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Acute kidney injury (AKI) frequently occurs in patients with chronic kidney disease

(CKD) and in turn, may cause or accelerate CKD. Therapeutic options in AKI are

limited and mostly relate to replacement of kidney function until the kidneys

recover spontaneously. Furthermore, there is no treatment that prevents the

AKI-to-CKD transition. Regulated necrosis has recently emerged as key player in

kidney injury. Specifically, there is functional evidence for a role of necroptosis,

ferroptosis or pyroptosis in AKI and the AKI-to-CKD progression. Regulated

necrosis may be proinflammatory and immunogenic, triggering subsequent

waves of regulated necrosis. In a paradigmatic murine nephrotoxic AKI model,

a first wave of ferroptosis was followed by recruitment of inflammatory cytokines

such as TWEAK that, in turn, triggered a secondary wave of necroptosis which led

to persistent kidney injury and decreased kidney function. A correct

understanding of the specific forms of regulated necrosis, their timing and

intracellular molecular pathways may help design novel therapeutic strategies

to prevent or treat AKI at different stages of the condition, thus improving patient

survival and the AKI-to-CKD transition. We now review key regulated necrosis

pathways and their role in AKI and the AKI-to-CKD transition both at the time of

the initial insult and during the repair phase following AKI.

KEYWORDS

acute kidney injury, chronic kidney disease, cell death, fibrosis, inflammation,
tissue repair
1 Overview of AKI

Acute kidney injury (AKI) is defined by a rapid decline of renal function, resulting in

increased serum creatinine levels or decreased urine output below certain thresholds (1, 2).

AKI may be triggered by pre-renal, renal, and post-renal (urinary tract obstruction) causes.

Renal causes like drugs, sepsis/shock and ischemia-reperfusion injury (IRI) that may lead
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to tubular cell death include from direct tubular toxicity to crystal-

induced kidney injury (2, 3). Even though the loss of renal function

is at least partially reversible in most patients who survive, the

mortality rate of AKI remains high (over 50%) (4, 5). Moreover,

AKI episodes favor the progression to chronic kidney disease

(CKD), and CKD is a risk factor for AKI (6, 7). Cell death and

inflammation play a key role in AKI. Systemic and local

inflammation can cause tubular cell death and AKI, and dying

tubular cells may trigger a secondary inflammatory response that

may further amplify tubular cell death (8). Several pathways of

regulated necrosis, such as necroptosis, ferroptosis and pyroptosis,

have emerged as proinflammatory cell death pathways since dying

cells release proinflammatory factors that amplify tissue injury (8,

9). A role for regulated necrosis has been observed in preclinical

AKI induced by sepsis, IRI and nephrotoxicity, and there is

evidence of its occurrence in humans (10–12). The desired

outcome of an AKI episode is complete recovery of kidney

structure and function, but in most cases, this does not occur.

Tubular cells with sublethal damage can either completely recover

their function and phenotype or, if regeneration is defective, they

may evolve to a profibrotic phenotype, contributing to CKD

progression (13). Now, we review the role of regulated necrosis

pathways in inflammation and repair in AKI.
2 Adaptive and maladaptive repair
after AKI: AKI and CKD progression

The AKI-to-CKD transition may be related to factors that

depend on the nature and intensity of the stimulus or its

interactions with the kidney tissue and the specific cellular niches

affected. Mechanistically, all kinds of AKI centrally impact the

tubular epithelium by producing cell stress and death. Thus,

tubular cells are the epicenter from which damage expands to

other areas of the kidney (14). Adaptive tissue repair after an AKI

episode depends on an orderly balance between tubular cell death

and the proliferation of survival cells that should maintain a healthy

tubular cell phenotype. The persistence or recurrence of damaging

stimuli shifts this balance towards increased cellular stress and a

state of maladaptive repair characterized by ongoing cell death,

persistent inflammation, and tissue fibrosis and aging, all of which

contribute to chronicity. Extensive kidney cell death without

recovery depletes the normal functional epithelia which is

replaced by scar tissue and fibrosis. Therefore, consistent with the

central role of cell death in promoting AKI initiation and the AKI-

to-CKD transition, cell death is a primary therapeutic target to

improve AKI outcomes.
3 Regulated necrosis pathways

Necroptosis, ferroptosis and pyroptosis are the main regulated

necrosis pathways and they are interrelated.
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3.1 Necroptosis

Necroptosis results in cell swelling, and membrane disruption

and triggers an inflammatory response (15). The best characterized

trigger is activation of TNF superfamily receptors by their ligands,

recruiting TRADD, TRAF2 and RIPK1, among other proteins. In a

pro-survival context, cellular inhibitors of apoptosis proteins

(CIAPs) and the Linear Ubiquitin Chain Assembly Complex

(LUBAC) drive the polyubiquitination of RIPK1, activating the

NF-кB pathway, which promotes cell proliferation and survival (16,

17). On the contrary, when NF-kB activation is inhibited, RIPK1 is

deubiquitinated and associates with FADD and procaspase-8,

resulting in cleavage of procaspase-8, generating active caspase-8

that results in execution of apoptosis (18, 19). In the absence of

caspase-8 activity, RIPK1 is not cleaved, and associates with RIPK3,

resulting in transphosphorylation or autophosphorylation of

RIPK3, and the formation of the necrosome, which

phosphorylates MLKL, resulting in MLKL oligomerization and

translocation to the plasma membrane (20). Membrane-bound

pMLKL oligomers form pores that lead to calcium influx and the

release of damage-associated patterns (DAMPs), that trigger an

inflammatory response (21–24).
3.2 Ferroptosis

Ferroptosis is an iron-dependent regulated form of necrotic cell

death characterized by excessive lipid peroxidation of organelle and

cell membranes that causes their disruption, leading to cell death and

the release of DAMPs that trigger an inflammatory response (15).

Unlike other regulated forms of cell death, ferroptosis is not regulated

by specific molecular mediators, but it depends on the redox balance

and the cellular antioxidant defense. Key factors involved in

triggering ferroptosis, include low levels of the antioxidant molecule

glutathione (GSH), impaired GPX4 activity, imbalanced

polyunsaturated fatty acid (PUFA) contents and iron (Fe)

availability (25). Inhibition of the Xc- antiporter can trigger

ferroptosis, since it allows cystine import into cells, which is

indispensable for synthesis of GSH, a GPX4 cofactor (26). GPX4

activity is the main cellular antioxidant defense against ferroptosis

and reduces lipid hydroperoxides (L-OOH) on their corresponding

lipid alcohols (L-OH) (27, 28). Kidney tubular cells are especially

dependent on GPX4 and acquired GPX4 deficiency triggers AKI (27).

Other mediators of ferroptosis include PUFAs that can be esterified

into membrane phospholipid (PL) and become oxidative susceptible

species (PL-PUFAs). The activation and esterification of PUFAs are

mediated by acyl-CoA synthetase long-chain family member 4

(ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3)

(29–31). An increased content of these species could increase the

susceptibility to ferroptosis since PL-PUFAs can be oxidized by

lipoxygenases (LOX) forming lipid peroxides (32, 33). Another key

regulator of ferroptosis is iron, which is necessary for LOX activity

and can trigger Fenton reactions creating more lipid peroxides (34,

35). Ferroptosis may be propagated to adjacent tubular cells as a

synchronized wave of cell death, where a single tubular cell may
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trigger teh death to the whole tubule (36). This synchronized wave of

cell death seems to be propagated through calcium signals and might

be stimulus-dependent, was observed in erastin-induced GSH

depletion but not during GPX4 inhibition (37). Understanding the

mechanisms that mediate the spread of ferroptosis through cell

populations will help us to identify new ferroptosis inhibitors.
3.3 Pyroptosis

Pyroptosis is characterized by membrane rupture and pro-

inflammatory effects. Gasdermins (GSDM) are the main effectors

of pyroptosis. Activated GSDM inserts into cell membranes and

forms pores leading to the release of cytokines, alarmins and

DAMPs, cell membrane rupture and cell death (12). GSDM

activation can be mediated by canonical and non-canonical

pathways. The canonical pathway involves the activation of Toll-

like receptors (TLRs), which induce the expression of

inflammasome components and pro-inflammatory cytokines. In

parallel, inflammasome sensors such as NLRP3 are activated by a

variety of DAMPs and PAMPs and recruit adaptor proteins, CARD

and pro-caspase-1, to form the inflammasome complex and activate

caspase-1. Caspase 1 cleaves pro-IL-b, pro-IL-18, and GSDMD

promoting membrane pore formation, cytokine release and lytic cell

death (12, 38). In the non-canonical pathway, caspases-4, -5 and -11

are directly activated by intracellular lipopolysaccharide,

independent of the inflammasome, and they consequently cleave

GSDMD to execute pyroptosis, without IL-1b and IL-18 cleavage

(39). Pyroptosis can interact with apoptosis since caspase-3 and -7

may activate GSDME and caspase-8 GSDMD (40, 41). Pyroptosis is

associated with host antimicrobial defense, but it can also be

involved in sterile diseases such as atherosclerosis and

neurodegenerative diseases (42–44).
3.4 Molecular interactions between
different forms of regulated necrosis
and apoptosis

As recently reviewed, there are multiple interactions between

different modalities of regulated necrosis and apoptosis, beyond the

fact that regulated necrosis may recruit inflammation-driven cell death,

that should be accounted for when designing therapeutic interventions

(8). Examples include the several roles of caspases in cell death

modalities ranging from apoptosis to necroptosis or pyroptosis, final

common pathways such as the recruitment of NINJ1 to lyse the cell

membrane and common protective mechanisms such as preservation

of cell membrane integrity by ESCRT-III (8).
4 Regulated necrosis pathways and
induction of AKI

Contrary to the old-fashioned assumption that apoptosis

accounts for the majority of dying cells in AKI, much evidence
Frontiers in Immunology 03
has emerged in the last decade for a predominant role and

contribution of regulated forms of necrotic cell death, in

particular necroptosis and ferroptosis. Therefore, elucidating their

relative contribution and interconnection in AKI will allow for the

development of more precision targeted therapies. To this end,

several studies have investigated the involvement of regulated

necrosis pathways in experimental AKI through interference with

the activity of key components of the molecular pathway.

In general, the role of ferroptosis and necroptosis in different

models of AKI has been clearly demonstrated. During folic acid-

induced nephrotoxic AKI (FA-AKI), a first wave cell death by

ferroptosis induces an inflammatory response that triggers a

secondary wave of cell death by necroptosis in which the

inflammatory cytokine TWEAK activation of the Fn14 receptor is

involved (45, 46) In rhabdomyolysis-induced kidney injury,

ferroptosis appears to be the dominant pathway, as ferrostatin-1

improved renal function while the necroptosis inhibitor

necrostatin-1 had no effect (47, 48). This makes sense, since

myoglobin is a heme-containing protein, i.e., a source of excess

iron. In both IRI-AKI and crystal nephropathy, targeting

necroptosis, ferroptosis and mitochondrial permeability transition

pore-regulated necrosis (MPTP-RN) were protective (36, 49–53).

Moreover, necroptosis and ferroptosis may be interconnected in

IRI-AKI, since MLKL-deficient mice subjected to renal IRI showed

an earlier upregulation of ACSL4, a potential mediator of ferroptosis

(54), supporting the notion that combined therapy may be more

effective than targeting a single pathway. In murine cisplatin-AKI,

deficiency of RIPK3 or MLKL resulted in improved renal function,

pointing out necroptosis as a major mechanism of tubular cell death

(55), but there may also be a link with other regulated necrotic

pathways, as some studies suggest a role for ferroptosis (56–58). In

sepsis-AKI, RIPK3 aggravated kidney injury in a MLKL-

independent manner by promoting mitochondrial dysfunction via

NOX4 upregulation, but the contribution of tubular cell death was

not clearly demonstrated (59).

By contrast, the role of pyroptosis in AKI is controversial. Some

studies have found that caspase-11 expression and cleavage of

GSDMD or GSDME were increased in both IRI-AKI and

cisplatin-AKI. Caspase-11-, GSDMD- or GSDME-deficient mice

were protected from cisplatin-AKI, and specifically GSDME

deficiency also ameliorated injury in IRI-AKI (60–62). In

contrast, an independent group reported that in both GSDMD-

and GSDME-deficient mice the severity of IRI-AKI, cisplatin-AKI

and calcium oxalate-AKI were increased due to activation of

necroptosis (63). In addition, whether tubular cells express

pyroptosis proteins is disputed (60, 61, 63, 64). Further studies

should clarify which cells activate pyroptosis in AKI, whether

targeting pyroptosis is truly protective and which is the optimal

way to target pyroptosis. Multicenter preclinical trials may help

address these discrepancies (65).

Moreover, further research should address the in vivo

relationships between different modes of regulated necrosis in

different forms of AKI: which forms of cell death occur initially

and how do they trigger similar or another form of cell death in

neighboring cells (8), what is the impact of the nature and strength

of the stimulus, along with the presence of co-stimulatory factors,
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on these dynamics (8), and above all, how these preclinical

observations relate to the clinical situation, in which the time-

course of injury is frequently unclear and different insults may pile

up in the same patient at different time points following the initial

injury. Clinical translation sorely needs soluble biomarkers of

different modalities of regulated necrosis that allow a dynamic

follow-up of ongoing types of regulated necrosis and their

response to different therapeutic interventions.
5 Interaction between regulated
necrosis and inflammation in AKI

During homeostatic and developmental scenarios, apoptosis-

driven removal of damaged or unneeded cells regulates cell

populations in the kidney and other organs. This process involves

efferocytosis, a non-inflammatory mechanism where cell surface

molecules (eat-me signals) are recognized by macrophages that

engulf and clear apoptotic cells (66). In contrast, regulated necrosis

pathways are characterized by the lack of early engulfment, formation

of pores in cellular membranes, membrane lysis and the consequent

release of DAMPs, which engage an inflammatory response

that amplifies injury, in a process termed necroinflammation (67).

DAMPs released during regulated necrosis may also be immunogenic

and are thought to play a role in autoimmune diseases such as lupus

nephritis. Ferroptosis has the most proinflammatory and

immunogenic potential, since it both releases DAMPs and lipid

peroxides but also propagates cell death in a synchronized manner

(37), whereas necroptosis generates both pro-inflammatory cytokines

such as IL-1b (68) and anti-inflammatory cytokines such as IL-33

and CXCL1 (68–70).

During AKI, damaged and dying kidney parenchymal cells

release DAMPs, which can activate pattern recognition receptors

such as TLRs or NOD-like receptors proteins (NLRPs) on kidney

resident immune cells like dendritic cells and macrophages, as well

as chemokines and cytokines, thus attracting and activating

leucocytes and amplifying the inflammation (71). The resulting

inflammation depends on the nature and the persistence of the

stimulus, as well as the renal compartment that is affected (72).

Likewise, the specific secondary mediators differ among different

forms of regulated cell death, which contributes to the complexity

and heterogeneity of their impact on kidney injury (73). For

example, in FA-AKI, ferroptosis is activated at early time points,

and in addition to inducing cell death, it also triggers the expression

of proinflammatory mediators such as Fn14 (TWEAK receptor),

which promote a second wave of cell death by necroptosis (45).

Similarly, in both cisplatin- and IRI-AKI, MLKL and RIPK3

deficiency reduces necroptosis, and also the tubular expression of

inflammatory cytokines, such as TNFa, that trigger necroptosis (55,
74). In this regard, a novel inhibitor of RIPK1, Cpd-71, prevented

cell death and inflammation in cisplatin-AKI (75).

Conversely, inflammation can trigger cell death, as

characterized for IRI-AKI, where prostaglandin activation of the

E-prostanoid 3 receptor (EP3) in myeloid cells promotes the release

of inflammatory cytokines that activate necroptosis and
Frontiers in Immunology 04
necroinflammation in tubular cells (76). Some stimuli activate

both inflammation and cell death, as illustrated by cisplatin- and

IRI-AKI, where the interaction of the gastrin-releasing peptide

receptor with TLR4 in tubular cells activates STAT1 to promote

the expression of MLKL and CCL2, leading to necroptosis and

inflammation (77).

On the other hand, RIPK3 can promote kidney inflammation

independently of necroptosis. In FA-AKI, RIPK3 deficiency

reduced inflammation but not cell death at early time points

when necroptosis had not yet been recruited as a key cell death

pathway (78). RIPK3 also mediated kidney inflammation after

systemic injection of TWEAK, a model of inflammation that does

not cause kidney cell death or dysfunction (78). Additionally, in

experimental sepsis, where inflammation plays a key role, RIPK3,

but not MLKL. mediated kidney injury and dysfunction (59, 79).

Overall, during AKI, cell death and inflammation are

interconnected pathways, and an in-depth knowledge of this

connection is necessary to optimize therapeutic approaches to AKI.
6 Regulated necrosis and tissue repair
after AKI

Apoptosis of tubular cells was widely investigated in the 20th

and early 21st centuries as a mechanism of regulated cell death

driving AKI and the AKI-to-CKD. However, none of the

therapeutic approaches made it to the clinic and apoptosis may

also lead to loss of other cell types or clear excess tubular cells

generated by cell proliferation following injury as well as irreversibly

damaged cells (80). Thus, whereas caspase-3 deficiency increased

the severity of early IRI-AKI, probably by shifting cell death to

necrosis, it reduced long-term renal damage by inhibiting

endothelial apoptosis, vascular rarefaction, and fibrosis

(81) (Figure 1A).

In contrast, regulated necrosis, which is always considered

pathological, may offer new therapeutic alternatives to treat AKI

or the AKI-to-CKD transition (8). Several preclinical studies have

associated regulated cell death with maladaptive repair following

AKI (82). In IRI-AKI inhibition of the necroptotic pathway

improved kidney function early in IRI-AKI and the progression

to fibrosis in the long term, where bone marrow cells play a key role,

suggesting that the inflammation associated to regulated necrosis

favors the AKI-to-CKD transition (74). Single-cell transcriptomics

showed that tubular cells undergoing maladaptive repair after

prolonged ischemia presented an enrichment of ferroptosis and

pyroptosis pathways, supporting their role in maladaptive repair

(83). Another report, which combined a single-cell transcriptomic

study with genetic approaches, demonstrated that chronic

inflammation after IRI-AKI downregulated the gene expression of

glutathione metabolism components triggering ferroptotic stress

and identified GPX4 as a key coordinator of kidney repair and

regeneration (84) (Figure 1A). Deficiency of IL-18, a component of

NLRP3-inflammatory response, ameliorated the early phase of

necroptosis as well as later tissue regeneration in murine FA-

AKI (85).
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In CKD patients and mice with oxalate-induced CKD increased

renal levels of RIPK1, RIPK3, MLKL correlated with increased

extracellular matrix (ECM) production and declining kidney

function (86). Both pharmacological and genetic inhibition of

RIPK3 diminished ECM accumulation in oxalate-induced CKD,

adenine diet-induced renal fibrosis and, unilateral ureteral

obstruction (86, 87), showing the involvement of necroptosis in

kidney fibrosis. Moreover, profibrotic factors recruit RIPK3 and

MLKL to mitochondria resulting in mitochondrial dysfunction and

reactive oxygen species (ROS) production in murine fibroblasts

stimulated with TGFb1 and in oxalate-induced CKD (86) (Figure 1B).

Additionally, necroptosis was identified as a determinant

pathway in the progression of CKD in cisplatin-AKI, although

the specific mechanisms of necroptosis in this model were not

described (88). Activation of specific transcriptional repair

programs, including STAT3 and SOX-9 pathways, contribute to
Frontiers in Immunology 05
cell repair during regeneration following AKI (89–91). In murine

cisplatin-AKI, 7-Hydroxycoumarin diminished renal necroptosis

by modulating the RIPK1/RIPK3/MLKL pathway, and increased

tissue repair through upregulation of cyclin D1 (92). Moreover, in

cultured HK2 cells, SOX-9 deficiency reduced the beneficial effect of

7-Hydroxycoumarin against cisplatin cytotoxicity (92), suggesting a

potential relationship between SOX-9, necroptosis, and tissue

repair (Figure 1C).

Following AKI, damaged tubular cells may become senescent

and display the secretory associated senescence phenotype (SASP),

characterized by profibrotic and proinflammatory factors, which

spread cellular senescence to neighboring cells and contribute to the

propagation of kidney damage (13). Cellular communication

network factor 2 (CCN2) is a component of the SASP that

induces senescence in cultured tubular cells, is involved in

experimental renal fibrosis following IRI- and FA-AKI and can
B C

A

FIGURE 1

Regulated necrosis and tissue repair after AKI. (A) In IRI-AKI, several cell death pathways are activated. Apoptosis may play a beneficial role in the
short term, probably regulating cellular homeostasis, but in the long term it favors fibrosis through cell death of perivascular cells. However, tubular
necroptosis and ferroptosis play a detrimental role in both the short and long term, probably mediated by the necroinflammatory loop. (B) In oxalate
CKD, the necrosome is activated by TGFb1 and RIPK3 and MLKL translocate to the mitochondrial membrane where they promote ROS generation,
fibrosis and consequent maladaptive repair and CKD progression. (C) The necrosome is activated in cisplatin-induced AKI-to-CKD transition, but its
specific role in CKD progression is unknown, although, SOX-9 and cyclin-D1 downregulation may be involved. BM, Bone marrow.
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activate the RIKP3/NLRP3 pathway in the acute phase of FA-AKI

(93–95). In aging mice, FA-AKI is more severe compared to young

mice, and this has been linked to cellular senescence related

mechanisms, including increased expression of SASP components

such as CCN2, and to upregulation of necroptosis cell-death

pathways (96), suggesting a link between senescence and

necroinflammation in renal injury. In this line, deficiency of IL-

18, a component of NLRP3-inflammatory response, ameliorated the

early phase of necroptosis as well as later tissue regeneration in

murine FA-AKI (85).

The therapeutic effect of extracellular vesicles (EVs) on renal

recovery after AKI has also been linked to modulation of regulated

necrosis pathways (97–99). Exosomes from human umbilical cord-

derived mesenchymal stem cells modulated necroptosis through

miR-874-3p attenuating HK2 cell injury and enhancing repair

following cisplatin stimulation (100). In murine LPS-induced

AKI, treatment with adipose-derived EVs reduced renal

inflammation and pyroptosis and promoted tubular cell repair
Frontiers in Immunology 06
through miR-21-5p/TLR4, blocking the NF-kB/NLRP3

pathway (101).

Overall, these results support a key role of regulated cell death in

the regeneration and repair phase of AKI.
7 Conclusion

In conclusion, there is accumulating evidence for a role of

different modalities of regulated necrosis in the initial phase of AKI,

the amplification and persistence of injury following the initial

insults, the repair phase from AKI and the AKI-to-CKD transition.

A better understanding of the molecular mechanisms involved in

different phases of AKI following diverse insults may identify novel

therapeutic targets. However, clinical development should rely on

the development of biomarkers that allow to monitor the activation

of different modalities of regulated necrosis as well as their response

to therapeutic interventions in humans (Figure 2).
FIGURE 2

The path to clinical translation of findings in preclinical models. The findings described in preclinical models about the role of regulated necrosis in
the different phases of AKI could help to develop novel biomarkers in the clinic.
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Vázquez-Carballo C, Herencia C, et al. Curcumin reduces renal damage associated with
Frontiers in Immunology 08
rhabdomyolysis by decreasing ferroptosis-mediated cell death. FASEB J (2019)
33:8961–75. doi: 10.1096/fj.201900077R

49. Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-McNulty B,
et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than
MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ
(2016) 23:1565–76. doi: 10.1038/cdd.2016.46

50. Linkermann A, Bräsen JH, Darding M, Jin MK, Sanz AB, Heller JO, et al. Two
independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc
Natl Acad Sci USA (2013) 110:12024–9. doi: 10.1073/pnas.1305538110

51. von Mässenhausen A, Tonnus W, Himmerkus N, Parmentier S, Saleh D,
Rodriguez D, et al. Phenytoin inhibits necroptosis. Cell Death Dis (2018) 9:359. doi:
10.1038/s41419-018-0394-3

52. Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D, Romoli S, et al.
Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat Commun
(2016) 7:10274. doi: 10.1038/ncomms10274

53. Mulay SR, Honarpisheh MM, Foresto-Neto O, Shi C, Desai J, Zhao ZB, et al.
Mitochondria permeability transition versus necroptosis in oxalate-induced AKI. J Am
Soc Nephrol (2019) 30:1857–69. doi: 10.1681/ASN.2018121218

54. Müller T, Dewitz C, Schmitz J, Schröder AS, Bräsen JH, Stockwell BR, et al.
Necroptosis and ferroptosis are alternative cell death pathways that operate in acute
kidney failure. Cell Mol Life Sci (2017) 74:3631–45. doi: 10.1007/s00018-017-2547-4

55. Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, et al. A role for tubular necroptosis
in cisplatin-induced AKI. J Am Soc Nephrol (2015) 26:2647–58. doi: 10.1681/
ASN.2014080741

56. Hu Z, Zhang H, Yi B, Yang S, Liu J, Hu J, et al. VDR activation attenuate cisplatin
induced AKI by inhibiting ferroptosis. Cell Death Dis (2020) 11:73. doi: 10.1038/
s41419-020-2256-z

57. Kim DH, Choi HI, Park JS, Kim CS, Bae EH, Ma SK, et al. Farnesoid X receptor
protects against cisplatin-induced acute kidney injury by regulating the transcription of
ferroptosis-related genes. Redox Biol (2022) 54:102382. doi: 10.1016/
j.redox.2022.102382

58. Zhou J, Xiao C, Zheng S, Wang Q, Zhu H, Zhang Y, et al. MicroRNA-214-3p
aggravates ferroptosis by targeting GPX4 in cisplatin-induced acute kidney injury. Cell
Stress Chaperones (2022) 27:325–36. doi: 10.1007/s12192-022-01271-3

59. Sureshbabu A, Patino E, Ma KC, Laursen K, Finkelsztein EJ, Akchurin O, et al.
RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction. JCI
Insight (2018) 3:e98411. doi: 10.1172/jci.insight.98411

60. Miao N, Yin F, Xie H, Wang Y, Xu Y, Shen Y, et al. The cleavage of gasdermin D
by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in
acute kidney injury. Kidney Int (2019) 96:1105–20. doi: 10.1016/j.kint.2019.04.035

61. Li Y, Xia W, WuM, Yin J, Wang Q, Li S, et al. Activation of GSDMD contributes
to acute kidney injury induced by cisplatin. Am J Physiol Renal Physiol (2020) 318:F96–
F106. doi: 10.1152/ajprenal.00351.2019

62. Xia W, Li Y, WuM, Jin Q, Wang Q, Li S, et al. Gasdermin E deficiency attenuates
acute kidney injury by inhibiting pyroptosis and inflammation. Cell Death Dis (2021)
12:139. doi: 10.1038/s41419-021-03431-2

63. Tonnus W, Maremonti F, Belavgeni A, Latk M, Kusunoki Y, Brucker A, et al.
Gasdermin D-deficient mice are hypersensitive to acute kidney injury. Cell Death Dis
(2022) 13:792. doi: 10.1038/s41419-022-05230-9

64. Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN,
Vilaysane A, et al. Calcium oxalate crystals induce renal inflammation by NLRP3-
mediated IL-1b secretion. J Clin Invest (2013) 123:236–46. doi: 10.1172/JCI63679

65. Lei Y, Sehnert B, Voll RE, Jacobs-Cachá C, Soler MJ, Sanchez-Niño MD, et al. A
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