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Traffic sign detection plays a vital role in assisted driving and automatic driving.
YOLOv5, as a one-stage object detection solution, is very suitable for Traffic sign
detection. However, it suffers from the problem of false detection and missed
detection of small objects. To address this issue, we have made improvements to
YOLOv5 and subsequently introduced YOLOv5-TS in this work. In YOLOv5-TS, a
spatial pyramid with depth-wise convolution is proposed by replacing maximum
pooling operations in spatial pyramid pooling with depth-wise convolutions. It is
applied to the backbone to extract multi-scale features at the same time prevent
feature loss. A Multiple Feature Fusion module is proposed to fuse multi-scale
feature maps multiple times with the purpose of enhancing both the semantic
expression ability and the detail expression ability of feature maps. To improve the
accuracy in detecting small even extra small objects, a specialized detection layer is
introduced by utilizing the highest-resolution feature map. Besides, a new method
based on k-means++ is proposed to generate stable anchor boxes. The
experiments on the data set verify the usefulness and effectiveness of our work.
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1 Introduction

Traffic signs convey vital information such as speed limits, lane changes, pedestrian
crossings, and potential hazards. With the ever-increasing volume of vehicles on the roads,
accurately detecting and interpreting traffic signs is essential for assisting drivers in making
informed decisions and complying with traffic regulations. It also plays a vital role in
providing critical information to autonomous vehicles, allowing them to understand road
regulations, make informed decisions, and navigate complex traffic scenarios.

Traditional approaches to traffic sign detection relied on color or shape template
matching. However, these methods often struggle with variability in lighting conditions,
shooting angles, and so on. In recent years, deep learning has shown significant advantages in
object detection [1], attracting the attention of researchers. Several studies [2–4] have utilized
Faster R-CNN [5] for traffic sign detection. R-CNN-based [6] methods detect objects in two
stages, which limited detection speed, making them less suitable for real-time traffic sign
detection scenarios. In contrast to R-CNN-based methods, You Only Look Once (YOLO) [7]
can detect objects in one stage, offering faster detection speeds.

YOLOv5 is one of the variants of YOLO. It emphasizes both detection speed and
accuracy. Therefore, it is very suitable for real-time traffic sign detection. However, it
suffers from the false detection and miss detection of small even extra small objects. To
improve the performance of YOLOv5 in detecting small even extra small objects Zhang
et al.[8], introduced a new layer for detecting small objects, while [9,10] separately tried
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to reduce feature loss and alleviate the impact of feature loss in
the process of feature extraction. Although many efforts have
been devoted to improving the detection speed and detection
accuracy, how to improve the performance in detecting small
even extra small objects is still an open problem.

In this paper, we make several improvements to YOLOv5 and
propose YOLOv5-TS to improve the performance in detecting
small even extra small objects. We propose a spatial pyramid with
Depth-wise convolution (SPDC) and combine it with a group of
parallel strip convolution blocks to construct a multiple multi-
scale feature fusion module (MFFM). MFFM is designed to
extract multi-scale feature maps. Based on MFFM, we
construct a special detection layer for small even extra small
objects. We also improved the method to generate anchor boxes
by exploiting k-means++ algorithm.

The main contributions of this work are described as follows:

(1) A spatial pyramid with depth-wise convolution is designed to
extract multi-scale features without feature loss.

(2) A multiple feature fusion module is proposed to fuse multi-scale
feature maps, and enhance the semantic and detailed expression
capabilities.

(3) A new detection layer is constructed specially for detecting small
even extra small objects.

(4) A new method based on the k-means++ algorithm is proposed
to generate stable anchor boxes.

The rest of the paper is organized as follows. Section 2 provides an
overview of related work in the field of traffic sign detection. Section 3
describes the theoretical basis. Section 4 details our proposed
framework for traffic sign detection. Section 5 presents experimental
results and performance evaluation. Finally, Section 6 concludes the
paper and discusses avenues for future research in this domain.

2 Related work

Traditional traffic sign detection methods identify traffic signs
by matching predefined color [11–13] or shape [14,15] templates.
These methods are sensitive to lighting conditions and shooting
angles, making it difficult to achieve stable detection results.
Additionally, these methods detect traffic signs at low speeds and
hence cannot work in real-time scenarios [16].

Deep learning has shown distinct advantages since its emergence
[17–19]. It has been utilized to detect traffic signs [20,21]. Some
researchers [2–4] detect traffic signs with R-CNN. However, R-CNN
belongs to the category of two-stage object detection solutions.Although it
can detect objects with high accuracy, it suffers from low detection speed.
Therefore, it is not suitable for real-time traffic sign detection scenarios.

Different from R-CNN, You Look Only Once (YOLO) algorithm
belongs to the category of one-stage detection solutions. It can detect
objects at a high speed. YOLO has several versions, and some of the
versions have been applied to traffic sign detection [22–24]. YOLOv5 is
the version which emphasizes both detection accuracy and detection
speed. Therefore, it is more suitable for real-time traffic sign detection
than other solutions. Many efforts have been devoted to improve the
performance of YOLOv5 in detecting traffic signs. To improve the
detection speed of YOLOv5, Li et al.[25] used ghost convolution [26],

depth-wise convolution [27] and channel attention [28] to construct a
light version backbone. Zhao et al.[29] applied GSConv [30] to the
feature fusion layer to reduce computation complexity. To improve the
detection accuracy, Bai et al.[31] utilized a transformer structure to
replace SPP.Wan et al.[32] improved the backbone withMixConv [33]
and the neck with integrated attentional feature fusion [34].

Considering the impact of detection delay on real-time decision-
making, detection operations should be conducted at a relatively long
distance from traffic signs. Therefore, the detection targets, that is, traffic
signs, are relatively small. However, YOLOv5 suffers from the false
detection problem and the missed detection problem of small objects.
To improve the accuracy of YOLOv5 in detecting small objects, Zhang
et al.[8] constructed an additional detection for small objects. Mahaur
and Mishra [9] replaced the pooling layers in the SPP module with
dilated convolutions to capture the multi-scale features which is
important for detecting small objects. Wang et al.[10] utilized an
adaptive attention module and a features enhancement module to
alleviate the loss of features of objects, especially small objects.

Although a lot of work has been devoted to improving the
performance of YOLOv5 in detecting small objects, how to improve
the accuracy of YOLOv5 in detecting small even extra small traffic
signs in real time is still an open problem.

3 Theoretical basis

3.1 YOLOv5

YOLOv5 has serial versions, that is, YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. In this work, we exploit
YOLOv5s to detect traffic signs since YOLOv5s strikes a
remarkable balance between speed and accuracy. Figure 1 shows
the structure of YOLOv5s. According to the figure, YOLOv5s
consists of backbone, neck and head. The backbone is primarily
composed of CBS and CSP [35]. It extracts features from input data.
The neck consists of FPN [36] and PAN [37]. It aims to enrich the
features in each feature map. The head performs regression
predictions according to the feature maps output from the neck.

3.2 SPPF

In YOLOv5, SPPF (Spatial Pyramid Pooling - Fast) is employed to
capture information of different scales from an input feature map. It
first utilizes a convolution layer to reduce the channels of the input
image. And then, it exploits max pooling layer to generate feature
maps of different scales. After that, it concatenates these feature maps
along channels. Finally, it processes the concatenated featuremapwith
a convolution operation to generate a feature map with rich features.

3.3 The k-means++ algorithm

The k-means++ clustering algorithm is an improved version of
the k-means clustering algorithm. It is designed to optimize the
selection of initial cluster centers. The k-means algorithm selects all
initial cluster centers randomly, which may lead to local optimum.
Different from k-means algorithm, k-means++ algorithm selects
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only the first initial cluster centers randomly. After that, it selects the
other initial cluster centers according to the distances to existing
cluster centers. The k-means++ algorithm can not only converge
more fastly, but also avoid trapping local optimum.

4 Proposed method

In order to improve the performance of YOLOv5 in detecting
traffic signs, we improve YOLOv5 and propose YOLOv5-TS. In this
section, we introduce the details of the improvements.

4.1 YOLOv5-TS

YOLOv5-TS is proposed based on the following improvements on
YOLOv5. First, we propose SPDC by combining SPPF and depth-wise

convolution. SPDC utilizes depth-wise convolutions to replace
maximum pooling operations, thus avoiding the feature loss caused
by the latter. It stacks multiple depth-wise convolutions to extract the
multi-scale features of objects, which helps to capture the overall
structures and local details of objects, and finally strengthens the
expression ability of the fused feature map. Second, we propose a
multiple multi-scale feature fusion module (MFFM) based on SPDC
and a group of parallel strip convolution blocks. MFFM utilizes SPDC
and the group of parallel strip convolution blocks to extract multi-scale
feature maps, and exploits convolution and matrix operations to fuse
those featuremaps so as to enhance the semantic and detailed expression
capabilities of feature maps. Third, we introduce a new detection layer of
160 × 160 to improve the performance in detecting extra small objects.
Besides, we delete the layer to detect large objects since those objects are
not common in traffic design scenarios. Finally, we optimize themethod
to generate anchor boxes by replacing the k-means algorithm with the
k-means++ algorithm. Figure 2 shows the structure of YOLOv5-TS.

FIGURE 1
Structure of YOLOv5.

FIGURE 2
Structure of YOLOv5-TS. The modules circled by the red dotted rectangle construct the new detection layer. The orange cuboid represents the
proposed MFFM.
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4.2 Spatial pyramid involving depth-wise
convolution

The Convolutional Neural Network (CNN) processes images only
at specific scales. In reality, the scale of images is arbitrary. These images
must be crapped or warped to a specific scale before being fed to CNNs
[38]. However, crapping results in content loss and warping causes
geometric distortion, which degrades detection accuracy. Spatial
Pyramid Pooling (SPP) eliminates the limitation of deep
convolutional neural network on the scale of input images by using
multi-scale pooling, thereby avoiding the loss of features caused by
cropping and the distortion caused by warping, and improving the
accuracy of detection. Compared with SPP, Spatial Pyramid Pooling
(SPPF) acquires feature maps of different receptive fields by stacking
pooled layers with smaller kernels, and detecting objects with a higher
speed.

SPP and SPPF utilize maximum pooling operations to extract
features. The maximum pool operation retains only the maximum
value in each region and discards all other values in the same region,
which can lose critical information of targets. Compared with the
maximum pooling operation, trained depth-wise convolution is
more sensitive to the features of objects. It has the ability to
retain the critical features of targets, which helps to improve the
accuracy of detection. Based on the above analysis, we proposed a
spatial pyramid with depth-wise convolution (SPDC). SPDC utilizes
depth-wise convolutions to replace the multiple maximum pooling
operations, thus avoiding the feature loss caused by the latter. It
stacks multiple depth-wise convolutions to extract the multi-scale
features of objects, which helps to capture the overall structures and
local details of objects, and finally strengthens the expression ability
of the fused feature map.

Figure 3 shows the structure of SPDC. According to the map,
SPDC first utilizes CBS to reduce the channels of an input feature map
and then uses three tandem depth-wise convolutions to extract three
feature maps of different scales. After that, it concatenates all the feature
maps generated in the previous steps and utilizes CBS to generate the
output featuremap. Given an input featuremap-F, fSPDC(F) is utilized to

represent the corresponding output of SPDC, and calculated according
to Equation (1). In the equation, fCBS(·) and fcon (·) separately describe
the functions related to CBS and concat. F1, F2, F3, and F4 describe the
featuremaps extracted by the first CBS and the three tandemdepth-wise
convolutions, respectively. They are calculated according to Eq. (2) ~ (5).
In those equations, f5×5

D denotes the depth-wise convolution with a
kernel size of 5.

fSPDC F( ) � fCBS fcon F1, F2, F3, F4( )( ) (1)
F4 � f5×5

D F3( ) (2)
F3 � f5×5

D F2( ) (3)
F2 � f5×5

D F1( ) (4)
F1 � fCBS F( ) (5)

4.3 Multiple feature fusion module

Large-scale feature maps are generated in shallow networks.
They often contain rich details, such as color, texture, etc. These
details are conducive to capturing the subtle features and local
structure of objects, which benefits classification. Small-scale
feature maps are generated by deep networks. After passing
through multiple convolution layers, they lose some details but
obtain rich semantic information which is conducive to capturing
the overall shapes and locations of objects. If the small-scale feature
map and the large-scale feature map are fused, a feature map
containing rich semantic information and rich detailed
information will be produced, which is conducive to improving
the detection accuracy and generalization ability of the model.
According to the above analysis, a Multiple Feature Fusion
module (MFFM) is proposed and applied to the backbone
network of the improved YOLOv5.

MFFM includes three feature fusion operations. The first two
feature fusion operations are designed to fuse multi-scale feature
maps, while the last fusion operation is exploited to fuse the
output feature maps of the former two fusion operations and the

FIGURE 3
Structure of SPDC. DWConv expresses a depth-wise convolution, while ka, sb, pc indicate that the kernel size, stride, and padding of the depth-wise
convolution are a, b, c, respectively.
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input feature map of MFFM to generate a new feature map with
stronger feature expression ability. The first fusion operation is
in SPDC. It is marked by the rectangle with dash lines in Figure 3.
The multi-scale feature maps input to this fusion operation are
extracted by the three tandem depth-wise convolutions in SPDC.
The multi-scale feature maps input to the second fusion
operation are extracted by a group of parallel strip
convolution blocks, where each block is composed of two
different strip convolutions. They are fused with the input
feature map of MFFM and the output feature map of the first
feature fusion operation. The third feature fusion is
implemented by performing matrix multiplication on the
input feature map of MFFM and the output feature map of
the second feature fusion. Figure 4 describes the structure of
MFFM.

fi
S F′( ) � fki×1

D f1×ki
D F′( )( ) (6)

f2
FU F′, F( ) � f1×1 f⊕ F, F′, f1

S F′( ), f2
S F′( ), f3

S F′( )( )( ) (7)
f3
FU F″, F( ) � f⊗ F, F″( ) � f⊗ F, f2

FU F′, F( )( ) (8)
Given an input feature map, F, the output of the first fusion

operation is denoted as f1
FU(F). According to Figure 3, f1

FU(F)
is equal to fSPDC(F), and can be calculated by Equation (1).
Taking F′ to describe the input of the group of parallel strip
convolution blocks, the output of the ith block can be denoted as
fi
S(F′) calculated according to Equation (6). It is used as the

input of the second fusion operation together with the input of
MFFM, the output of the first fusion operation, and the output
of the group of parallel strip convolution blocks. Eq. (7) shows
the calculation of the output of the second fusion operation.
Based on the above equations, the output of the third fusion
operation, that is, the output of MFFM, is calculated by
Equation (8).

4.4 Multi-scale detection layers

YOLOv5 includes three detection layers. Those detection layers
utilize three feature maps to detect objects of different scales,
respectively. The first layer is constructed with the feature map of

80 × 80 in which each pixel can be mapped to an area of 8 × 8 in an
input image. Therefore, it is suitable for detecting small objects.
The second layer is constructed with the feature map of 40 × 40 of
which each pixel corresponds to a region of 16 × 16 in an input
image, and hence it is responsible for detecting medium objects.
The third detection layer is utilized to detecting large objects
since each pixel in the corresponding feature map, i.e., the
feature map of 20 × 20, is related to an area of 32 × 32.
However, considering the delay of detection and the real-time
requirements of decision-making, detection should be carried
out at a distance from objects, which indicates that the objects to
be detected are usually small even extra small. Therefore,
improving the detection performance of small even extra
small objects is essential to improve the overall detection
performance of traffic signs.

In order to improve the performance of traffic design, we
introduce a special layer for extra small objects. The detection
layer is constructed based on a 160 × 160 feature map extracted
by the backbone network. Each pixel in the feature map
corresponds to an area of 4 × 4 in an input image. The
feature map is processed by MFFM to enhance the feature
expression ability. After being processed by the neck network,
it is used to predict extra small objects by the introduced layer.
Considering that large objects are relatively not common in
traffic sign detection scenarios and the feature map corresponding
to detect large objects contains noise, we delete the detection layer of
20 × 20. Finally, the improved solution includes three detection layers
used to detect extra small objects, small objects, and medium objects,
respectively.

4.5 Anchor box generation with k-means++

Object detection algorithm always defines some bounding
boxes in advance as anchor boxes. They set up multiple anchor
boxes at each point, generate multiple prediction boxes according
to these anchor boxes, and finally filter out qualified prediction
boxes as detection results by indicators such as confidence. It is
obvious that the selection of anchor boxes has a direct impact on
detection results.

FIGURE 4
Structure of MFFM. ⊕ and ⊗ denote thematrix addition andmatrix multiplication, respectively. Conv 1 × 1 describes 1 × 1 convolution. The operations
surrounded by gray rectangle is utilized to extract multi-scale feature maps.
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YOLOv5 exploits the k-means algorithm to select anchor
boxes. However, the k-means algorithm initializes the center
points of k clusters in a random way, which can probably result
in unstable clustering results. Different from the k-means
algorithm, the k-means++ algorithm initializes the center
point of only one cluster in a random way. It initializes center
points for the remaining (k-1) clusters according to the shortest
distances from each non-center point to all center points, which
alleviates the instability caused by random policies. The
clustering results of the two algorithms on TT100K-23 dataset
are shown in Table 1.

5 Experiments

In this section, we present a detailed evaluation of YOLOv5-TS.
First, we describe the experimental environments and evaluation
metrics. Then, we describe the datasets used in this work. Finally,
we discuss the results of the ablation experiments and the comparison
experiments.

5.1 Experimental setup

Environments. All experiments are conducted on the same
server equipped with an Intel Xeon Platinum 8260 Processor@
2.30GHz, an NVIDIA RTX 3090 GPU, and 376 GB of memory.
The server is deployed with Ubuntu 20.04.4, Torch 1.12.1, CUDA
11.3, and Python 3.8 development environment.

Evaluation metrics. We utilize five metrics, namely, Precision
(P), Recall (R), mean Average Precision (mAP), F1-score, and Frames
Per Second (FPS), to evaluate the performance of YOLOv5-TS. The
first four metrics are calculated based on Eq. (9) ~ (13) where TP, FP,

and FN represent the true positive samples, the false positive samples,
and the false negative samples, respectively. In Equation (11), AP
represents the average precision, P(R) describes the precision when
recall is R. They are employed to assess the detection accuracy of
YOLOv5-TS. The lattermetric, FPS, is used to evaluate detection speed.

P � TP

TP + FP
(9)

R � TP

TP + FN
(10)

AP � ∫
1

0
P R( )dR (11)

mAP � ∑C
i�1APi

C
(12)

F1 − score � 2 × P × R

P + R
(13)

5.2 Dataset

We use two datasets, that is, TT100K-23 and CCTSDB2021, to
evaluate our solution. The dataset samples are as shown in Figure 5.

TT100K-23: TT100K [39] comprises a total of 100,000 images,
with only 10,000 images having been labeled. These labeled images
contain a variety of 30,000 traffic signs, distributed among
approximately 200 different classes. To create TT100K-23, we
carefully chose 6,229 images, covering the 23 categories with the
highest number of instances. TT100K is randomly divided into a
training set and a test set in the ratio of 9:1.

CCTSDB2021: This dataset [40] contains 17,856 images with a
total of 27,072 traffic signs. It is also divided into a training set and a
test set in the ratio of 9:1. These traffic signs are divided into three
classes: prohibitory, mandatory, and warning.

TABLE 1 Anchor boxes clustering results.

Detection layers Anchor boxes

Anchor boxes (k-means algorithm) Anchor boxes (k-means++ algorithm)

(160 × 160) (5, 6), (6, 7), (8, 9) (5, 6), (7, 8), (9, 10)

(80 × 80) (10, 11), (14, 14), (18, 19) (12, 13), (16, 17), (20, 22)

(40 × 40) (24, 26), (33, 34), (61, 55) (27, 29), (34, 36), (49, 54)

FIGURE 5
Image samples from TT100K-23 (A) and (B), and CCTSDB2021 (C) and (D).
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5.3 Ablation study

To analyze the effectiveness of the improvements in this work, we
perform ablation experiments on the TT100K-23 dataset and describe
the results in Table 2. In this table, Model0 denotes the original version
of YOLOv5s, while Model1, Model2, and Model3 denote the variant
version with a new detection layer, the variant with MFFM, and the
variant with the anchor box generation method based on the
k-means++ algorithm, respectively. According to the experimental
results, Model1, Model2, and Model3 all achieved performance
improvement compared to Model0, indicating that the introduction
of the new detection layer, MFFM, and the anchor box generation

method based on k-means++ helped to improve the performance of
YOLOv5s in detecting traffic signs. Model4 represents the variant
version with MFFM and 160*160 detection layer. It obtained
performance improvements compared to Model0. In addition, in the
experiment, the values of k1, k2, and k3 in Equation (6) are set to 7, 11,
and 21, respectively.

5.4 Performance comparison

We conduct experiments to evaluate the detection accuracy and
speed of YOLOv5-TS by comparing it to several important object

TABLE 2 Ablation results.

Models MFFM Detection layer k-means++ P (%) R (%) mAP (%) F1-score

Model0 × × × 83.8 87.5 90.3 85.6

Model1 ✓ × × 91.4 84.5 91.5 87.8

Model2 × ✓ × 89.7 85.9 91.6 87.7

Model3 × × ✓ 89.1 86.7 91.6 87.8

Model4 ✓ ✓ × 91.3 87.1 92.6 89.1

Model5 × ✓ ✓ 92 85.9 92.6 89

Model6 ✓ × ✓ 91.1 87.2 92.5 89.1

Model7 ✓ ✓ ✓ 92.5 86.8 93.7 89.5

TABLE 3 Detection accuracy comparison on TT100K-23 dataset.

Models P (%) R (%) mAP (%) F1-score

Faster-RCNN 61.1 60.7 62.3 60.8

RetinaNet 45.4 59.9 44.9 51.6

CenterNet 82.4 66 71.8 73.2

SSD 97.3 24.2 85.8 38.7

YOLOv3 90.1 78.6 85.3 83.9

YOLOv4-tiny 79.2 78 79.8 78.4

YOLOv5n 88.1 81.4 88.2 84.6

YOLOv5s 83.8 87.5 90.3 85.6

YOLOv5m 88.4 86.4 90.6 87.3

YOLOX 89.7 85.8 89.2 87.7

YOLOv7 93.2 88.1 94.4 90.5

YOLOv8n 90 77.8 89.2 83.4

YOLOv8s 89.2 80.9 90.9 84.8

YOLOv5-TS 92.5 86.8 93.7 89.5

solution[25] 90.9 85.2 91.3 87.9

solution[51] 86.4 87.4 92 86.8

solution[50] 91.5 84.3 91.5 87.7

solution[9] 87.5 86 90.3 86.7

TABLE 4 Detection accuracy comparison on CCTSDB2021 dataset.

Models P (%) R (%) mAP (%) F1-score

Faster-RCNN 95.6 65.2 95.6 77.5

RetinaNet 94.1 66.4 94 77.8

CenterNet 93.8 82.8 87.4 87.9

SSD 98.1 39.5 94.1 56.3

YOLOv3 97.2 94.8 98 95.9

YOLOv4-tiny 91.7 89.1 92.9 90.3

YOLOv5n 97.4 94.2 97.8 95.7

YOLOv5s 96.1 95.7 97.9 95.8

YOLOv5m 97.8 97.8 98.8 97.8

YOLOX 96.7 97.6 98.3 97.1

YOLOv7 94.8 96.4 97.1 95.5

YOLOv8n 97.1 96.3 98.5 96.6

YOLOv8s 97.3 96.8 98.8 97

YOLOv5-TS 97.6 98.4 99.1 98

solution[25] 97 97.2 98.6 97.1

solution[51] 96.3 97.5 98.9 96.8

solution[50] 97.5 97.6 98.9 97.5

solution[9] 96.9 96.6 98.5 96.7
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detection solutions, including Faster-RCNN [5], RetinaNet [41],
CenterNet [42], SSD [43], YOLOv3 [44], YOLOv4 [45], YOLOv5n,
YOLOv5s, YOLOv5m [46], YOLOX [47], YOLOv7 [48], YOLOv8n,
and YOLOv8s [49]. Faster-RCNN is a two-stage algorithm, while all
the other algorithms are one-stage algorithms. To ensure the fairness
of training processes, the training parameters of batch_size and the
number of iterations are separately set to 32 and 800, while all the
other training parameters are configured with their default values.

We use P, R, mAP, and F1-score to evaluate detection accuracy
and record the corresponding results in Table 3 and Table 4.

Table 3 shows the detection results on TT100K-23 dataset.
According to the results, YOLOv5-TS obtained the highest P, R,
mAP, and F1-score compared with all the other variants of YOLO
except YOLOv5s and YOLOv7. Although YOLOV5-TS had a lower
R than YOLOv5s, it obtained a higher P, mAP and F1-score, which
indicates that YOLOv5-TS performed better than YOLOv5s.

Table 4 shows the detection results on CCTSDB2021 dataset.
According to the results, YOLOv5-TS obtained the highest P, R, mAP,
and F1-score compared with all the other variants of YOLO except
YOLOv5m. AlthoughYOLOv5moutperformedYOLOv5-TS on the p
metric, it is surpassed by YOLOv5-TS on the other three metrics.
Therefore, we think YOLOv5-Ts performs better than YOLOv5m on
CCTSDB2021.

The results on TT100K-23 show that YOLOv7 had an obvious
advantage over YOLOv5-TS. However, the advantage was given
away on CCTSDB2021 according to Table 4. To further evaluate
YOLOv5-TS and YOLOV7, we carried out the experiments to
evaluate the detection speeds of different solutions since traffic

sign detection is predominantly applied in real-time scenarios
which demand not only high detection accuracy but also swift
detection speed. Table 5 and Table 6 show the corresponding
results. According to the table, YOLOv5-TS processed 67 frames
per second, whereas YOLOv7 only handled 23 frames per second.
This suggests that YOLOv5-TS is significantly more well-suited for
real-time traffic sign detection than YOLOv7.

SSD is a one-stage solution. According to the results in Table 3
and Table 4, SSD surpassed YOLOv5-TS in terms of P metric, but
lagged behind YOLOv5-TS in terms of all the other three metrics.
According to the results in Tables 5 and Table 6, SSD detected traffic
signs at a speed much slower than YOLOv5-TS did. Considering the
above results, we think YOLOv5-TS performs better than SSD.
RetinaNet and CenterNet are also one-stage algorithms. According
to the results in Tables 3–6, our solution performed better than them.
The results in Tables 3–6 also indicated that our solution performed
better than Faster-RCNN which is a two-stage algorithm.

To further evaluate YOLOv5-TS, we compared it with four different
solutions, that is, [9,25,50,51]. All these solutions utilized YOLOv5 to
detect traffic signs. They all made improvements to YOLOv5 and
obtained performance gains. The corresponding results are recorded in
Tables 3–6. According to these four tables, YOLOv5-TS outperformed
better on TT100K dataset and CCTSDB2021 dataset than the four
solutions, regardless of which of the four evaluation indicators was used.

Figure 6 shows the detected results of YOLOv5-Ts on the images
captured at different distances, light conditions and shooting angles.
According to the results, YOLOv5-TS correctly recognized all the
small-size traffic signs in all the images.

TABLE 5 Detection speed comparison on TT100K-23 dataset.

Models FPS(f/s)

Faster-RCNN 22

RetinaNet 20

CenterNet 32

SSD 47

YOLOv3 21

YOLOv4-tiny 51

YOLOv5n 75

YOLOv5s 70

YOLOv5m 54

YOLOX 25

YOLOv7 23

YOLOv8n 71

YOLOv8s 63

YOLOv5-TS 67

solution[25] 65

solution[51] 65

solution[50] 64

solution[9] 69

TABLE 6 Detection speed comparison on CCTSD2021 dataset.

Models FPS(f/s)

Faster-RCNN 25

RetinaNet 21

CenterNet 34

SSD 61

YOLOv3 27

YOLOv4-tiny 65

YOLOv5n 77

YOLOv5s 74

YOLOv5m 59

YOLOX 25

YOLOv7 26

YOLOv8n 73

YOLOv8s 63

YOLOv5-TS 71

solution[25] 64

solution[51] 67

solution[50] 64

solution[9] 57
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6 Conclusion

In this work, we analyzed the performance problem of YOLOv5 in
real-time traffic sign detection. To address the performance issues, we
proposed several enhancements to YOLOv5. Firstly, we introduced a
spatial pyramid with depth-wise convolution to address feature loss in
the SPPF module and extract multi-scale features more effectively.
Secondly, we propose amultiple feature fusionmodule to further extract
and fuse multi-scale features, enhancing feature representation. Thirdly,
we introduced a specialized detection layer to improve the accuracy in
detecting small even extra small traffic signs. Finally, we incorporated
the k-means++ clustering algorithm to obtain anchor boxes better
suited for the data sets. Experimental results demonstrate that the
improved model effectively enhances accuracy without significantly
increasing model complexity. In the future, we will implement the
improvements in the work to YOLOv8.
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