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Fast ship radiated noise
recognition using three-
dimensional mel-spectrograms
with an additive attention
based transformer

Yan Wang, Hao Zhang* and Wei Huang*

Department of Electrical Engineering, Ocean University of China, Qingdao, China
Passive recognition of ship-radiated noise plays a crucial role in military and

economic domains. However, underwater environments pose significant

challenges due to inherent noise, reverberation, and time-varying acoustic

channels. This paper introduces a novel approach for ship target recognition

and classification by leveraging the power of three-dimensional (3D) Mel-

spectrograms and an additive attention based Transformer (ADDTr). The

proposed method utilizes 3D Mel-spectrograms to capture the temporal

variations in both target signal and ambient noise, thereby enhancing both

categories’ distinguishable characteristics. By incorporating an additional

spatial dimension, the modeling of reverberation effects becomes possible.

Through analysis of spatial patterns and changes within the spectrograms,

distortions caused by reverberation can be estimated and compensated, so

that the clarity of the target signals can be improved. The proposed ADDTr

leverages an additive attention mechanism to focus on informative acoustic

features while suppressing the influence of noisy or distorted components. This

attention-based approach not only enhances the discriminative power of the

model but also accelerates the recognition process. It efficiently captures both

temporal and spatial dependencies, enabling accurate analysis of complex

acoustic signals and precise predictions. Comprehensive comparisons with

state-of-the-art acoustic target recognition models on the ShipsEar dataset

demonstrate the superiority of the proposed ADDTr approach. Achieving an

accuracy of 96.82% with the lowest computation costs, ADDTr outperforms

other models.

KEYWORDS

underwater acoustic target recognition, deep learning, additive attention based

transformer, 3D mel-spectrogram, ship radiated noise
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1 Introduction

Since ship-radiated noise stands as a prominent source of

oceanic noise, its recognition possesses crucial importance across

diverse domains, such as maritime security, navigation,

environmental monitoring, and ocean research. However, the

underwater environment is a challenging domain for passive

target recognition. The performance is predominantly influenced

by the presence of ambient noise interference, the time-varying

acoustic channel, and the impact of reverberation. Additionally,

ship-radiated noise is the result of vibrations from various ship

components and possesses a relatively complex generation

mechanism. It primarily involves mechanical noise, propeller

noise, and hydrodynamic noise (Li and Yang, 2021). Hence, ship

target recognition is a challenging task.

Feature extraction methods, such as the short-time Fourier

transform (STFT) (Gabor, 1946), the discrete wavelet transform

(DWT) (Mallat, 1989), the Hilbert–Huang transform (Yu et al.,

2016), and the limit cycle (Goldobin et al., 2010), have been

proven to be simple yet effective in acoustic signal processing

(Zeng and Wang, 2014; Liu et al., 2017; Li et al., 2021; Tuncer

et al., 2021). These methods mainly focus on time domain features

and have succeeded due to the assumption of a homogenous

propagation environment, such as air, where the frequency

characteristics of received signals remain constant over time

(Salomons and Havinga, 2015). However, the underwater

propagation environment is completely inhomogeneous in both

time and space. Consequently, the amplitude and phase of

received signals undergo changes with time and space

(Lurton, 2010).

Mutual time-frequency feature extraction methods, including

time-scale decomposition (Frei and Osorio, 2007), resonance-based

sparse signal decomposition (Selesnick, 2011), multiresolution

signal decomposition (Mallat, 1989), Mel-spectrogram

(Hermansky, 1980), and adaptive sparse non-negative matrix

factorization (Jia et al., 2021), have shown improved performance

in signal analysis (Virtanen and Cemgil, 2009; Gao et al., 2014;

Wang and Chen, 2019; Monaco et al., 2020). However, these

conventional techniques often focus on stationary signals or

specific signal properties (Su et al., 2020). Unfortunately,

underwater ship-radiated noise signals are non-stationary and

highly dependent on factors like ship speed, depth, and distance

from the receiver. As a result, the accuracy will decrease and their

application will be limited.

Multi-stage feature extraction methods have been proposed to

mitigate the mentioned limitations. For example, the resonance-

based time-frequency manifold (RTFM) (Yan et al., 2018) combines

sparse signal decomposition and a time-frequency manifold to

extract oscillatory information and mitigate noise. Additionally,

Esmaiel et al. (2021) combine enhanced variational mode

decomposition, weighted permutation entropy, local tangent space

alignment, and particle swarm optimization-based support vector

machine to improve ship-radiated noise feature extraction in passive

sonar. Zhang et al. (2020) combine adaptive variational mode

decomposition and Wigner-Ville Distribution to accurately extract

local features and construct time-frequency images.
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Inspired by the multi-stage methods, this paper introduces a

feature extraction approach that combines Mel-spectrogram with

temporal derivative analysis stage by stage. The generated multi-

dimensional Mel-spectrograms can effectively capture the temporal

variations of both the target signals and the ambient noise.

Consequently, the unique characteristics of these signals become

more distinguishable. Furthermore, the inclusion of an additional

spatial dimension allows for the modeling of reverberation effects,

enhancing the overall feature representation.

Previous studies have demonstrated the application of statistical

classifiers in the field, showcasing notable achievements (Filho et al.,

2011; Yang et al., 2016; Tong et al., 2020). However, achieving

promising results often requires sophisticated feature engineering.

Furthermore, this kind of approach entails a relatively complex

process of partitioning the problem into multiple subsections and

then accumulating the results (Khishe, 2022).

Deep learning has opened up new possibilities for ship-radiated

noise recognition. One of the greatest advantages is that relevant

features from the acoustic signal can be automatically extracted. In

(Purwins et al., 2019), a multilayer perceptron (MLP) based

algorithm successfully defines underwater acoustic radiated noise

(Yang et al., 1104; Shen et al., 2018; Zhao et al., 2019; Doan et al.,

2020). demonstrate that a convolutional neural network (CNN)

based model can model the original signal waveform directly and

excels at capturing local spatial patterns. However, Yang et al.

(2020) point out a limitation of CNNs in their ability to effectively

capture the input data’s long-range dependencies. The authors

address the limitation by employing recurrent neural network

(RNN) units to learn the temporal dependencies. By doing so, the

classification accuracy is improved.

The Transformer framework was originally introduced in the

field of natural language processing with the primary goals of

reducing training time and effectively capturing long-range

dependencies (Vaswani et al., 2017; Devlin et al., 2018; Brown

et al., 2020). Unlike the RNN, the Transformer is a non-sequential

architecture that does not rely on past hidden states, allowing for

stronger global computation abilities and perfect memory capacity.

The Transformer framework has demonstrated exceptional

efficiency and outstanding performance in denoising and

recognizing underwater acoustic signals (Feng and Zhu, 2022; Li

et al., 2022; Song et al., 2022), despite being relatively new to ship-

radiated noise recognition.

Within the Transformer, the self-attention mechanism enables

global interactions between all positions in the input sequence,

which is freed from the limitations caused by localized receptive

field and temporal/spatial distance. However, the self-attention

mechanism employed by the Transformer has quadratic

complexity to the input length, resulting in computational

resource wasting and inefficiency. There are many researches

focusing on accelerating the Transformer model (Beltagy et al.,

2020; Kitaev et al., 2020; Wang et al., 2020; Zaheer et al., 2020; Tay

et al., 2021), but they usually either suffer from insufficient modeling

of global information or insufficient modeling of local information

(Wu et al., 2021).

To balance both modeling efficiency and modeling capability,

we propose an efficient variant of the Transformer for ship-radiated
frontiersin.org
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noise recognition. This variant incorporates an additive attention

mechanism rather than a self-attention mechanism, resulting in

linear computational complexity. It also effectively addresses

challenges present in the acoustic signal data received from the

real ocean environment, including ambient noise interference and

reverberation distortion. By doing so, the performance of ship-

radiated noise recognition tasks is significantly enhanced, enabling

more accurate and reliable results.

Figure 1 provides a comprehensive overview of the proposed

model’s technological process, encompassing three key stages:

patching, embedding, and classification. In the subsequent

section, each stage will be elaborated upon in detail.

The contributions in this paper can be summarized as:
Fron
1. In order to address the performance degradation resulting from

long-term dependencies and noisy input data, we introduce an

additive attention based Transformer approach, ADDTr. By

utilizing the attentionmechanism, ourmodel can automatically

assign higher importance to relevant information frames,

thereby enabling improved modeling of spectral dependencies

and capturing critical local dependencies.

2. In order to enhance both the modeling efficiency and

modeling capability of the Transformer framework, we

propose an additive attention mechanism that replaces

the traditional self-attention mechanism. This substitution

enables direct modeling of the interaction between global

information and local frame representations. Hence it

enables the model to attain attention scores with linear

computational complexity, without sacrificing the

modeling capacity of both global and local information.

3. In order to generate a more comprehensive feature

representation of acoustic signals, we propose to use

three-dimensional Mel-spectrograms, which are gained by

concatenating the delta and delta-delta features with the

Mel-spectrogram. This approach facilitates the estimation

and compensation of distortions caused by reverberation,

thereby enhancing the clarity of the target signals.
tiers in Marine Science 03
The rest of the paper is structured as follows. Section II, which

detailedly describes the methodology of feature extraction and the

proposed neural network, is followed by Section III, which presents

the dataset used in the paper and the analyses conducted from

experimental results. Finally, conclusions are given in section IV.
2 Methodology

2.1 System overview

In acoustic signal analysis, Mel-spectrograms are often adopted

to extract relevant acoustic features that can be used as input for

machine learning models. However, for accurate acoustic data

classification, Mel-spectrograms themselves cannot provide

enough information. They lack the incorporation of temporal

dynamics and have a fixed resolution that may not capture fine

details in complex scenes. Thus, they may not fully represent

important acoustic characteristics such as spatial distribution and

temporal evolution. To tackle these issues, we propose an approach

to generate a more comprehensive feature representation by

incorporating additional temporal and spatial dimensions with

the original Mel-spectrograms. This is achieved by concatenating

the delta features and the delta-delta features.

To reduce the negative impacts of irregular ocean noise

interference, reverberation distortion, and traditional deep

learning framework’s inherent deficiencies on the ship targets

recognition accuracy, we propose a novel ADDTr model.

Figure 1 illustrates the overall process for handling three-

dimensional Mel-spectrograms in the model. Initially, the input

data undergoes a patching stage where the enriched Mel-

spectrogram is flattened and divided into fixed-sized patches.

Subsequently, in the embedding stage, the sequence of patches is

augmented with a position embedding tensor that captures spatial

information and a class token that summarizes the global

information of the Mel-spectrogram. During the classification

stage, the encoders utilize additive attention to dynamically
FIGURE 1

The overall technological process of the proposed model for acoustic signal recognition. The right side of the dotted line provides a detailed
illustration of a single Transformer encoder.
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prioritize essential information for accurate target recognition.

Finally, the output from the Transformer encoder is passed to a

classification head, enabling the input data to be classified into the

appropriate category.

The architecture of ADDTr is inspired by the Vision Transformer

(Dosovitskiy et al., 2020), with a notable modification. Instead of the

traditional dot-product-based self-attention mechanism, ADDTr

incorporates an innovative additive attention mechanism. This

modification improves the efficiency and accelerates the

computational speed of the model. More details are provided in

subsection C.
2.2 Feature extraction

In the dataset, each recorded ship-radiated noise is stored as a one-

dimensional array based on the audio length and sampling rate. To

extract informative feature representations from the raw data, Mel-

spectrograms are commonly used. However, Mel-spectrograms alone

can only capture the static characteristics of the signal, limiting their

ability to capture essential temporal dynamics for accurate feature

extraction. To solve this problem, we propose three-dimensional Mel-

spectrograms. By incorporating the dynamic characteristics of the

signal, the resulting feature representations become more

comprehensive, thereby enhancing robustness. Figure 2 illustrates the

process of extracting a three-dimensional Mel-spectrogram.

During the extraction process, the acoustic signal is initially

subjected to a pre-emphasis filter. This filter plays a crucial role in

equalizing the frequency spectrum of the signal by amplifying the

amplitudes of higher-frequency components. This amplification is

particularly beneficial as higher-frequency components tend to

exhibit lower levels of noise in comparison to their lower-

frequency counterparts. By mitigating the natural attenuation of

high frequencies, the pre-emphasis filter effectively restores the

balance of the frequency spectrum. As a result, the clarity of the

signal is enhanced and the prominence of noise is diminished,

thereby improving the overall quality of the raw data.
Frontiers in Marine Science 04
The following Fourier transformation constitutes a fundamental

step in the conversion of acoustic signals into Mel-spectrograms, as it

enables the analysis of frequency content. However, a direct

application of the Fourier transform to the entire signal often leads

to adverse effects, such as the generation of nonsensical results and

the obliteration of the underlying frequency characteristics. It is

widely acknowledged that the frequencies present in a signal tend

to remain stationary over brief temporal windows. Accordingly, the

frequency characteristics can be accurately captured by combining

the outcomes of Fourier transform from neighboring frames. To

minimize intra-frame fluctuations, a small frame size is commonly

employed, typically on the order of milliseconds. Hence, in this paper,

a frame size of 25ms is adopted for ship-radiated noise analysis, with

feature aggregation conducted over a temporal interval of 1 second.

Spectral leakage occurs when the signal does not have an integer

number of cycles within the chosen window length for the Fourier

transform. To counteract spectral leakage and faithfully preserve the

frequency characteristics inherent in the acoustic data, a Hanning

window is incorporated into the methodology. It gently tapers the

signal’s edges, thereby mitigating the adverse effects of spectral

leakage and enhancing frequency resolution. The power spectrum is

subsequently computed using the equation:

P =
FFT(xi)j j2

N
, (1)

where FFT stands for N-point fast Fourier Transform, and xi is

the ith frame of signal x. Subsequently, the power spectrum is

subjected to the Mel filter bank consisting of 128 bins to extract the

Mel-spectrogram. The choice of 128 bins is justified by its alignment

with the power of 2, which facilitates efficient computations within

the neural network architecture. The Mel-scale, employed in this

process, is intentionally designed to exhibit higher resolution at

lower frequencies while being less discriminative at higher

frequencies. The conversion of Hertz(f ) and Mel(m) can be

accomplished through the utilization of the following equations:

m = 2595 log10 (1 +
f
700

) (2)
FIGURE 2

Block diagram of the 3-D Mel spectrogram formation process. The process can be divided into three main parts. First, the original signal undergoes
pre-emphasis, frame blocking, and windowing as a pre-processing step. Then, the Mel-spectrogram is extracted by performing operations such as
N-point fast Fourier transform (FFT), squaring, cumulative sum, Mel-filter bank application, and logarithm. In the end, the delta and delta-delta
features are obtained by calculating the temporal derivative with consecutive frames.
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f = 700(10m=2595 − 1) (3)

The filter bank consists of triangular filters characterized by a

response of 1 at their center frequencies. From the center frequency,

the response linearly diminishes until it reaches 0 at the center

frequencies of the two adjacent filters. This triangular response

profile ensures that the filter bank can capture the frequency

content of the signal in a localized manner, with higher sensitivity

around the center frequencies and reduced sensitivity towards the

neighboring frequencies. By employing such triangular filters, the

Mel filter bank effectively partitions the frequency spectrum into

distinct frequency bands, facilitating the extraction of relevant

information for the subsequent generation of Mel-spectrograms.

The process can be expressed by the following equation:

Hm(k) =

0  k < L(m − 1)
k−L(m−1)

L(m)−L(m−1)   L(m − 1) ≤ k ≤ L(m)

L(m+1)−k
L(m+1)−L(m)   L(m) ≤ k ≤ L(m + 1)

0  k > L(m + 1),

8>>>>><
>>>>>:

(4)

wherem is the number offilters, and L() is the list of Mel-spaced

frequencies. Hm(k) is the kth coefficient for the.th filter bank.

The coefficients obtained from the previous steps, known as

static coefficients, exhibit a high degree of correlation and reflect the

static characteristics of the signal. However, to capture the dynamic

characteristics of the target, this paper incorporates additional

features in the form of delta spectrograms and delta-delta

spectrograms. The additional features are obtained by utilizing

the following equation:

dt =
oN

n=1n(ct+n − ct−n)

2oN
n=1n

2
, (5)

where dt is a delta coefficient, from frame t computed in terms

of the static coefficients ct+n and ct−n. While setting N = 2, the

deltas-delta coefficients can be calculated using the same equation.

By analyzing the variations between adjacent frames, these dynamic

features provide valuable information about the temporal changes

in the signal. By including delta and delta-delta spectrograms, the

model becomes capable of capturing and utilizing the evolving
Frontiers in Marine Science 05
patterns and trends present in the acoustic data. This enhancement

significantly improves the overall representation of the data, leading

to a more effective recognition and analysis of ship-radiated noise.

In this paper, the sampling rate for each audio record is 22050

Hz. Hence, a one-second signal can generate a three-dimensional

Mel-spectrogram with the size of 128� 32� 3. Figure 3 represents

an original ship-radiated noise signal and its corresponding three-

dimensional Mel-spectrogram.
2.3 Model architecture

ADDTr adopts the Transformer framework, which operates

on input data represented as a one-dimensional sequence of

embedded patches. In order to handle three-dimensional Mel-

spectrograms denoted as X ∈ RF�T�C , with F representing the

number of Mel filter bins, T denoting the time dimensions, C

indicating the spectrogram’s dimension, and R standing for the

real number space, the model initiates a patching stage, as

illustrated in Figure 1. In this stage, a trainable linear projection

is utilized to transform the Mel-spectrograms. This projection

reshapes the spectrograms into sequences of patches denoted as

Zp ∈ RN�(PH·PW ·Ko), where PH and PW correspond to the height

and width of each patch, which are typically set to be equivalent.

The parameter N = (XH · XW)=(PH · PW) represents the total

number of patches, and serves as the effective input sequence

length for the Transformer.

Within the Transformer, a constant latent vector size D is used

across all layers. Then, the patches are flattened and transformed to

D dimensions using another trainable linear projection known as

the patch embedding, denoted as E ∈ R(P2 ·C)�D. This mapping

ensures that the patches are represented in a suitable format for

subsequent processing within the Transformer layers.

The model proceeds to the second stage, known as embedding.

Based on the approach described in (Devlin et al., 2018), our model

first incorporates a learnable class token that is inserted at the

beginning of the sequence of the flattened patches. This class token

serves as a representation of the spectrogram. By consistently

placing it at the start of the sequence, the Transformer encoder
FIGURE 3

The original signal and its corresponding 3D Mel-spectrogram.
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can easily locate and utilize this token without the need to search the

entire sequence. This design choice ensures that the model can

effectively capture and utilize the global information present in the

spectrogram representation.

The model then incorporates a learnable position embedding

tensor, denoted as Epos ∈ R(N+1)�D, during the embedding stage. The

tensor is appended to the patch sequence and enables the model

to effectively capture the positional information of each patch within

the original spectrogram. By including this positional information,

the model can better preserve the higher-dimensional context of the

input feature map, even when it undergoes dimensionality reduction,

reshaping, and segmentation. This ensures that the model retains

crucial spatial information during the subsequent processing stages.

The whole process can be expressed as:

Z0 = ½Zclass;Z
1
pE;Z

2
pE;⋯;ZN

p E� + Epos : (6)

In the subsequent step, the model extracts more abstract features

from the embedded patches through a series of encoder layers. As

illustrated in Figure 1, each encoder layer follows the same architecture,

consisting of an attention layer, a feed-forward MLP layer, and a

normalization layer (LN) positioned in between. By incorporating the

attention mechanism, the proposed model gains the ability to

automatically assign higher importance to relevant information

frames within the input sequence. This allows for enhanced

modeling of spectral dependencies and the capture of critical local

dependencies. Consequently, the model becomes more resilient to the

interference of ambient noise present in the raw data. By selectively

concentrating on relevant features and suppressing irrelevant ones, the

model can effectively filter out noise and focus on the salient aspects of

the acoustic signals, leading to improved performance in the presence

of challenging environmental conditions.

Different layers in a Transformer encoder are interconnected by

residual connections, which effectively alleviate the vanishing

gradient problem during back-propagation, and ensure the

preservation of the learned information. Additionally, the

weighted matrices employed in the proposed attention

mechanism are protected from degeneration, ensuring their

effectiveness throughout the learning process.

The detailed computing process of the proposed additive

attention mechanism is depicted in Figure 4. The input Z ∈
RN�D, derived from the embedding stage, is initially split into

query, key, and value matrices by utilizing three independent linear

transformation layers. The generated query matrix (Q ∈ RN�D ),

key matrix (K ∈ RN�D), and value matrix (V ∈ RN�D) are written

as Q = ½q1, q2,⋯, qN �, K = ½k1, k2,⋯, kN � , and V = ½v1, v2,⋯, vN �,
respectively.

Subsequently, the model summarizes the query matrix Q into a

global query vector, denoted as q0 ∈ RD. This global query vector

can effectively capture the consolidated global contextual

information within the attention query. This summarization

process is accomplished by multiplying each vector in the matrix

with its corresponding attention weight vector ai and then

aggregating the results. The left column of Figure 4 visually

illustrates this summarization process.
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To be more specific, the attention weight ai of the i-th query

vector qi is computed as:

ai =
exp(wT

q qi=
ffiffiffiffi
D

p
)

oN
j=1exp(w

T
q qj=

ffiffiffiffi
D

p
)
, (7)

where wq ∈ RD. is a learnable parameter vector and exp()

represents the exponential function. Then, the global query vector

can be computed by:

q0 =o
N

i=1
aiqi (8)

When modeling the interaction between the summarized global

query vector and the key matrix, simply adding or concatenating

the query to each vector in the key matrix will yield unsatisfactory

results. This is because such approaches fail to differentiate the

influence of the global query on different keys. In other words, they

treat every key in the same manner and lack the ability to allocate

attention selectively. To address this issue, this paper employs

element-wise production, which proves effective in capturing the

nonlinear relations between two vectors.

The global query vector undergoes an element-wise

multiplication with the key matrix K, resulting in the generation

of a global context-aware key matrix denoted as P. This matrix

allows the model to differentiate the influence of the global query

across different keys. P is then summarized into a global key vector,

represented as k. This summarization is achieved by multiplying

each vector in P with its corresponding attention weight bi and
summing the results. The middle column of Figure 4 provides a

visual depiction of this summarization process. By incorporating

this approach, the model will be able to effectively capture relevant

information and adapt its attention distribution based on the global

context, ultimately leading to enhanced modeling capability and

improved performance.

The attention weight of the i-th global context-aware key vector

is computed as the following equation:

bi =
exp(wT

k pi=
ffiffiffiffi
D

p
)

oN
j=1exp(w

T
k pj=

ffiffiffiffi
D

p
)

(9)

, where pi = q0*ki (the symbol * denotes element-wise

production) and wk ∈ RD is the attention parameter vector. The

global key vector k ∈ RD is computed as follows:

k0 =o
N

i=1
bipi : (10)

The right column of Figure 4 illustrates the process of modeling

global dependencies through the interactions between the

attention-value matrix and the global key vector. Similar to the

query-key interaction, the global key vector is combined with each

value vector through element-wise product, yielding the key-value

interaction vector ui = k0*vi. To capture the underlying information

in these interaction vectors, a linear transformation layer is applied

to each key-value interaction vector, enabling the learning of its

hidden representation. The resulting output matrix R = ½r1, r2,…,
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rN � ∈ RN�D is then added to the query matrix, forming the

final output.

By stacking multiple encoders, the network is able to

comprehensively model global attention and generate a

representation for each input spectrogram based on the class token.

This process facilitates the integration of both local and global

information, resulting in a more informative and context-aware

representation of the input data. The computations conducted in

the Transformer Encoders can be expressed as follows:

Z
0
l = AdditiveAttention(Zl−1) + Zl−1,

Zl = MLP(LN(Z
0
l)) + Z

0
l ,

Y = LN(Zclass),

(11)

where Zl−1 denotes the output generated from the former layer,

AdditiveAttention denotes the additive attention mechanism that is

employed in our ADDTr. MLP and LN represent the feed-forward
Frontiers in Marine Science 07
multilayer perceptron layer and the linear normalization

layer, respectively.

The generated representation is then passed to a classification

head, constructed using another MLP with one hidden layer, to

fulfill the final stage depicted in Figure 1. LN layers and dropout

layers are interspersed in the proposed Transformer in order to

stabilize the model while deepening the network.

2.4 Complexity analysis

In this subsection, all instances of q, k, and v mentioned in

various equations refer to the same query, key, and value matrices.

Additionally, N represents the length of the input, while D is a

constant latent vector size that controls the input dimension, i.e.,

the dimension of the representations.

The proposed method deviates from the conventional approach

of modeling global attention using matrix multiplication. Instead, it
FIGURE 4

The technical process of the additive attention mechanism. It first transforms the input into query, key, and value matrices, Q, K, V, via three
independent linear transformations. Q is then summarized into a global query vector q′ by multiplying each vector qi with its corresponding
attention weight ai and summarizing the results. Next, the interaction between the attention key K and q′ is modeled through element-wise
product, yielding the global context-aware key matrix P. P is further summarized into a global key vector k′ by multiplying each vector pi with its
corresponding attention weight bi and summarizing the results. Afterward, an element-wise production combines the global key and attention value
V, resulting in an aggregated representation U. U is then processed through a linear transformation to generate the global context-aware attention
value R. Finally, Q and R are added to form the final output. Notations: ∗ denotes element-wise product, × denotes multiplication, and ⊕ denotes
summarization.
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leverages element-wise multiplication to compute the additive

attention AddictiveAttention(). The additive attention AdditiveAtte

ntion() is calculated as:

AdditiveAttention(q, k, v) = q + ½k0*v�W, (12)

where k0 is the global key vector, which is obtained by Eq.10.W

is the learnable linear projection parameter. The computation

complexity of the proposed network is O(ND). Noted that the

complexity of linear transformations is not taken into account by

many prior works, it is also omitted in this paper while calculating

computational costs.

The dot-product-based self-attention score is computed by

measuring the pairwise similarity between two patches within the

sequence. Its calculation process can be expressed as:

SA(q, k, v) = softmax(qkT=
ffiffiffiffi
D

p
)v, (13)

The softmax() denotes the application of the softmax function

along the last axis of the matrix. Then, the computational

complexity of original self-attention is O(N2D), which is much

higher than the proposed method since N > 0.

An alternative attention mechanism commonly used in acoustic

signal classification is the shifted window attention, initially

introduced by the Swin Transformer (Liu et al., 2021). This

attention mechanism prioritizes modeling global interactions and

utilizes a nested window approach with standard self-attention to

mitigate computational complexity. The computational complexity of

this mechanism is O(NDw2) , where w represents the window size.

Since w is a constant positive value by definition, compared to the

attention mechanism employed in the paper, it is computationally

more expensive due to its higher complexity.
3 Experiment

3.1 Dataset

The ShipsEar dataset (Santos-Domıńguez et al., 2016), which

consists of recordings of underwater vessel noise captured in real

shallow oceanic environments, is utilized in the paper. This dataset

encompasses a diverse range of natural and anthropogenic

environmental noise sources. Without any preprocess, the

received signals are influenced by reflections and echoes

introduced by reverberations, leading to overlapping and smeared

spectrograms. The dataset comprises 90 acoustic samples from 11

distinct vessel types, with each category containing one or more

samples. The duration of the audio varies from 15 seconds to

10 minutes.

The dataset was divided into three subsets: training set, testing

set, and validation set. The training set was allocated 70% of the data

and used for model training and fitting. The testing set, comprising

20% of the data, was used to fine-tune the model’s hyperparameters

and perform an initial assessment of its performance. The

remaining 10% constituted the validation set, which remained

unknown to the model during training and testing, allowing for

the evaluation of the model’s generalization ability and robustness.
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To ensure consistency in the dataset, a slicing method was

applied during the data preprocessing stage, dividing all signals into

fixed 1-second durations. This preprocessing step augmented the

dataset, resulting in adequate samples to allocate to each category’s

three subsets. The samples were randomly selected and distributed

among the subsets according to the predefined ratio.
3.2 Training and testing

In this paper, the training and testing of the proposed model

were conducted utilizing Nvidia’s RTX3090 GPU, which is

equipped with 24 GB of G6X memory. Table 1 lists the

parameters used during the training and testing stages, while

Figure 5 provides a detailed view of the model’s performance in

each epoch of these stages.

The initial assessment of a deep learning model typically involves

analyzing training and testing losses, which measure the errors for

each example in their respective datasets. As depicted in the figure,

both training and testing losses exhibit a decreasing trend, while

training and testing accuracies steadily increase. They start to stabilize

after ten epochs and stop after fourteen epochs. The behavior

indicates the model’s effective convergence to an optimal fit.

Overfitting and underfitting are common challenges in deep

learning. They usually arise when the model struggles to generalize

well on new data or experiences significant errors in the training
TABLE 1 The following parameters are utilized in the proposed model
during both the training and testing stages.

Parameter Name Parameter Value

Audio Segment Length 1

Patch Size 16x16

Batch Size 128

Dropout Rate 0.3

Optimizer adam
FIGURE 5

The detailed training process and results. The tendency of lines
indicates an optimal fit.
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data. These issues often result in diverging loss lines due to gradient

disappearance or explosion. However, as evident from the figure,

the convergence lines of the proposed model demonstrate its

capability to mitigate these problems and effectively learn the

underlying data features. Consequently, the results demonstrate

our model’s high performance and its potential as a robust data

analysis and prediction tool.
3.3 Evaluation

To comprehensively evaluate the effectiveness of our proposed

model and feature extractionmethod,weconducted several experiments.

The results, as illustrated in Table 2, demonstrate the

superiority of three-dimensional Mel-spectrograms over their

one-dimensional counterparts when employed with various

widely used audio classification models. This improvement can be

attributed to the incorporation of the signal’s dynamic features,

which enhances the representational power of the spectrograms. By
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capturing temporal variations in the acoustic signal, the three-

dimensional Mel-spectrograms provide richer and more

informative features for accurate classification across different

acoustic signal recognition models. The experimental findings

highlight the significance of considering dynamic characteristics

in feature extraction for acoustic classification tasks.

We conducted a series of experiments to determine the optimal

number of Transformer encoders required for effective learning of

the three-dimensional Mel-spectrogram features. The results of

these experiments, as illustrated in Figure 6, involved training and

testing the model with varying numbers of encoders. The findings

indicated that the best performance is achieved when employing

eight Transformer encoders, highlighting the importance of this

specific number. When using more or fewer encoders, it is observed

that the classification performance became suboptimal or the

computational resources were inefficiently utilized. Hence, the

study suggests that the selection of the appropriate number of

encoders plays a crucial role in maximizing the model’s learning

capabilities and achieving superior classification outcomes.

In order to determine the optimal hyper-parameter settings, we

conducted experiments with different combinations of patch sizes,

batch sizes, and audio segment lengths. The evaluation results,

presented in Figure 7, offer a comprehensive analysis of the

performance. The patch size refers to the size of patches extracted

from the input data by the transformer block. It is shown that models

with smaller patch sizes tend to be more computationally intensive

due to the inverse square relationship between the transformer’s

sequence length and the patch size. However, it should be noted that

larger patch sizes do not necessarily lead to improved classification

performance. In fact, a larger patch size results in fewer patches for

the same input, limiting the model’s learning opportunities and

yielding poorer results, as depicted in Figure 7.

Another crucial factor to consider is the batch size, which determines

the number of samples processed before updating the model’s internal

parameters. Typically, it is recommended to choose a batch size that

aligns with the number of GPUs’ physical processors, often a power of 2.

Deviating from this configuration may result in suboptimal

performance. The x-axis in Figure 7 represents different audio clip

lengths, denoted as 1, 3, and 5 seconds.
TABLE 2 Accuracy comparison between different models using 1D and
3D mel-spectrograms as input.

Model
Type

Accuracy with 1D
Mel-spectrograms

Accuracy with 3D
Mel-spectrograms

CRNN (Fu
et al., 2019)

90% 93.23%

AST (Gong
et al., 2021)

89% 93.5%

HTS-AT
(Chen et al.,

2022)

84.88% 89.32%

BEATs (Chen
et al., 2022)

83.56% 86.25%

SepTr (Ristea
et al., 2022)

88.42% 91.86%

ADDTr 91.41% 96.82 %
The proposed work gained the highest accuracy and the performances of 3D Mel-
spectrograms are generally better than the 1D Mel-spectrograms. The bold values represent
the best performance/results.
A B

FIGURE 6

A comparison of model performance was conducted by employing 2, 4, 8, and 16 Transformer encoders during both training and testing phases.
Each performance is distinguished by a distinct line color, with red, green, orange, and blue lines representing the different encoder counts,
respectively. The results reveal that when using 8 encoders, the model demonstrates the highest learning capacity and attains the lowest loss value.
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The classification accuracy reaches an optimal value of

approximately 97% with a patch size 16x16, an audio segment length

of 1 second, and a batch size of 128, as illustrated in the figure. This

remarkable result highlights the model’s ability to accurately identify

almost all of the ship-radiated noise, even when recorded in challenging

environments. For a more detailed understanding of the recognition

performance across different classes, please refer to the graphical

representation presented in Figure 8.

Figure 9 provides insights into the classification performance of

the proposed model, considering different optimizers and dropout

rates. An optimizer plays a crucial role in updating the model’s

parameters based on the gradients of the loss function with respect to

the weights. We evaluated five commonly used optimizers in acoustic
Frontiers in Marine Science 10
deep learning models: adaptive moment estimation (Adam), root

mean square propagation (RMSprop), stochastic gradient descent

(SGD), adaptive gradient (Adagrad), and adaptive delta (Adadelta).

The results depicted in Figure 9 reveal that Adam outperforms

other optimizers when applied to the non-convex underwater signal

dataset. Underwater acoustic signals can be sparse and noisy, making it

difficult to estimate accurate gradients during training. Both Adam and

RMSprop adaptively adjust learning rates based on historical gradient

information, enabling them to effectively handle sparse and noisy

gradients. This adaptability leads to more stable and efficient

optimization in the presence of such challenges. Adam combines

momentum and adaptive learning rates, maintaining separate

learning rates for each parameter and utilizing adaptive estimates of
A B C

FIGURE 7

Below the x-axis, values 1, 3, and 5 represent the audio segment length in seconds. The x-axis displays values 64, 128, and 256, indicating different
batch sizes. The y-axis represents the classification accuracy of our proposed model. The best result is achieved with a patch size of 16x16, a batch
size of 128, and an audio segment length of 1 second.
FIGURE 8

Each class’s identification result. All of the categories have an identification accuracy higher than 92%. Eight out of twelve categories’ identification
accuracy is higher than 95%.
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both first-order (mean) and second-order (variance) moments of the

gradients. RMSprop also adapts learning rates but only considers the

first-order moment of the gradients, making it slightly less effective

than Adam in handling underwater acoustic data.

On the other hand, SGD suffers from slow convergence due

to its fixed learning rate, which can also be sensitive to the choice

of learning rate. The fixed learning rate in SGD cannot adjust

automatically through the training process, potentially causing

oscillations or divergence with a high learning rate, and slow
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convergence or suboptimal solutions with a low learning rate.

Adadelta struggles with sparse gradients, limiting its ability to

update parameters effectively. Additionally, Adadelta requires

more memory due to the accumulation of squared gradients.

Adagrad’s diminishing learning rates over time can hinder

adaptation in the underwater acoustic target recognition

model, and its accumulation of historical gradients may result

in less relevance of recent gradients during optimization.

Dropout is a regularization technique that randomly drops

nodes in a layer during training to mitigate overfitting. By

incorporating dropout, the training process introduces noise and

forces the remaining nodes to learn more robust and independent

features. Through experiments, it has been determined that the

optimal dropout rate is 0.3, indicating that approximately one-third

of the inputs are randomly excluded from each update iteration.

A dropout rate lower than 0.3 can result in the model relying too

heavily on specific nodes, discouraging the network from learning

more diverse representations and degrading its generalization ability.

Moreover, when a large number of nodes are randomly dropped, the

remaining nodes need to compensate for the missing information. This

can lead to slower convergence or difficulties in finding an optimal

solution during the training process. Hence, a dropout rate greater than

0.3 can limit the model’s ability to learn complex patterns and

relationships in the data, also leading to a lower performance.

Figure 10 provides a comparison between the proposed method

and several commonly used acoustic data classification models

utilizing three-dimensional Mel-spectrograms as inputs. The

graph displays different lines representing our proposed ADDTr,
FIGURE 9

Comparison of different identification accuracies in different
optimizers and dropouts. The adam optimizer reaches the local
minimum most effective in the ship target recognition task while the
dropout rate should set to 0.3 to achieve the optimal result.
A B

C

FIGURE 10

Comparison of identification accuracy between the proposed model and other mainstream neural networks based on the number of epochs. The
number of epochs represents how many times the entire dataset is processed by the learning algorithm. Our proposed model attains the highest
accuracy while requiring the least amount of time during the training, testing, and validation processes.
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convolutional recurrent neural network (CRNN), BEATs,

hierarchical token-semantic audio Transformer (HTS-AT), audio

spectrogram Transformer (AST), and separable Transformer

(SepTr). The results show that the proposed model achieves the

optimal performance at epoch 14, outperforming the other models

in terms of efficiency. Even after thorough training, the proposed

model consistently maintains higher classification accuracies

compared to the other models. Figure 10B shows that the

proposed model exhibits smoother performance, indicating its

robustness on unseen data.

The better performance of ADDTr can be attributed to the following

reasons. While CRNNs have shown promise in audio processing tasks,

their limited modeling capabilities due to the sequential nature of

recurrent layers may make it challenging for them to capture long-

term dependencies in audio data. BEASTs, although they leverage

acoustic tokenizers for audio pre-training, may not be optimized for

underwater acoustic signals. The employed tokenization strategymay fail

to capture the specific acoustic information relevant to underwater

acoustics, leading to suboptimal representations and reduced

classification performance. HTS-AT relies on the token-semantic

audio transformer architecture, which incorporates hierarchical token

semantics. However, this approach may not fully capture the complex

temporal patterns and dependencies in underwater acoustic signals,

resulting in reduced classification performance.

Similarly, SepTr and AST, like other transformer-based models,

depend on self-attention mechanisms to capture long-range

dependencies in audio signals. Yet, the complex temporal patterns in

underwater acoustic data, such as non-linear dependencies and irregular

sequences, may pose challenges for self-attention. This can compromise

the models’ ability to accurately capture temporal dynamics, leading to

suboptimal performance in tasks where such dynamics are crucial.

In contrast, our proposed model circumvents these deficiencies.

It avoids acoustic tokenizers and self-attention mechanisms, instead

utilizing additive attention to directly model the interactions

between global and local representations. By summing the

attended representations, it effectively suppresses noise and

enhances relevant acoustic features. This robustness makes our

model highly effective for handling underwater acoustic data.

Table 3 presents a comparison of the parameter counts, number

of epochs, and time consumption for each step among the different

models. The results clearly highlight the exceptional efficiency of the

proposed model, which outperforms the other models in terms of

parameter count, number of epochs required, and time consumed

in each step. This further emphasizes the superiority and

effectiveness of the proposed model.
4 Conclusion

This paper addresses the challenges of passive recognition of ship-

radiated noise in underwater environments, characterized by inherent

noise, reverberation, and time-varying acoustic channels, through the

proposedADDTr. Byutilizing three-dimensionalmel-spectrograms, the

approach captures the temporal variations of target signals and ambient

noise, enabling better distinguishability. The additional spatial

dimension in the spectrograms allows for modeling reverberation
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effects and compensating for distortions, resulting in enhanced clarity

of target signals.

The proposed ADDTr, a deep learning Transformer framework

with additive attention, effectively models long-term dependencies and

spatial information, allowing the model to focus on informative features

and suppress noise. By incorporating the additive attention mechanism,

our proposed model achieves a significant reduction in computation

complexity, transitioning from quadratic complexity to linear

complexity. This improvement in computational efficiency enables

more efficient and scalable processing of the input data, making the

approach highly practical for real-world applications. Comparative

evaluations with state-of-the-art models on the ShipsEar dataset

demonstrate the superior performance of the proposed approach,

achieving the highest accuracy of 96.82% with lower computation costs.
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