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Dongwei Liu 1,2,3, Yi Zhuo1,2,3 and Lixin Wang 1,2,3*

1School of Ecology and Environment, Inner Mongolia University, Hohhot, China, 2Collaborative
Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education
of China and Inner Mongolia Autonomous Region), Hohhot, China, 3Ministry of Education Key
Laboratory of Ecology and Resource Use of the Mongolian Plateau, Hohhot, China
Common reed (Phragmites australis) is a widespread grass species that exhibits a

high degree of intraspecific variation for functional traits along environmental

gradients. However, the mechanisms underlying intraspecific variation and

adaptation strategies in response to environmental gradients on a regional

scale remain poorly understood. In this study, we measured leaf, stem, and

root traits of common reed in the lakeshore wetlands of the arid and semi-arid

regions of the Inner Mongolia Plateau aiming to reveal the regional-scale

variation for functional traits in this species, and the corresponding potentially

influencing factors. Additionally, we aimed to reveal the ecological adaptation

strategies of common reed in different regions using the plant economics

spectrum (PES) theory. The results showed that functional-trait variation

followed significant latitudinal and longitudinal patterns. Furthermore, we

found that these variations are primarily driven by temperature-mediated

climatic differences, such as aridity, induced by geographical distance. In

contrast, soil properties and the combined effects of climate and soil had

relatively minor effects on such properties. In the case of common reed, the

PES theory applies to the functional traits at the organ, as well as at the whole-

plant level, and different ecological adaptation strategies across arid and semi-

arid regions were confirmed. The extent of utilization and assimilation of

resources by this species in arid regions was a conservative one, whereas in

semi-arid regions, an acquisition strategy prevailed. This study provides new

insights into intraspecific variations for functional traits in common reed on a

regional scale, the driving factors involved, and the ecological adaptation

strategies used by the species. Moreover, it provided a theoretical foundation

for wetland biodiversity conservation and ecological restoration.

KEYWORDS
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1 Introduction

Plant functional traits are adaptive and effective traits that affect

plant survival, growth, and reproduction; furthermore, they reflect

plant responses to the environment (Liu and Ma, 2015; Bruelheide

et al., 2018b) and have proved useful for predicting plant

community assembly and diversity (Lavorel and Garnier, 2010),

which can respond strongly to environmental and climate change,

and serve as excellent ecological indicators (Joswig et al., 2022).

Numerous empirical studies have elucidated the nature of trait

variation and have shown systematic relationships between traits

and climatic and/or soil properties (Wright et al., 2005; Cornwell

and Ackerly, 2009; Simpson et al., 2016). However, the dominant

theories and methods of trait-based community ecology mainly

focus on the differences in functional traits between species

(Roscher et al., 2018), whereas the important role of intraspecific

trait variation has been neglected (Siefert et al., 2015; Ma et al.,

2022). Species with a widespread distribution tend to have greater

trait variability and high intraspecific variation; moreover, they

show a continuous geographic gradient, especially across different

latitudes, as a consequence of acclimation to a broad range of

environmental conditions (Siefert et al., 2015; Ren et al., 2020).

Indeed, numerous studies have shown that large-scale variation for

individual plant traits is associated with environmental gradients

(Atkin et al., 2015; Wright et al., 2017). Further, previous studies

have suggested that, together, climate and soil determine the form

and function of plants (Simpson et al., 2016; Bruelheide et al.,

2018a). However, studies on the characteristics of intraspecific

variation for plant functional traits and their adaptation to

environmental conditions are important for understanding plant

community assembly and diversity in different regions, and the

mechanisms underlying their response to habitat conditions

(Suding et al., 2008; Kong et al., 2021).

The underlying concept of the PES theory has attracted wide

attention from ecologists. Initially, Wright et al. (2004) defined the

“leaf economic spectrum (LES),” as a continuously varying

spectrum of leaf functional trait combinations at a global scale, to

illustrate trade-off strategies between vascular plant resource

acquisition and storage, which can be expressed through the

range of variation in trait indicators and their quantitative

relationships (Wright et al., 2004). However, since then, ecologists

have extended LES studies to stem, root, whole plant, community

structure, and ecosystem types at different levels (Pérez-Ramos

et al., 2012; Kong et al., 2019; Li et al., 2019). One end of the PES

represents the “fast investment-gain” strategy of plants, whereby,

species make a low tissue investment and get a fast return, i.e., an

acquisition strategy. Meanwhile, the other represents the “slow

investment-gain” strategy of plants, whereby, species make a high

tissue investment and gte a slow return, i.e., a conservative strategy

(Wright et al., 2004; Reich and Cornelissen, 2014). PES studies can

better describe the trade-offs between functional traits at the organ

level. In particular, the PES theory provides new perspectives and

explores avenues for researching intraspecific variation in

functional traits and species ecological-adaptation strategies.
Frontiers in Plant Science 02
The cosmopolitan species, P. australis, is a tall wetland grass

with high intraspecific variation that maks it a suitable model

species for studying the mechanisms underlying intraspecific

functional trait variation (Kueffer et al., 2013; Eller et al., 2017).

In this study, we surveyed P. australis community sites in 13

lakeshore wetlands, and monitored 26 plant functional traits,

including leaf, stem and root traits to analyze the variation for

such traits according to geographic location, and the corresponding

determinants. Furthermore, we investigated the extent to which the

major dimensions underpinning the form variation of P. australis in

lakeshore wetlands can be attributed to gradients in climate and soil

conditions, and to what extent these factors can jointly or

independently explain form-variation in P. australis in lakeshore

wetlands. Finally, the ecological adaptation strategies under

different regional characteristics are summarized using economic

spectrum analysis. Specifically, we assessed the following

hypotheses: (1) Intraspecific variation in P. australis functional

traits exhibits significant latitudinal and longitudinal gradients

that can be explained by the combined effects of climate and soil.

(2) Economic spectrum theory applies to the functional traits of P.

australis populations, and the ecological adaptation strategies of P.

australis traits depend on regions.
2 Materials and methods

2.1 Study area, experiment design
and sampling

This study was conducted on lakeshore wetland ecosystems

along lakes in the semi-arid and arid regions of Inner Mongolia,

northern China (Figure S1; Table S1). Thirteen sampling sites in the

lakeshore wetlands of 11 lakes (three sampling sites in Hulun Lake

of Xheke (XHK), Mniaob (MNAB) and Glada (GLD)) were

investigated across a large geographic range (38.70° - 49.32° N,

101.27° - 117.71° E) in which two distinct climatic regions were

identified, as per aridity index (AI), namely, semi-arid (AI ≥ 0.2)

and arid (AI < 0.2) regions (Antonio and Robert, 2019). Four of 11

sampling localities laid in the semi-arid region (Hulun lake, Buir

Lake (BEL), Zagustai lake (ZGST), and Hongjiannao lake (HJN)),

and seven in the arid region (Chagannur lake (CGNE), Narin Lake

(NLH), Tonggunaoer lake (TG), Bagadabusu lake (BG), Badain lake

fresh water (BDD), Badain lake salt (BDX), and Juyan Lake (JYH))

(Figure S1). Communities of P. australis-dominant species were

selected in lakeshore wetlands to measure functional traits.

Fresh samples were collected from 13 sampling sites in the

selected lakeshore wetlands during July-August 2020. Five quadrats

(1 m×1 m, 5 blocks) were randomly selected from each P. australis

community. In each quadrat, 8-10 intact plants with uniform

growth and without pests or diseases were selected, excavated

together with their roots, and brought back to the laboratory for

the separation of organs to study the functional traits of P. australis.

Additionally, topsoil samples (0 – 30 cm depth) were collected from

three randomly selected sample quadrats of the excavated P.
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australis specimens. Five soil cores were collected from each

quadrat using a 7-cm diameter drill, mixed into one composite

sample, and brought back to the laboratory to analyze the soil

physical and chemical properties.
2.2 Functional traits measurements

Twenty-six traits of common reed plants were measured

directly or indirectly. Plant height was measured in the field, and

selected individuals were excavated together with their root systems.

Then, roots, stems, and leaves of each plant were separated and

individually scanned at a 300 dpi resolution (Epson Perfection V850

Pro scanner, Dell USA), such as to measure the leaf area and root

diameter infield before drying at 80°C for 48 h. Biomass was

measured to approximate 10−3 g, and the specific leaf area (SLA),

leaf dry matter content (LDMC), and specific root length (SRL)

were calculated after Freschet et al. (2021). Scanned leaf and root

images were analyzed using Photoshop (http://www.ps.lhfei.cn/)

and WinRHIZO (http://www.regentinstruments.com/assets/

winrhizo_about.html), respectively. Leaf thickness (LTH), stem

diameter (SD) and root diameter (RD) were measured using

Vernier calipers. Stem density (SDE) was calculated from dry

stem weight and volume measurements. Carbon and nitrogen

concentrations of these samples [including leaf nitrogen content

(LN), leaf carbon content (LC), stem nitrogen content (SN), stem

carbon content (SC), root nitrogen content (RN) and root carbon

content (RC)] were measured using an elemental analyzer

(Elementar Vario EL III, Germany). In turn, total phosphorus

(TP) concentration, including leaf phosphorus content (LP), stem

phosphorus content (SP) and root phosphorus content (RP) was

measured using the H2SO4-HClO4 fusion method. The

stoichiometric ratios of the roots, stems and leaves (including leaf

C:N, C:P, and N: P ratios; stem C:N, C:P, and N: P ratios; root C:N,

C:P, and N:P ratios) were calculated based on their C, N and P

contents (Wang et al., 2020).
2.3 Soil property measurements and
climate data collection

Soil samples were sieved through a 2-mm mesh sieve to remove

roots and small rocks, and the divided into two parts: one was

naturally dried, while the other was stored at 4°C as fresh soil

sample. Fresh soil sample (10 g) was used to measure ammonium

concentrations (NH4) with 50 ml of 2 M KCl-extractable with a

continuous flow spectrophotometer (FIAstar 5000, Foss Tecator,

Denmark). Soil available phosphorus (AP) was extracted with 0.5M

NaHCO3 (pH 8.5) and analyzed using the molybdenum blue-

ascorbic acid method. Soil pH was measured in a 1:5 soil:water

suspension and soil electrical conductivity (EC) was measured in a

1:2.5 soil:water suspension using a glass electrode. Soil total carbon

(TC) and total nitrogen (TN) were measured using an elemental

analyzer (Elementar Vario EL III, Germany).

As for climate factors, mean annual temperature (MAT), mean

annual precipitation (MAP), annual potential evapotranspiration
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(PET), and aridity index (AI) were used in this study. MAT and

MAP data with a resolution of 30 × 30 s were obtained from the

WorldClim Global Climate Database using the geographic

coordinates of each plot (http://www.worldclim.org). PET data

with a resolution of 30 × 30 s were extracted from CGIAR-CSI

(http://www.cgiar-csi.org). AI was calculated as follows: AI = MAP/

PET (Antonio and Robert, 2019).
2.4 Statistical analysis

All data were analyzed using R version 4.1.1 (R Core Team, 2021).

Quadrat-level data were obtained by averaging the trait values of all

sampled individuals in the quadrat. To meet the assumption of

normality in subsequent tests, all data were log-transformed before

analysis. The functional traits of P. australis were analyzed using

principal component analysis (PCA), and the PC1 axis with the

greatest amount of variability was used to represent leaf, stem, and

root traits. We performed simple linear regression analysis to

investigate the relationships between leaf, stem, and root traits, with

latitudinal and longitudinal gradients. This analysis was used to reveal

intraspecific variations on a large scale. Ridge regression (Friedman

et al., 2009) examines all environmental variables to explain

intraspecific variation in functional traits and is a well-established

linear regression method that is suitable for dealing with a large

number of collinear predictors of climate and soil variables. We used

hierarchical partitioning, i.e., ridge regression with hierarchical

partitioning (Chevan and Sutherland, 1991) to define the extent to

which the explained intraspecific variablity for each trait on the

latitudinal gradient was due to independent and joint climate- and

soil- variable effects. Additionally, redundancy analysis (RDA) was

used to detect how climate and soil factors affect intraspecific variation

for functional traits (R package ‘vegan’); subsequently, the explanation

of climate and soil factors was confirmed by package ‘rdacca.hp’ (Lai

et al., 2022). The significance of RDA was tested using random

permutations (n = 999 for all analyses). PCA was designed to rank

leaf, stem, root, and whole-plant traits of P. australis. A higher

proportion of the variance was explained by the calculated PC1 and

PC2, which were used as proxies for LES, stem economics spectrum

(SES), root economics spectrum (RES), and whole-plant economics

spectrum (WPES) to reveal ecological adaptation strategies. The

relative contribution of each trait to PC1 and PC2 was estimated by

correlation analysis between each trait index, and PC1 and PC2 scores.

The F-test was used to analyzed the differences between PC1 and PC2

scores for leaf, stem, root and whole-plant traits in the arid and semi-

arid regions.
3 Results

3.1 Intraspecific variation for traits along
latitudinal and longitudinal gradienst

Leaf, stem and root functional traits in Phragmites australis

showed a significant latitudinal and longitudinal gradient pattern

(P ≤ 0.05), albeit minor to moderately explained (R2 ≤ 0.28,
frontiersin.org
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Figure 1). Specifically, leaf trait values increased significantly (R2 =

0.28, P < 0.001, Figure 1A; R2 = 0.25, P < 0.001, Figure 1D) with

increasing latitude and longitude, whereas stem and root trait values

decreased significantly (R2 < 0.23, P < 0.05, Figures 1B, C, E, F). The

variation in functional traits of common reed along longitude and

latitude was primarily attributed to changes in climate as reflected

by the aridity index associated with the change in both longitude

and latitude. We then assessed the independent or joint effects of

climate and soil on intraspecific trait variation using ridge

regression (Figure 2; Table 1). Root and stem traits (RR: ridge

regression; r2stem = 0.60, r2root = 0.56) were better explained than leaf

traits (r2leaf = 0.48, Table 1). Further, hierarchical partitioning (RR

with hierarchical partitioning) results suggested that both

independent and joint effects of climate and soil affected

intraspecific trait variations (Figure 2). However, the independent

climate effects were observed for most traits and explained trait

variation better than any independent soil effect or joint climate-soil

effects (Figure 2B; Table 1).

Using RDA, we showed that climatic factors MAT and AI, and

soil C:N, pH, and EC, were the best predictors of intraspecific trait

variation. Furthermore, trait variation and the driving factors

involved were significant in arid and semi-arid regions (Figure 3,

R2 > 0.17, P < 0.001). Specifically, MAT, pH, and EC were the best
Frontiers in Plant Science 04
predictors of leaf-, stem-, and root-trait variation in arid regions,

whereas AI and soil NH4 best predicted leaf-, stem-, and root-trait

variation in semi-arid regions (Figure 3).
3.2 The economics spectrum of P. australis
traits and ecological adaptation strategies

Based on economics spectrum theory, the traits of P. australis

showed an ecological adaptation strategy for conservation in arid

regions, and one of acquisition in semi-arid regions (Figure 4, See

Appendix S3 in Supporting Information). Particularly, the results of

PCA for leaf trait variability showed that PC1 and PC2 explained

66.56% and 17.06% of the variance, respectively (Figure 4A). The PC1

axis represented a gradient from SLA and LN to LDMC and LTH,

confirming a certain coordination among these leaf traits (Figure 4A).

Most of the P. australis leaf traits in the arid region were clustered on

the conservative side and those in the semi-arid region were clustered

on the acquisitive side. The scores of the PC1 axis were significantly

different between the arid and semi-arid regions (p < 0.001; Table S3).

In turn, the results of PCA for stem traits showed that PC1 and

PC2 explained 50.32% and 34.2% of the variance, respectively

(Figure 4B). The PC1 axis represented a gradient from SDE and
A B

D E F

C

FIGURE 1

The intraspecific variation in the leaf traits, stem traits and root traits of Phragmites australis with latitudinal and longitudinal gradient. Black lines are
the fitted lines from OLS regressions. Grey shadings represent 95% confidence intervals. Significance (p-value) is shown in parentheses. R2 describes
the proportion of variation explained by each model. Lat, Latitude; Lon, Longitude. (A–C) The variations of leaf, stem, and root traits along the
latitude gradient. (D–F) The variations of leaf, stem, and root traits along the longitude gradient.
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SP to SD, confirming the coordination among these stem traits.

Common reed specimens of arid and semi-arid regions were

distributed on both the conserved and acquired sides but neither

of them had any significant effect on the PC1 axis (p > 0.05, Table

S3). Lastly, the results of PCA for root traits showed that PC1 and

PC2 explained 51.51% and 25.14% of the variance, respectively, but

there was no coordination in the traits along the PC1 axis

(Figure 4C). Therefore, we did not detect an economics spectrum

for P. australis roots in this study.

As for the results of PCA for whole-plant traits, this showed that

PC1 and PC2 explained 32.23% and 30.41% of the variance,

respectively (Figure 4D). Thus, whole-plant traits (except LDMC

and RC) contributed significantly to the PC1 axis (Table S2),

confirming the coordination of whole-plant traits along the PC1

axis. Most of the P. australis traits observed in semi-arid regions

were distributed on the acquisition side, whereas as those in arid

regions were distributed on the conservative side; furthermore, and

the PC1 axis scores of the P. australis traits in the arid regions were

significantly higher than those in the semi-arid regions (p < 0.001,

Table S3).
4 Discussion

This study demonstrated that intraspecific trait variation in P.

australis followed a pattern associated with a significant latitudinal

and longitudinal gradient along the lakeshore wetland in Inner

Mongolia. Furthermore, such variation basically depended on
Frontiers in Plant Science 05
climatic differences as reflected on aridity index variability

associated with longitude and latitude, and was less dependent on

edaphic properties. Through PES analysis, we confirmed that the

economics spectrum of P. australis plants not only existed in the

traits of a single organ, but also acted at whole-plant level.

Moreover, the traits of P. australis showed a conservative

ecological adaptation strategy in arid regions and an acquisitively

one in semi-arid regions.
4.1 Intraspecific functional-trait
variation with location characteristics
is regulated by climate

For widely distributed species, differences in stand and climatic

environment in natural growth habitats inevitably lead to difference

in plant physiological and ecological characteristics, resulting in

significant differences in functional traits (Roscher et al., 2018).

Thus, for example, previous studies have shown that specific leaf

area and dry matter content are important indicators of plant

resource utilization strategies (Joswig et al., 2022). In general, a

lower specific leaf area, which restricts water vapor diffusion from

the leaf out to the surrounding atmosphere, corresponds to thicker

leaves (Dong et al., 2020). This adaptation enhances ability of the

leaf to resist water loss, making it more effective under arid

conditions (Wright et al., 2002; Rodriguez et al., 2015; Niinemets,

2016). Hence, plants adapted to harsh environments often have a

high dry-matter content, which enhances stress tolerance and
A B

FIGURE 2

Hierarchical partitioning identifies the contribution of climate and soil variables to explained for each trait variation of Phragmites australis (n = 65;
blue, leaf traits; red, stem traits; yellow, root traits). (A) The x–y plot of the soil versus climate factors to explained a trait variation. The axes showed
the sum of the respective independent and joint effect of soil and climate by hierarchical partitioning. The independent effect was the fraction of r2

explained exclusively by either soil or climate variables. The joint effect was the fraction explained by both climate and soil together, and was split
equally among them. (B) Percentage variation explained by climate (purple, percentages on the left), soil (peach, percentages on the right) and jointly
(grey, percentages in the middle) for trait groups-leaf, stem and root. Leaf thickness, LTH; Leaf dry matter content, LDMC; Specific leaf area, SLA;
Leaf nitrogen content, LN; Leaf carbon content, LC; Leaf phosphorus content, LP; Leaf C/N ratio, L_C.N; Leaf C/P ratio, L_C.P; Leaf N/P ratio, L_N.P;
Stem diameter, SD; Stem density, SDE; Stem nitrogen content, SN; Stem carbon content, SC; Stem phosphorus content, SP; Stem C/N ratio, S_C.N;
Stem C/P ratio, S_C.P; Stem N/P ratio, S_N.P; Root diameter, RD; Specific root length, SRL; Root nitrogen content, RN; Root carbon content, RC;
Root phosphorus content, RP; Root C/N ratio, R_C.N; Root C/P ratio, R_C.P; Root N/P ratio, R_N.P.
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nutrients retention (Thomas et al., 2020). Thus, P. australis has

adapted to high latitudes by reducing specific leaf area and

increasing leaf dry-matter content, which is consistent with most

studies on leaf functional traits (Luo et al., 2019; Gong et al., 2020).

As important elements for plant growth and development, C, N,

and P contents and their stoichiometric characteristics not only

reflect the ability of plants to produce assimilated products and

their efficiency for nutrient utilization, but additionally, they

determine the limiting factors controlling plant growth and

development (Ordoñez et al., 2009; Zhang et al., 2020). Mineral

element concentrations in plant tissues differ with the characteristics

of geographical locations, most likely reflecting the effects of different
Frontiers in Plant Science 06
nutrient requirements and assimilative capacities under different

climatic conditions for growth (Heilmeier, 2019). In this study, leaf

and root N content did not show a latitudinal gradient-associated

pattern, which may have resulted from the unrestricted availability of

N in the lakeshore wetlands of the geographic pattern. In turn, leaf,

stem, and root P contents in P. australis plants increased along a

decreasing latitudinal pattern, indicating that lakeshore wetlands in

arid regions are more P-limited than those in semi-arid regions.

Further, plant C:N ratio tended to increase as the latitudinal gradient,

indicating that the C and N uptake and assimilation capacities of P.

australis increased with higher latitudes (Wang et al., 2018).

Additionally, both plant C:P and N:P ratios showed a decreasing
TABLE 1 The intraspecific variation in each trait of Phragmites australis explained (r2) by ridge regression and the independent and joint effects for
climate and soil variables from hierarchical partitioning.

Treat Group Explained variance by
soil and climate (r2)

Independent_
climate effect (r2)

Independent_
soil effect (r2) Joint effect (r2)

Ridge regression
model

Hierarchical
partitioning

Hierarchical
partitioning

Hierarchical
partitioning

LTH Leaf 0.20 0 0.07 0.13

LDMC Leaf 0.15 0.02 0 0.13

SLA Leaf 0.09 0 0.02 0.07

LN Leaf 0.16 0 0.16 0

LC Leaf 0.10 0.04 0.06 0

LP Leaf 0.44 0.16 0.22 0.06

L_C.N Leaf 0.15 0 0.15 0

L_C.P Leaf 0.41 0.13 0.22 0.06

L_N.P Leaf 0.48 0.27 0.17 0.04

SD Stem 0.20 0.02 0 0.18

SDE Stem 0.44 0.17 0 0.27

SN Stem 0.25 0.08 0.02 0.15

SC Stem 0.35 0.29 0.06 0

SP Stem 0.36 0.31 0.04 0.01

S_C.N Stem 0.27 0.11 0.01 0.15

S_C.P Stem 0.34 0.29 0.03 0.02

S_N.P Stem 0.60 0.45 0 0.15

RD Root 0.52 0.42 0 0.10

SRL Root 0.25 0.22 0.03 0

RN Root 0.14 0 0.14 0

RC Root 0.16 0.12 0 0.04

RP Root 0.55 0.32 0.11 0.12

R_C.N Root 0.05 0 0.05 0

R_C.P Root 0.53 0.30 0.12 0.11

R_N.P Root 0.56 0.37 0.01 0.18
Leaf thickness, LTH; Leaf dry matter content, LDMC; Specific leaf area, SLA; Leaf nitrogen content, LN; Leaf carbon content, LC; Leaf phosphorus content, LP; Leaf C/N ratio, L_C.N; Leaf C/P
ratio, L_C.P; Leaf N/P ratio, L_N.P; Stem diameter, SD; Stem density, SDE; Stem nitrogen content, SN; Stem carbon content, SC; Stem phosphorus content, SP; Stem C/N ratio, S_C.N; Stem C/P
ratio, S_C.P; Stem N/P ratio, S_N.P; Root diameter, RD; Specific root length, SRL; Root nitrogen content, RN; Root carbon content, RC; Root phosphorus content, RP; Root C/N ratio, R_C.N;
Root C/P ratio, R_C.P; Root N/P ratio, R_N.P.
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trend as the latitudinal gradient, indicating that P was reduced by P

limitation from arid to semi-arid lakeshore wetlands, and that the P

supply was greater than those of C and N. Indeed, C:P and N:P ratios

can be used to determine the soil availability of plant nutrients and

are widely used to determine the limiting patterns of C, N, and P

nutrients in plant-soil systems (Luo et al., 2017; Yang et al., 2018).
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Up to 60% of intraspecific trait variation was explained by

climate and soil variables in our study. Particularly, LTH, LDMC,

SLA, LN, LP, SDI, and SRL, showed broad-scale correlations with

climate and soil, and many of these traits showed geographic

patterns (Wright et al., 2017). Moreover, temperature-dependent

climatic factors were the dominant factors in the variation in the
FIGURE 3

Redundancy analysis (RDA) ordination for leaf, stem, and root traits of Phragmites australis and contribution of climatic and soil factors to trait
variability in lakeshore wetlands across arid and semi-arid regions (Permutation test (n = 999), P < 0.001). Arrows were colored according to climate
and soil factors group (climate, yellow and soil, green variables; arrow length and point positions scaled to fit the plot). The solid lines represent 95%
confidence intervals for functional traits in arid regions. Dashed lines represent 95% confidence intervals for functional traits in semi-arid regions.
Bars plot each RDA plot show the variation explained by each factor.
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functional traits of P. australis at the regional scale, which were less

related to soil properties (Figure 2). Specifically, ambient

temperature, potential evapotranspiration, and precipitation have

strong effects on plant growth, biomass, reproduction, and

phenology (Cavender-Bares et al., 2016). This study reports

latitudinal and longitudinal clines in leaf, stem, and root traits,

proving that the functional traits under study were preserved and

expressed according to their adaptation to climatic factors at the

place of origin, especially MAT (Ren et al., 2020). Several previous

studies on P. australis found that this variation tends to follow

patterns associated with climate changes along latitudinal and

longitudinal gradients (Lin et al., 2010; Bhattarai et al., 2017;

Gong et al., 2020). High and frequent precipitation, abundance of

water vapor, and suitable temperatures, should meet the basic

requirements of a healthy and vigorous plant physiological

performance (Joswig et al., 2022). In addition, these conditions

promote the weathering of soil minerals, provide suitable

conditions for microbial activity, contribute to the rapid turnover

of organic matter, and provide sufficient nutrients to

microorganisms. In short, they represent conditions that allow

plants to grow fast and tall in the race for light (Slessarev et al.,

2016; Wright et al., 2017).
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4.2 Plant economics spectrum and
ecological adaptation strategies

The study of the economics spectrum provides new theories and

methods for analyzing the effects of global climate change on plants

and their adaptation mechanisms, whereby it has become a hot

topic in ecological research (Sakschewski et al., 2015). In accordance

with the criteria outlined by Wright et al. (2004) for defining LES,

the first principal axis of trait covariation, representing a core set of

traits explained a substantial proportion of the variance for LES,

SES, RES, and WPES. The results of this study on a single P.

australis population showed that the economics spectrum theory

was equally applicable to different traits of the same species in

different habitats. Furthermore, PES studies have pointed out the

characteristics of different plant functional trait combinations and

the interrelationships among traits, indicating that plants of

different habitats adopt different environmental-adaptation

strategies through trade-offs among traits (Niinemets, 2015; Riva

et al., 2016).

Economic spectrum theory was applied to leaf, stem and whole

plant traits of P. australis, and significant differences for LES andWPES

in arid and semi-arid regions were detected. Common reed specimens
A B

DC

FIGURE 4

Principal component analysis (PCA) of leaf, stem, root system and whole-plant traits. (A) PCA of leaf traits. (B) PCA of stem traits. (C) PCA of root
traits. (D) PCA of whole-plant traits. The solid lines represent 95% confidence intervals for functional traits in arid regions. Dashed lines represent
95% confidence intervals for functional traits in semi-arid regions. Leaf thickness, LTH; Leaf dry matter content, LDMC; Specific leaf area, SLA; Leaf
nitrogen content, LN; Leaf carbon content, LC; Leaf phosphorus content, LP; Leaf C/N ratio, L_C.N; Leaf C/P ratio, L_C.P; Leaf N/P ratio, L_N.P;
Stem diameter, SD; Stem density, SDE; Stem nitrogen content, SN; Stem carbon content, SC; Stem phosphorus content, SP; Stem C/N ratio, S_C.N;
Stem C/P ratio, S_C.P; Stem N/P ratio, S_N.P; Root diameter, RD; Specific root length, SRL; Root nitrogen content, RN; Root carbon content, RC;
Root phosphorus content, RP; Root C/N ratio, R_C.N; Root C/P ratio, R_C.P; Root N/P ratio, R_N.P.
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in the arid region were distributed on the conservative side represented

by LES and WPES, with a small investment in SLA, LN, L_C:P and

L_N:P, and a large one in LDMC, LP and L_C:N. In contrast,

specimens in the semi-arid region were distributed on the acquisition

side. This suggested that P. australis has constant or consistent

conservative or acquisitive strategies at the organ and whole plant

levels in arid and semi-arid regions, respectively (Joswig et al., 2022).

Thus, in arid zones, P. australis usually has thicker leaves and stronger

stalks, and allocates more biomass to mechanical support, thereby

exhibiting a conservative strategy for withstanding adverse

environmental conditions (Pérez-Ramos et al., 2012). However, in

semi-arid zones, where greater water and nutrients availability provide

superior conditions for the growth of P. australis, an acquisition-based

strategy was favored to meet the higher nutrient content required. In

the lakeshore wetlands of Inner Mongolia, LES, SES, and WPES of P.

australis showed significant differences between arid and semi-arid

regions, whereas RES did not. We speculate that this may be due to the

significant variation in root traits, most of which show a high

coefficient of variation and are more sensitive to soil texture and

nutrient contents, and P. australis specimens can display different

survival strategies depending on the region (Packer et al., 2017; Feng

et al., 2020). Thus, despite the importance of the selection of plant traits

under different environmental conditions, the coordination of plant

acquisition or conservation strategies among traits, organs, and

resources still converges under different habitat conditions (Reich

and Cornelissen, 2014).
5 Conclusions

This study revealed that functional traits of P. australis followed

patterns significantly associated with latitudinal and longitudinal

gradients in lakes and lakeshore wetlands within the arid and semi-

arid regions of the Inner Mongolian Plateau. The resulting

intraspecific variation in traits across latitudinal and longitudinal

gradients was primarily influenced by temperature-mediated climatic

factors, whereas correlations between such trait variations and soil

heterogeneity or the combined effects of climate and soil were low.

The economics spectrum of P. australis populations in leaf and stem

traits, and in the whole-plant, was clearly established. Further, the

“investment-gain” strategy axis of the economics spectrum of P.

australis in arid and semi-arid regions was characterized by

divergence into two distinct directions. The arid region showed a

conservative strategy, whereas the semi-arid region showed an

acquisitive strategy. Our data strongly support the research of

WPES of a single species with a plant economics spectrum, and

further enrich the integration of intraspecific variation and the plant

economics spectrum in different climatic regions. These findings bear

important theoretical and practical significance for understanding the

ecological adaptation strategies of plant species.
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