apoptosis in a murine model of myocardial infarction. This was

attributed to upregulation of mitochondrial Bax, increased cytosolic

cytochrome C and cleaved caspase-3 (139).

Similar studies investigating the impact of CEACAM1 on apoptosis

in cancer cells that include signaling pathway analysis are limited. Using
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siRNA-mediated knockdown of CEACAM1, Han et al. reported an

anti-apoptotic effect of CEACAM1 in HT-29 CRC cells (73). In

contrast, Nittka et al. showed that antibody-mediated crosslinking of

CEACAM1 resulted in enhanced apoptosis in HT-29 CRC cells (4,

140). Unfortunately, in both studies the underlying CEACAM1-

dependent signaling pathways were not investigated. Besides affecting

apoptosis under basal conditions, CEACAM1-L was also shown to

mediate chemoresistance to the widely used chemotherapeutic agent 5-

fluorouracil (5-FU) in CRC cells, whereas CEACAM1-S did not. This

suggests that long and short form of CEACAM1 might have opposite

effects with regard to cell viability (141).

Similar to Nittka et al., Zaffran et al. observed enhanced apoptosis

after treatment of Mel-14 melanoma cells with an anti-CEACAM1

antibody in vitro. This pro-apoptotic effect was attributed to an

altered p53 expression and SHP1 phosphorylation (4, 142). However,

in the same study in vivo application of this anti-CEACAM1 antibody

had no effect on tumor size in a melanoma model (142). Since they

were using the same melanoma cells for in vitro and in vivo

experiments, this shows that the results of in vitro antibody

treatments have to be interpreted with caution.

Of note, forced expression of the short isoform of CEACAM1 in

MCF7 mammary carcinoma cells induced a more regular glandular

morphology that was accompanied by apoptosis of the central cells

within acini (143). However, this seems to be a more development-

specific effect rather than a pro-apoptotic effect in general since

peripheral acinar cells were not affected. In addition, a

bioinformatics-based study analyzing cisplatin resistance in A549

lung carcinoma epithelial cells indicates that CEACAM1 promotes

resistance suggesting an anti-apoptotic effect. Though experimental

validation in cell culture is lacking yet (144).
5 Clinical intervention studies

Based on pre-clinical data CEACAM1-specific antibodies were

proposed for anti-cancer therapy. In addition to their inhibitory

effects on tumor cells themselves, anti-CEACAM1 antibodies were

also reported to promote anti-tumor activity of several immune cell

types (92, 111, 113, 145–147). Finally, since CEACAM1 expression

in cancer tissue usually exceeds that in the surrounding healthy

tissue by far, anti-CEACAM1 antibodies were suggested to be used

in surgery to identify cancer tissues in order to enable complete

cancer resection (148, 149).

The CEACAM1-specific antibody CM24, developed by cCAM

Biotherapeutics Ltd., has shown efficacy against different types of

cancer cells in vitro and in in vivo models of cancer (150, 151).

Originally, the company announced initiation of a clinical phase 1

trial of CM24 in 2015 (152). In the same year Merck acquired

cCAM Biotherapeutics (153). However, only one year later further

development of CM24 was terminated by Merck due to new data:

“During 2016, as a result of unfavorable efficacy data, the company

determined that it would discontinue development of the pipeline

program” (154, 155). Another company, Purple Biotech, plans to

evaluate the same antibody CM24 in a phase I studies in the future

(156, 157). Based on Merck’s unfavorable results, upcoming clinical

studies using the CM24 antibody need to be regarded with caution.
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However, the hitherto results do not prove the inefficacy of

targeting CEACAM1 in anti-cancer therapy. Rather they suggest

that this particular antibody might not be suitable for this purpose.

This is further illustrated by a report from McLeod et al. (158).

They showed that another anti-CEACAM1 antibody (Cc1)

facilitated binding of soluble CEACAM1 to CEACAM1

expressing cells instead of blocking CEACAM1-dependent

signaling as expected. Furthermore, Nakajima et al. suggested that

anti-CEACAM1 antibodies may activate CEACAM1-dependent

signaling eventually by cross linking of CEACAM1 (78). Thus,

antibodies intended to block CEACAM1 signaling in cancer cells

probably may induce the opposite effect depending on antibody

design. Similar concerns may apply to another anti-cancer strategy.

Based on CEACAM1 upregulation, anti-CEACAM1 antibodies are

suggested to mark cancer cells for immune cell-based killing.

However, beside cancer cells a variety of cells express CEACAM1

depending on activation state and age (1, 2, 18, 159). Hence, this

strategy may provoke serious side effects.

In conclusion, it is inevitable to extensively characterize anti-

CEACAM1 antibodies that are intended to be used in clinical trials.

Then it is reasonable to assume that novel anti-CECAM1 therapeutics

might improve survival of cancer patient in the future (112).
6 Conclusion and future perspectives

Despite some conflicting findings, the vast majority of clinical

studies supports the view that CEACAM1 promotes cancer

progression and metastasis in humans. Regarding the

interpretation of the results of clinical trials, some aspects have to

be considered. First, specificity of anti-CEACAM1 antibodies might

be compromised due to cross-reactivity with other CEACAM

family members. Second, despite some evidence for possible

adverse functions in cancer biology the impact of different

CEACAM1 splice variants is still largely unknown.

One of the greatest unresolved issues is how CEACAM1 affects

intra- and intercellular signaling since there is no systematic

analysis of CEACAM1-dependent signaling in cancer yet. Closing

this gap would be an important step to understand the mechanisms

that underlie CEACAM1-mediated effects in cancer. This also

might reveal other signaling pathways and targets that have not

been linked to cancer so far and that could become even more

promising targets in cancer therapy than CEACAM1 itself.

In addition, the accumulating evidence of CEACAM1’s

repressing function on anti-cancer activity by the immune system

makes it an attractive therapeutic target similar to established

immune checkpoint inhibition. It is still speculative if such a

combined targeted inhibition including CEACAM1 might

overcome the limitations of immunotherapies against solid tumors.
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