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Background: Kidney renal clear cell carcinoma is the most prevalent subtype of
renal cell carcinoma encompassing a heterogeneous group of malignancies.
Accurate subtype identification and an understanding of the variables
influencing prognosis are critical for personalized treatment, but currently
limited. To facilitate the sub-classification of KIRC patients and improve
prognosis, this study implemented a normalization method to track cancer
progression by detecting the accumulation of genetic changes that occur
throughout the multi-stage of cancer development.

Objective: To reveal KIRC patients with different progression based on gene
expression profiles using a normalization method. The aim is to refine molecular
subtyping of KIRC patients associated with survival outcomes.

Methods: RNA-sequenced gene expression of eighty-two KIRC patients were
downloaded from UCSC Xena database. Advanced-stage samples were
normalized with early-stage to account for differences in the multi-stage
cancer progression’s heterogeneity. Hierarchical clustering was performed to
reveal clusters that progress differently. Two techniques were applied to
screen for significant genes within the clusters. First, differentially expressed
genes (DEGs) were discovered by Limma, thereafter, an optimal gene subset
was selected using Recursive Feature Elimination (RFE). The gene subset was
subjected to Random Forest Classifier to evaluate the cluster prediction
performance. Genes strongly associated with survival were identified utilizing
Cox regression analysis. The model’s accuracy was assessed with Kaplan-Meier
(K-M). Finally, a Gene ontology and Kyoto Encyclopedia of Genes and Genomes
enrichment analyses were performed.

Results: Three clusters were revealed and categorized based on patients’ overall
survival into short, intermediate, and long. A total of 231 DEGs were discovered of
which RFE selected 48 genes. Random Forest Classifier revealed a 100% cluster
prediction performance of the genes. Five genes were identified with significant
diagnostic capacity. The downregulation of genes SALL4 and KRT15 were
associated with favorable prognosis, while the upregulation of genes OSBPL11,
SPATA18, and TAL2 were associated with favorable prognosis.
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Conclusion: The normalizationmethod based on tumour progression from early to
late stages of cancer development revealed the heterogeneity of KIRC and
identified three potential new subtypes with different prognoses. This could be
of great importance for the development of new targeted therapies for each
subtype.
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1 Introduction

Multiple different forms of kidney tumors make up the complex
disease known as kidney cancer (Hu et al., 2019). Renal cell
carcinoma (RCC) is a heterogeneous group of kidney
parenchyma tumors that can be further divided into
histologically defined subtypes (Znaor et al., 2015; Casuscelli
et al., 2017; Xiong et al., 2022). The different subtypes have
undergone multiple revisions in the past two decades, due to
advancements in the morphological as well as molecular
characterization of renal tumors (Kovacs et al., 1997; Lopez-
Beltran et al., 2006; Srigley et al., 2013; Moch et al., 2016; Udager
and Mehra, 2016).

The recent discoveries in renal tumor transcriptome profiling studies
have had a substantial influence in the field of genomics as a category for
“molecularly defined renal carcinomas” has been introduced by the
World Health Organization 2022 classification of urinary and male
genital tumors (5th edition) (Trpkov et al., 2021a; 2021b; Mohanty et al.,
2023). These studies have significantly improved our understanding of
RCC, however, effective diagnostic and therapeutic approaches have yet
to be achieved (Caliskan et al., 2020). Additionally, these studies revealed
the high molecular heterogeneity of these tumors, necessitating further
sub-classification.

In this study, the most prevalent and aggressive subtype Kidney
renal clear cell carcinoma (KIRC) was investigated as it accounts for
80%–90% of the total number of RCC patients (Wang Q. et al., 2019).
Patients with KIRC are associated with a high mortality rate and poor
clinical outcomes (Gray and Harris, 2019; Puzanov, 2022). Also, there
are limited therapeutic options available; surgery is the primary option
since KIRC is resistant to radiotherapy and chemotherapy (Yin et al.,
2019). The resistance to treatment may be due to the heterogeneity of
these tumors. Therefore, an accurate assessment of the heterogeneity of
these tumors is crucial to identify subtypes of patients that can benefit
from targeted therapy. This can be achieved by investigating the
underlying molecular mechanisms and progression of KIRC, which
are currently not fully understood (You et al., 2021).

To track cancer progression we implemented a recently
established normalization method, which also has the potential to
facilitate the sub-classification of KIRC (Livesey et al., 2023). The
normalized gene expression reveals how cancer progresses by
detecting the accumulated genetic changes that emerge from
early-stages of cancer development to advanced-stages. The
application of the normalization method and hierarchical
clustering will allow for the identification of clusters (subtypes)
that progress differently.

This study aims to reveal KIRC patients with different
progression (subtypes) and establish a genotype-phenotype link

to the identified clusters. In this study, the genotype-phenotype
relationship to the distinct clusters was defined by the average
overall survival (OS) of the KIRC patient samples. Prognostic
gene signatures were identified that differentiate between the
different survival clusters and have the potential to function as
prognostic biomarkers that can facilitate the prognosis and
monitoring of KIRC. Therefore, the study advances knowledge of
the transcriptional landscape of KIRC patients with an emphasis on
cancer progression.

2 Materials and methods

2.1 Data acquisition and processing

The RNA-Sequencing (RNA-Seq) gene expression profiles of
KIRC were downloaded from the UCSC Xena database using
cancer-specific data from The Cancer Genome Atlas cohort, from
the Genomic Data Commons (GDC-TCGA) (Goldman et al., 2020).
A total of eighty-two advanced-stage cancer samples, along with a
matched number of randomly selected early-stage samples were
extracted. The accompanying metadata included the corresponding
patient phenotypic and survival profiles.

The gene expression profile of each patient was organized in a
gene-by-sample genomic matrix. The cancer datasets consisted of
60,483 unique Ensembl identifiers (ENSG) (Aken et al., 2016),
quantified as log2(x+1), where x represents the count of reads
mapped to a specific genomic location in the human reference
genome (GRCh38.p2, gencode release 22). Ensembl BioMart
(GRCh38.p13, Ensembl 104 May 2021) (Smedley et al., 2015)
was utilized to retrieve a total of 19,556 ENSG identifiers that
were annotated with a protein-coding biotype. Hence, 40,927 (67,
7%) non-coding entries were eliminated. For further analysis, the
19,556 protein-coding gene expressions were converted to counts.

2.2 Data normalization

The normalization method that tracked cancer progression and
corrected for multiple cancers (Livesey et al., 2023) was modified to
investigate a cancer type. The normalization method involves
calculating the quotient of advanced-stage gene expression and
early-stage gene expression.

2.2.1 Tracking cancer progression
A normalization method was implemented to capture the

heterogeneity between cancerous tumors by detecting their
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molecular differences in progression from early to late-stages of
tumor development using gene expression by RNA-Seq. As a result,
the method exposes the accumulated genetic changes that occur
throughout the multi-stage of cancer development. To track the
development of cancer, the gene expression profiles of both early-
stage and late-stage cancer samples were required. Thus, the gene-
by-sample matrix of KIRC was used to create two distinct matrices;
early-stage (E) and advanced-stage (A) gene expression as follows:

E, s x r matrix for early-stage gene expression and,
A, s x q matrix for advanced-stage gene expression.
The early-stage and advanced-stage gene expression matrices

are represented by E and A, respectively. Where r and q corresponds
to the number of cancer samples in early-stage and advanced-stage,
and s the number of protein-coding genes represented with raw
count gene expression value.

The early-stage patient profiles do not match the same
patient profiles in the late-stages. Thus, the initial approach
to calculating the normalized dataset involves generating a mean
normalized expression, or “mi”, for gene i in the early-stage
dataset. The sum of early-stage gene i for all early-stage cancer k
samples was calculated, as shown in Eq 1. The average early-
stage expression vector of gene i produced by this equation offers
a more accurate representation of the early-stage expression of a
particular gene.

mi � 1
r
∑r
k�1

Ei,k (eq 1)

Li � ln
A

mi
( ) (eq 2)

Finally, the gene expression matrix that represents cancer
progression, L was calculated as demonstrated in Eq 2. Matrix L
contains normalized counts of the quotients of advanced-stage
(dividend) and the mean gene expression of early-stage cancer
samples (divisor). Therefore, the normalized gene expression
represents the continuously changing cellular transcriptome,
allowing for an efficient and comprehensive description of gene
expression profiles.

2.3 Hierarchical clustering

The clustering of cancer samples is the most fundamental
strategy to identify groups of samples that progressed differently
in gene expression patterns. This approach may result in the
identification of novel cancer clusters (subtypes) within a cancer
type. Therefore, the normalized gene expression profiles of the
KIRC cancer samples were subjected to hierarchical clustering
analysis, to reveal the grouping of cancer samples.

The clusters of cancer samples were created by hierarchical
clustering, using the cosine distance between the gene expression
profiles and Ward’s method for agglomeration (Ward, 1963;
Jaskowiak et al., 2014). The optimal number of clusters was
determined using the find_k function as part of the dendextend
R package (version 1.17.1), which calculates k using maximal
average silhouette widths (Rousseeuw, 1987). Finally, the
dendrograms were split into k groups to assign samples to a
cluster.

2.4 Feature analysis

2.4.1 Differential gene expression
Limma package in R (version 3.54.2) (Ritchie et al., 2015) was

used to screen for differentially expressed genes (DEGs), by applying
an empirical Bayesian approach to evaluate for differences in gene
expression profiles between the identified clusters. The decideTests
(Law et al., 2016) function assigned binary values (0: not detected, 1:
upregulated, and −1: downregulated) to the genes, to identify and
extract genes that differentiate between the altered (up or down)
gene expression. Significant DEGs were defined as those with a
Benjamini–Hochberg (BH) adjusted p-value <0.05 and log2-fold
change (LFC) ≥ 0.5 or ≤ −0.5.

2.4.2 Marker gene selection using machine
learning

Recursive Feature Elimination (RFE) algorithmwas implemented to
identify key genes playing a role in the classification of the identified
KIRC clusters (subtypes), using the Scikit-learn python package
(Pedregosa et al., 2011). RFE with a linear kernel support vector
machine (SVM) was utilized to find optimal genes that predict the
cancer clusters. The k-fold cross-validation procedure, with a value of K
set to 10, was repeated 3 times.

The model was built with all identified DEGs and in several
iterations eliminates a single gene deemed least important for
segregating the identified clusters (Guyon et al., 2002). The
model is rebuilt, and the new gene subset are evaluated based on
their classification performance. Hence, the genes are ranked
according to their relevance. In this study, the final gene subset
was selected based on the highest classification accuracy by linear
SVM with C set to 5. The final gene subset was further subjected to
principal component analysis (PCA) using the R packages
FactoMineR (version 2.8) (Lê et al., 2008) and factoextra (version
1.0.7) (Kassambara and Mundt, 2020).

2.5 Predictive and validation ofmarker genes

The performance of the RFE selected gene subset was validated
using Random Forest (RF) classifier with a “test-train split ()” class
to split the data into train and test sets with a ratio of 75: 25. The
performance of the RF classifier was measured using accuracy,
precision, and recall score as the performance metrics. All
machine learning implementations were run in Anaconda
environment based on python programming language and Scikit-
learn package (Pedregosa et al., 2011).

2.6 Survival analysis

The gene subset selected by RFE was subjected to a Cox regression
model based on the Lasso algorithm of the glmnet R package (version
4.1-7), to further understand the relative importance of the gene subset
(Friedman et al., 2010; Simon et al., 2011; Tibshirani et al., 2012). The
model reduces the total number of the gene subset and identifies the
genes with the most significant impact on a patient’s survival. This step
assigned a regression coefficient value to the given gene that is multiplied
by the corresponding gene’s expression and results in a prognostic risk
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score for each patient. The patient scores were used to calculate amedian
risk score. Each patient was assigned a status value of 0 or 1 based on
whether the patient’s score was higher or lower than the median risk
score. The patient status information was used to generate Kaplan-Meier
(K-M) estimates for OS. The K–M curves were constructed using the
ggsurvplot function from the survminer R package (version 0.4.9).

2.7 One-way ANOVA

A one-way analysis of variance (ANOVA) was performed to
compare the mean gene expression of the prognostic genes
discovered by Cox regression analysis between the identified
clusters. Statistical analysis was conducted with the stats R

package (version 4.2.2). Following the application of ANOVA,
Tukey’s post hoc test for pairwise comparisons was applied
(Tukey, 1949). The null hypothesis (H0) of equal mean between
the clusters was rejected if the p-value < 0.05; H1: the cluster means
are significantly different from one another.

2.8 Enrichment

The list of DEGs were subjected to functional annotations of Gene
ontology (GO) (Ashburner et al., 2000), with an adjusted p-value <
0.05 determined as a cut-off criterion for significant enrichment.
Additionally, the 48 RFE gene subset were subjected to Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways enrichment,

FIGURE 1
Hierarchical clustering dendrogram of KIRC patient. The 19,556 normalized gene expression profiles of the eighty-two KIRC cancer samples were
subjected to clustering analysis, to reveal the grouping of cancer samples.
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with the threshold for significant enrichment established as
p-value <0.05. The enrichment analysis was performed utilizing the
clusterProfiler R package (version 4.6.2) (Yu et al., 2012).

3 Results

3.1 Cancer clusters detection with
normalized expression

The gene expression profiles of eighty-two advanced-stage KIRC
samples were normalized with early-stage cancer samples to
consider the heterogeneity differences that occur in the multi-
stage cancer progression.

In this study, all 19,556 normalized protein-coding genes were
subjected to clustering. The clusters are visually represented in a
hierarchical tree called a dendrogram. The clustering of all eighty-
two KIRC samples revealed three unique KIRC progression patterns
based on gene expression profiles (Figure 1).

Three unique cancer clusters (subtypes) as Clusters 1, 2, and
3 were identified and encompass a total of 42, 24, and 16 KIRC
patient samples, respectively. These three molecularly identified
clusters were further correlated with the patients’ average overall
survival to reflect its genotype-phenotype relationship. Cluster
1 showed the lowest average OS of 864.43 days, Cluster
2 displayed an average OS of 1076.38, and Cluster 3 had the
highest average OS of 1522.31 days. Therefore, these Clusters
were categorized as Short (SS), Intermediate (IS), and Long
Survival (LS) (Table 1).

3.2 Differential gene expression analysis

In the differential gene expression (DGE) analysis, a total of
19,556 protein-coding genes were evaluated for DEGs to distinguish
between SS, IS, and LS. A pairwise comparison approach between
the gene expression profiles of IS and SS, LS and SS, and LS and IS
were used, and only the genes with an adjusted p-value <0.05 and
LFC ≥0.5 or ≤ −0.5 between all three pairwise comparisons were
used for further analysis. Thus, a total of 231 DEGs were discovered.

Considering only the DEGs that were significant between all
three pairwise comparisons, a total of 47 genes were identified as
upregulated, when IS was compared to SS, whereas 184 genes were
found to be downregulated. While 159 genes were upregulated, and
72 genes were downregulated in the comparison of LS and SS.
Finally, the comparison of LS and IS, identified 221 and 10 genes as
upregulated and downregulated, respectively.

3.3 Selection of optimal gene subset

All 231 DEGs identified between SS, IS, and LS KIRC patients
were screened by the RFE algorithm. The optimal gene subset is
defined by the best combination of genes that has candidate
characteristics of classification and prognosis. This also refers to
the performance of the RFE and is quantified by the feature
importance score. In this study, the optimal gene subset of
48 genes (Supplementary Table S1) with the highest performance
score of 0.963 was selected for further analysis (Figure 2A).

3.3.1 Validation of optimal RFE gene subset
An RF classifier model was constructed to evaluate the

classification power of the 48 RFE gene subset for SS, IS, and LS.
A tenfold cross-validation on a forest model in the training phase
(75% of the samples) and testing phase (25% of the samples) was
computed. The Random Forest classification yielded an accuracy
score of 100%, a precision of 100%, and a recall of 100%.

A confusion matrix that defines the performance of the
classification algorithm is presented in Figure 2B. The
importance of each gene for risk subcategory prediction to the
RF classifier model is presented in Figure 2C.

A PCA model was built to determine the heterogeneity in gene
expression between the SS, IS, and LS risk subcategories. The PCA
assessed and identified the key sources of variance, allowing samples to
be grouped based on similar and different gene expression profiles.

Dim 1 represented 29.8% of the overall variance, whereas Dim
2 represented 23.6% (Figure 3). A clear segregation between KIRC
patient samples can be observed to distinguish between the three risk
subcategories.

To further compare the initial clustering analysis of protein-
coding genes to the clustering of the selected 48 RFE gene subset, a
hierarchical clustering was performed with the normalized gene
expression of the 48 RFE gene subset of the eighty-two KIRC cancer
samples. The correspondence between the two hierarchical clusters
is represented by a tanglegram (Figure 4). It can be observed that
only four samples were assigned to a different cluster (risk
subcategory) with the reduced gene subset (Figure 4).

3.4 Identification of prognostic genes

Five prognostic genes were identified and linked with KIRC
patient survival by univariate Cox regression analysis between the
48 RFE gene subset and patient survival data. The prognostic genes
were detected utilizing the LASSO algorithm, which assigns non-
zero, positive, or negative coefficients. Two of the five genes had

TABLE 1 The number of patient samples stratified by hierarchical clustering. The average overall survival of all patients within a cluster was calculated and further
categorized into Short (SS), Intermediate (IS), and Long Survival (LS).

Cluster Average survival (days) Survival time Risk subcategory Samples

1 864.43 Short SS 42

2 1076.38 Intermediate IS 24

3 1522.31 Long LS 16

Total 82
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positive coefficients, while three genes had negative coefficients
(Table 2).

Based on patient statuses, the K-M estimations for overall survival
were derived and presented below. The K-M curves illustrate low,
intermediated, and high gene expression in blue, green, and red
colors, respectively. The K-M curves of genes SALL4 and KRT15
with positive coefficient values are presented in Figure 5.

The K-M curves for the three genes OSBPL11, SPATA18, and
TAL2 with negative coefficient values are presented in Figure 6.

The five prognostic genes’ estimations and p-values in the Cox
regression model were all significant, which demonstrates that the
altered expression of these genes affects KIRC survival.

3.5 Gene expression patterns between risk
subcategories

One-way ANOVA was performed to assess for differences in the
mean normalized gene expression profiles of each of the prognostic
genes detected between the risk subcategories. This evaluation included
the differences between SS and IS, IS and LS, and SS and LS. Each
survival group consisted of a set of samples that make up that risk
subcategory, from which a boxplot was created using the normalized
gene expression profile of a specific prognostic gene (Figure 7).

All prognostic genes showed a statistically significant difference
between SS and LS (p-value ≤ 0.015). It is further noteworthy that

ANOVA resulted in a statistical difference in the normalized gene
expression between IS and LS (p-value ≤ 0.0032) as well as between
survival IS and SS (p-value ≤ 0.018) (Figure 7).

3.6 Enrichment analysis

The GO enrichment analysis illustrated that KIRC DEGs were
significantly enriched in biological processes (BP), including
extracellular matrix (ECM) organization, extracellular structure
organization, and external encapsulating structure organization
(Figure 8). In terms of cellular component (CC), collagen-
containing ECM, cell leading edge, and cell projection
membrane, among other terms were significantly enriched in
KIRC DEGs (Figure 8). Lastly, the molecular function (MF),
were significantly enriched in ECM structural constituent, growth
factor binding, and hormone binding (Figure 8). The KEGG analysis
revealed that the 48 gene subset significantly enriched for the
p53 signaling pathway, HIF-1 signaling pathway, and estrogen
signaling pathway (Figure 9).

4 Discussion

The high molecular heterogeneity of RCC necessitates further
sub-classification to establish a successful treatment strategy and

FIGURE 2
Supervisedmachine learning. (A) Recursive feature elimination selected 48 geneswith the highest performance score of 0.963. (B)Confusionmatrix
that defines the performance of RF classifier. Each row and columns represent the instances in an actual and predicted class, respectively. (C) The
importance of each gene for RF classifier prediction.
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medical care. Therefore, this study focussed on KIRC as it represents
the majority of RCC diagnoses. The study aims to identify subtypes
that reflect a genotype-phenotype relationship for KIRC patients
that provide a more accurate prognosis, with an emphasis on cancer
progression.

This study implemented a normalization method in which the
gene expression profiles of eighty-two advanced-stage KIRC samples
were normalized with early-stage cancer samples to consider
heterogeneity differences in the multi-stage cancer progression.
The normalization method corrects for genes that present with
high expression variability in early-stage samples but less expression
variability in advanced-stage cancer samples. This leads to the
availability of more meaningful information to track the cancer
progression from early-to advanced-stage, based on the differences
in the gene expression profiles.

The normalized gene expression was subjected to a hierarchical
clustering method, to detect cancer samples that progress differently
in gene expression patterns. The approach allows for the grouping,
alternatively, clustering of cancer samples to identify samples within
a group/cluster that are similar to each other and different from

samples in other groups. This popular method revealed three cancer
clusters (subtypes) for KIRC cancer. The three molecularly defined
clusters were correlated with the patients’ average OS. It can be
noted that patients in Cluster 3 lived on average 657.88 days longer
than patients in Cluster 1. Meanwhile patients in Cluster 2 and
Cluster 3 live on average 211.95 days and 445.93 days longer than
patients in Cluster 1 and Cluster 2, respectively. Thus, the obtained
three clusters by the use of our normalization method illustrate
different KIRC tumors that progressed differently from early-stage
to late-stage cancer development (Figure 3). Consequently, these
clusters have different prognoses and can be considered as different
subtypes. The results of the hierarchical clustering analysis were
subjected to a validation step using an independent GEO dataset
(Supplementary Material S1). This test dataset includes sixty-five
KIRC samples, and the normalization method also identified three
clusters in the GEO KIRC dataset (Supplementary Material S1).

The 48 genes identified through theMachine Learning analysis have
the capacity to accurately classify and predict the KIRC subtypes to an
extent similar to the use of the 19,556 protein-coding genes. This
demonstrates the existence of genetic heterogeneity within KIRC

FIGURE 3
Principal component analysis using the normalized gene expression profiles of the 48 RFE gene subset. KIRC samples were stratified according to
the initial hierarchical clustering analysis.
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tumors and the ability of our normalization method to recognize this
heterogeneity and associate it with prognosis and OS. The gene set
contains genes that were reported to play a critical role in the

aggressiveness of renal tumors, and our study revealed their
involvement in the heterogeneity of the most prevalent and
aggressive subtype in renal cancer, KIRC.

Analysis of GO enrichment illustrates the involvement of DEGs
in the biological processes that promote tumor aggressiveness. It has
been reported that ECM regulates fundamental properties of
tumors, such as growth and invasion. The most prevalent genetic
mutations in KIRC inactivate the VHL gene, which plays a direct
role in ECM organization. Therefore, therapeutic approaches to
control ECM are currently being investigated and an advanced
understanding of KIRC ECM will determine if ECM-modifying
drugs are appropriate for KIRC (Oxburgh, 2022). An additional BP
enrichment was macrophages that are highly enriched in RCC, and
the RCC survival rate is strongly correlated with the inflammatory
cytokines secreted by macrophages (Xie et al., 2022).

FIGURE 4
Tanglegram. The initial hierarchical clustering of 19,556 protein-coding genes (left) and clustering analysis of the 48 RFE gene subset (right).

TABLE 2 Five prognostic genes. The coefficient value obtained by LASSO
algorithm.

Gene name Coefficient value

SALL4 0.06613418699953

KRT15 0.0296694189909953

OSBPL11 −0.121246995833747

SPATA18 −0.0770127595245775

TAL2 −0.18919349247905
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In terms of the cellular component (CC), KIRC DEGs were
significantly enriched in functional elements such as basement
membrane (BM). According to a recent study, KIRC is associated
with unique basement membrane gene expression patterns, and the
characterization of the BM has the potential to guide clinical therapy
(Xiong et al., 2022). Cellular component, collagen trimer has been
similarly found in studies focused on renal cancer progression
(Wang A. et al., 2019), along with molecular function enriched
extracellular matrix structural constituent and platelet-derived
growth factor binding (Wang A. et al., 2019; van Roeyen et al.,
2019). Lastly, MF is significantly enriched for hormone binding, and
hormones plays a role in RCC etiology. Hormone receptor
expression in RCC cells has been demonstrated to be aberrant
(Czarnecka et al., 2016).

Analysis of KEGG pathways revealed signalling pathways that
promote cancer progression and resistance to therapies. The
SERPINE1 gene was enriched in the p53 signaling pathway, HIF-1
signaling pathway, and apelin signaling pathway. The interaction
between P53 and HIF signaling can promote cancer progression
(Zhang et al., 2021). While apelin signaling has also been linked to
the development of cancer and its progression (Liu et al., 2021). It is thus
noteworthy, that the survival analysis of SERPINE1 expression in
TCGA found a correlation between shorter survival, and the
increased tumor grade, lymph node metastasis, and tumor stage
(Guo et al., 2023). Therefore, SERPINE1 plays a crucial role in the
progression of KIRC. KIRC patients categorized as SS revealed high
levels of SERPINE1 gene expression, whereas LS displayed low levels of
gene expression. Hence, the method tracked the progression of KIRC

FIGURE 5
Kaplan-Meier survival curves. Analysis revealed the survival prediction associated with high and low gene expression profiles of SALL4 and KRT15
prognostic genes in KIRC patients.

FIGURE 6
Kaplan-Meier survival curves. Analysis revealed the survival prediction associated with high and low gene expression profiles of OSBPL11, SPATA18,
and TAL2 prognostic genes in KIRC patients.
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and further indicated the potential of SERPINE1 as a therapeutic target
for KIRC patients.

Together with SERPINE1, the PGK1 gene was also enriched for
HIF-1 signaling pathway. HIF-1 is known to modulate a number of
signaling pathways, having a significant impact on the cancer’s
response to radiotherapy (Huang and Zhou, 2020). Therefore, a
viable approach for sensitization of KIRC to radiotherapy is to target
SERPINE1 and PGK1. Also, PGK1 has been linked to several roles in
the development of cancer, tumor progression, and drug resistance.
The gene is known to promote sorafenib resistance, which is a first-
line treatment for KIRC patients as a tyrosine kinase inhibitor.
However, resistance to sorafenib significantly reduces the
effectiveness of therapy (He et al., 2022). Therefore, the large
patient group (n = 42), accounting for about half of the KIRC
patients investigated in this study encompassed in SS, may be
affected by this resistance to therapy.

Genes KRT15 and GPER1 enriched for estrogen signaling
pathways can also serve as treatment targets for KIRC patients.
Estrogen is known to inhibit the proliferation, migration, and
infiltration of RCC cells as well as increase RCC apoptosis (Yu
et al., 2013). This study illustrated that the downregulation of
KRT15 had favorable prognostic outcomes for KIRC patients for
Cluster 2 and 3 (Figures 5, 7), whereas the downregulation of
GPER1 was linked to unfavorable prognosis in Cluster 1.
Therefore, the two genes may serve as valuable prognostic

markers for KIRC and a novel developmental approach for
enhancing KIRC therapeutics.

This study further identified five prognostic genes as promising
prognostic biomarkers and treatment targets for KIRC patients
(Table 2). Cox regression together with Kaplan-Meier analyses
confirmed the prognostic biomarkers and showed that patients
with high levels of SALL4 and KRT15 gene expression have a
poor survival outcome than patients with low levels of gene
expression (Figure 5). While the high gene expression level of
OSBPL11, SPATA18, and TAL2 has a favorable survival outcome
than patients with a low level of gene expression (Figure 6).
Therefore, K-M confirmed that the five genes are effective at
diagnosing KIRC patients and predicting prognosis.

The results are supported by previous research, which indicated that
the high gene expression level of SALL4 has a poor survival outcome in
comparison to KIRCpatients with a low gene expression level (Che et al.,
2020). Also, data from Sun et al. (2020) showed that the downregulation
of SALL4 reduces KIRC tumor growth, metastasis, and angiogenesis.
Therefore, it is noteworthy that Cluster 2 with intermediate survival
followed a similar trend in cumulative survival probabilities as Cluster
1with short survival (Figure 5). Furthermore, the high gene expression of
KRT15 has also been reported to correlate with a poor prognosis for RCC
(Zhang et al., 2023). This study was able to detect KRT15 as a prognostic
gene in the KIRC subtype. The levels of gene expression correspondwith
the SS, IS, and LS (Figure 7). Previous studies have also reported higher

FIGURE 7
Boxplots based on risk subcategories of the five prognostic genes in KIRC patients. A boxplot was constructed with the normalized gene expression
profile of each prognostic gene in all the samples that were categorized into the SS, IS, and LS categories.
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levels of SPATA18 gene expression associated with favorable OS in the
KIRC subtype (Lingui et al., 2023) as well as in RCC (The human protein
atlas, 2023a). High expression of TAL2 has been reported with a
favorable OS in RCC (The human protein atlas, 2023b). This is the
first article to our knowledge to report OSBPL11 as a prognostic
biomarker. A similar observation as with the SALL4 K-M curve is
observed with theOSBPL11 gene. The K-M curve of Cluster 2 followed a
similar trend in cumulative survival probabilities as Cluster 1 (Figure 6).
Therefore, the upregulation ofOSBPL11 could reduceKIRCprogression.

ANOVA was used to assess the heterogeneity in the prognostic
genes’mean gene expression profiles, to establish whether SS, IS, and LS
samples’ gene expression profiles differ from one another. The
prognostic value of the five prognostic genes found was confirmed
by ANOVA, which also indicated a statistically significant difference in
gene expression between short- and long-term survival. A crucial
discovery was made between the gene expression profiles in the

intermediate- and long survival as well as intermediate- and short
survival. ANOVA showed statistically significant differences between
the gene expression profiles of both IS and LS, and IS and SS. This further
validates the finding of an intermediate-survival group. The unique gene
expression pattern of each of the five prognostic genes were further
subjected to a validation step using the independent GEO dataset
(Supplementary Material S1). This test dataset verified prognostic
genes OSBPL11 and TAL2 in the GEO dataset illustrated a similar
gene expression pattern for cluster 1 (short survival) and cluster 3 (long
survival). The remaining three prognostic genes, SALL4, KRT15, and
SPATA18 showed similar gene expression patterns for all three clusters
(Supplementary Material S1). The five prognostic genes are therefore
essential as they may enable an improved KIRC patient prognosis based
on the gene expression level of the five genes. Hence, this discovery is
important as it is directly correlated with survival and could aid in
predicting the outcome of KIRC patients.

FIGURE 8
Gene Ontology enrichment analysis. Top 10 functional items of KIRC DEGs based on clusterProfiler. *Functional databases: BP, Biological process;
CC, Cellular component; and MF, Molecular function.
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The investigation detected molecular mechanisms that allowed
for the segregation of three unique cancer clusters (subtypes) that
progress differently in gene expression profiles and correlate with
KIRC patient survival. Therefore, the normalization method was
successfully implemented in this study and hierarchical clustering
was able to provide an accurate assessment of the heterogeneity of
KIRC. The cellular functions detected by GO enrichment along with
the pathogenic genes detected by KEGG pathway analysis further
confirmed the contribution to the progression of the disease.
Additionally, the heterogeneity of KIRC served as a fuel for
therapy resistance and emphasized the urgent need to expand the
clinical subtypes for KIRC patients. As a result, this investigation
facilitated and contributed to the current KIRC cancer classification
with in-depth patient subtyping. The discovery of the five prognostic
genes, combined with the biomarkers detected in pathway analysis,
can provide a more accurate prognosis, and serve as targets to
provide a more effective therapeutic approach for KIRC patients.

5 Conclusion

The implemented normalization method has the potential to
reveal cancer patients that progress differently (subtypes) and
establish a genotype-phenotype relationship between the
identified subtypes and the patient’s OS. In this study,

correlations between the risk subcategories and gene signatures
differentiated short, intermediate, and long survival in KIRC
patients. The prognostic capacity of the prognostic genes can
successfully classify and predict the prognosis of KIRC patients.
Moreover, the prognostic genes were able to segregate patients into
additional survival subcategories and thus provide targets that can
enhance patient prognosis and aid in the development of
individualized treatment approaches.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author. The source code for the
implementation of reproducibility of the analyses for the study is
available in GitHub: https://github.com/LiveseyM/KIRC_
Subtyping.git.

Author contributions

ML: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Validation, Visualization,
Writing–original draft, Writing–review and editing. NE: Data

FIGURE 9
The results of KEGG pathways enrichment analysis of the 48 RFE gene subset based on clusterProfiler.

Frontiers in Genetics frontiersin.org12

Livesey et al. 10.3389/fgene.2023.1291043

https://github.com/LiveseyM/KIRC_Subtyping.git
https://github.com/LiveseyM/KIRC_Subtyping.git
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1291043


curation, Software, Validation, Visualization, Writing–review and
editing. HB: Conceptualization, Data curation, Formal Analysis,
Funding acquisition, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation,
Writing–review and editing.

Funding

The author(s) declarefinancial support was received for the research,
authorship, and/or publication of this article. The work reported herein
was made possible through funding by the Cancer Research Trust,
Faculty of Health Sciences, Start-up Emerging Researcher Award from
the University of Cape Town, and the South African National Research
Foundation (NRF Grant ID 121787) for ML bursary.

Acknowledgments

We extend our appreciation to the University of Cape Town and
National Research Foundation of South Africa (NRF) for funding.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2023.1291043/
full#supplementary-material

References

Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., et al. (2016). The
Ensembl gene annotation system. Database 2016, baw093. doi:10.1093/database/
baw093

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al.
(2000). Gene ontology: tool for the unification of biology. The gene ontology
consortium. Nat. Genet. 25 (1), 25–29. doi:10.1038/75556

Caliskan, A., Andac, A. C., and Arga, K. Y. (2020). Novel molecular signatures and
potential therapeutics in renal cell carcinomas: insights from a comparative analysis of
subtypes. Genomics 112 (5), 3166–3178. doi:10.1016/j.ygeno.2020.06.003

Casuscelli, J., Vano, Y. A., Fridman, W. H., and Hsieh, J. J. (2017). Molecular
classification of renal cell carcinoma and its implication in future clinical practice.
Kidney cancerClift. Va.) 1 (1), 3–13. doi:10.3233/KCA-170008

Che, J., Wu, P., Wang, G., Yao, X., Zheng, J., and Guo, C. (2020). Expression and
clinical value of SALL4 in renal cell carcinomas.Mol. Med. Rep. 22 (2), 819–827. doi:10.
3892/mmr.2020.11170

Czarnecka, A. M., Niedzwiedzka, M., Porta, C., and Szczylik, C. (2016). Hormone
signaling pathways as treatment targets in renal cell cancer (Review). Int. J. Oncol. 48
(6), 2221–2235. doi:10.3892/ijo.2016.3460

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33 (1), 1–22. doi:10.
18637/jss.v033.i01

Goldman, M. J., Craft, B., Hastie, M., Repečka, K., McDade, F., Kamath, A., et al.
(2020). Visualizing and interpreting cancer genomics data via the Xena platform. Nat.
Biotechnol. 38 (6), 675–678. doi:10.1038/s41587-020-0546-8

Gray, R. E., and Harris, G. T. (2019). Renal cell carcinoma: diagnosis and
management. Am. Fam. physician 99 (3), 179–184.

Guo, L., An, T., Wan, Z., Huang, Z., and Chong, T. (2023). SERPINE1 and its co-
expressed genes are associated with the progression of clear cell renal cell carcinoma.
BMC Urol. 23 (1), 43. doi:10.1186/s12894-023-01217-6

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer
classification using support vector machines. Mach. Learn. 46 (1–3), 389–422. doi:10.
1023/a:1012487302797

He, Y., Wang, X., Lu, W., Zhang, D., Huang, L., Luo, Y., et al. (2022).
PGK1 contributes to tumorigenesis and sorafenib resistance of renal clear cell
carcinoma via activating CXCR4/ERK signaling pathway and accelerating glycolysis.
Cell. death Dis. 13 (2), 118. doi:10.1038/s41419-022-04576-4

Hu, F., Zeng,W., and Liu, X. (2019). A gene signature of survival prediction for kidney
renal cell carcinoma by multi-omic data analysis. Int. J. Mol. Sci. 20 (22), 5720. doi:10.
3390/ijms20225720

Huang, R., and Zhou, P.-K. (2020). HIF-1 signaling: a key orchestrator of cancer
radioresistance. Radiat. Med. Prot. 1 (1), 7–14. doi:10.1016/j.radmp.2020.01.006

Jaskowiak, P. A., Campello, R. J., and Costa, I. G. (2014). On the selection of
appropriate distances for gene expression data clustering. BMC Bioinforma. 15 (2),
S2. doi:10.1186/1471-2105-15-S2-S2

Kassambara, A., and Mundt, F. (2020). Factoextra: extract and visualize the results of
multivariate data analyses. R Package Version. 1.0.7 https://CRAN.R-project.org/
package=factoextra.

Kovacs, G., Akhtar, M., Beckwith, B. J., Bugert, P., Cooper, C. S., Delahunt, B., et al.
(1997). The Heidelberg classification of renal cell tumours. J. pathology 183 (2),
131–133. doi:10.1002/(SICI)1096-9896(199710)183:2<131::AID-PATH931>3.0.CO;
2-G

Law, C. W., Alhamdoosh, M., Su, S., Dong, X., Tian, L., Smyth, G. K., et al. (2016).
RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Research 5,
1408. ISCB Comm J-1408. doi:10.12688/f1000research.9005.1

Lê, S., Josse, J., and Husson, F. (2008). FactoMineR: an R package for multivariate
analysis. J. Stat. Softw. 25 (1), 1–18. doi:10.18637/jss.v025.i01

Lingui, X., Weifeng, L., Yufei, W., and Yibin, Z. (2023). High SPATA18 expression
and its diagnostic and prognostic value in clear cell renal cell carcinoma. Med. Sci.
Monit. 29, e938474. doi:10.12659/MSM.938474

Liu, L., Yi, X., Lu, C., Wang, Y., Xiao, Q., Zhang, L., et al. (2021). Study progression of
apelin/APJ signaling and apela in different types of cancer. Front. Oncol. 11, 658253.
doi:10.3389/fonc.2021.658253

Livesey, M., Rossouw, S. C., Blignaut, R., Christoffels, A., and Bendou, H. (2023).
Transforming RNA-Seq gene expression to track cancer progression in the multi-stage
early to advanced-stage cancer development. PloS one 18 (4), e0284458. doi:10.1371/
journal.pone.0284458

Lopez-Beltran, A., Scarpelli, M., Montironi, R., and Kirkali, Z. (2006). 2004 WHO
classification of the renal tumors of the adults. Eur. Urol. 49 (5), 798–805. doi:10.1016/j.
eururo.2005.11.035

Moch, H., Humphrey, P. A., Ulbright, T. M., and Reuter, V. E. (2016). WHO
classification of tumours of the urinary system and male genital organs. 4th ed. Lyon
(France): International Agency for Research on Cancer.

Mohanty, S. K., Lobo, A., and Cheng, L. (2023). The 2022 revision of the World
Health Organization classification of tumors of the urinary system and male genital
organs: advances and challenges. Hum. Pathol. 136, 123–143. doi:10.1016/j.humpath.
2022.08.006

Oxburgh, L. (2022). The extracellular matrix environment of clear cell renal cell
carcinoma. Cancers 14 (17), 4072. doi:10.3390/cancers14174072

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Puzanov, G. A. (2022). Identification of key genes of the ccRCC subtype with poor
prognosis. Sci. Rep. 12 (1), 14588. doi:10.1038/s41598-022-18620-y

Frontiers in Genetics frontiersin.org13

Livesey et al. 10.3389/fgene.2023.1291043

https://www.frontiersin.org/articles/10.3389/fgene.2023.1291043/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2023.1291043/full#supplementary-material
https://doi.org/10.1093/database/baw093
https://doi.org/10.1093/database/baw093
https://doi.org/10.1038/75556
https://doi.org/10.1016/j.ygeno.2020.06.003
https://doi.org/10.3233/KCA-170008
https://doi.org/10.3892/mmr.2020.11170
https://doi.org/10.3892/mmr.2020.11170
https://doi.org/10.3892/ijo.2016.3460
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1038/s41587-020-0546-8
https://doi.org/10.1186/s12894-023-01217-6
https://doi.org/10.1023/a:1012487302797
https://doi.org/10.1023/a:1012487302797
https://doi.org/10.1038/s41419-022-04576-4
https://doi.org/10.3390/ijms20225720
https://doi.org/10.3390/ijms20225720
https://doi.org/10.1016/j.radmp.2020.01.006
https://doi.org/10.1186/1471-2105-15-S2-S2
https://CRAN.R-project.org/package=factoextra
https://CRAN.R-project.org/package=factoextra
https://doi.org/10.1002/(SICI)1096-9896(199710)183:2<131::AID-PATH931>3.0.CO;2-G
https://doi.org/10.1002/(SICI)1096-9896(199710)183:2<131::AID-PATH931>3.0.CO;2-G
https://doi.org/10.12688/f1000research.9005.1
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.12659/MSM.938474
https://doi.org/10.3389/fonc.2021.658253
https://doi.org/10.1371/journal.pone.0284458
https://doi.org/10.1371/journal.pone.0284458
https://doi.org/10.1016/j.eururo.2005.11.035
https://doi.org/10.1016/j.eururo.2005.11.035
https://doi.org/10.1016/j.humpath.2022.08.006
https://doi.org/10.1016/j.humpath.2022.08.006
https://doi.org/10.3390/cancers14174072
https://doi.org/10.1038/s41598-022-18620-y
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1291043


Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. J. Comput. Appl. Math. 20, 53–65. doi:10.1016/0377-0427(87)90125-7

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011). Regularization paths for
cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39 (5), 1–13.
doi:10.18637/jss.v039.i05

Smedley, D., Haider, S., Durinck, S., Pandini, L., Provero, P., Allen, J., et al. (2015).
The BioMart community portal: an innovative alternative to large, centralized data
repositories. Nucleic acids Res. 43 (W1), W589–W598. doi:10.1093/nar/gkv350

Srigley, J. R., Delahunt, B., Eble, J. N., Egevad, L., Epstein, J. I., Grignon, D., et al.
(2013). The international society of urological pathology (ISUP) vancouver
classification of renal neoplasia. Am. J. Surg. pathology 37 (10), 1469–1489. doi:10.
1097/PAS.0b013e318299f2d1

Sun, J., Tang, Q., Gao, Y., Zhang, W., Zhao, Z., Yang, F., et al. (2020). VHL mutation-
mediated SALL4 overexpression promotes tumorigenesis and vascularization of clear
cell renal cell carcinoma via Akt/GSK-3β signaling. J. Exp. Clin. cancer Res. 39 (1), 104.
doi:10.1186/s13046-020-01609-8

The human protein atlas (2023a). Human pathology atlas. SPATA18 gene. Available
From: https://www.proteinatlas.org/ENSG00000186051-TAL2/pathology/renal+cancer
(Accessed August 20, 2023).

The human protein atlas (2023b). Human pathology atlas. TAL2 gene. Available
From: https://www.proteinatlas.org/ENSG00000163071-SPATA18/pathology/
renal+cancer (Accessed August 20, 2023).

Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J., et al. (2012).
Strong rules for discarding predictors in lasso-type problems. J. R. Stat. Soc. Ser. B, Stat.
Methodol. 74 (2), 245–266. doi:10.1111/j.1467-9868.2011.01004.x

Trpkov, K., Williamson, S. R., Gill, A. J., Adeniran, A. J., Agaimy, A., Alaghehbandan,
R., et al. (2021a). Novel, emerging and provisional renal entities: the Genitourinary
Pathology Society (GUPS) update on renal neoplasia. Mod. Pathol. 34 (6), 1167–1184.
doi:10.1038/s41379-021-00737-6

Trpkov, K., Hes, O.,Williamson, S. R., Adeniran, A. J., Agaimy, A., Alaghehbandan, R., et al.
(2021b). New developments in existing WHO entities and evolving molecular concepts: the
Genitourinary Pathology Society (GUPS) update on renal neoplasia. Mod. pathology official
J. U. S. Can. Acad. Pathology, Inc 34 (7), 1392–1424. doi:10.1038/s41379-021-00779-w

Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Int.
Biom. Soc. 5 (2), 99–114. doi:10.2307/3001913

Udager, A. M., and Mehra, R. (2016). Morphologic, molecular, and taxonomic
evolution of renal cell carcinoma: a conceptual perspective with emphasis on
updates to the 2016 World Health organization classification. Archives pathology
laboratory Med. 140 (10), 1026–1037. doi:10.5858/arpa.2016-0218-RA

van Roeyen, C. R. C., Martin, I. V., Drescher, A., Schuett, K. A., Hermert, D.,
Raffetseder, U., et al. (2019). Identification of platelet-derived growth factor C as a
mediator of both renal fibrosis and hypertension. Kidney Int. 95 (5), 1103–1119. doi:10.
1016/j.kint.2018.11.031

Wang, Q., Zhang, H., Chen, Q., Wan, Z., Gao, X., and Qian, W. (2019). Identification
of METTL14 in kidney renal clear cell carcinoma using bioinformatics analysis. Dis.
markers 2019, 5648783. doi:10.1155/2019/5648783

Wang, A., Chen, M.,Wang, H., Huang, J., Bao, Y., Gan, X., et al. (2019). Cell adhesion-
related molecules play a key role in renal cancer progression by multinetwork analysis.
BioMed Res. Int. 2019, 2325765. doi:10.1155/2019/2325765

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal
of American Statistical Association. J. Am. Stat. Assoc. 58, 236–244. doi:10.1080/
01621459.1963.10500845

Xie, D., Mao, Y., Du, N., Ji, H., and Li, J. (2022). Macrophages promote growth,
migration and epithelial-mesenchymal transition of renal cell carcinoma by regulating
GSDMD/IL-1β axis. Cytokine 159, 156021. doi:10.1016/j.cyto.2022.156021

Xiong, X., Chen, C., Yang, J., Ma, L., Wang, X., Zhang, W., et al. (2022).
Characterization of the basement membrane in kidney renal clear cell carcinoma to
guide clinical therapy. Front. Oncol. 12, 1024956. doi:10.3389/fonc.2022.1024956

Yin, L., Li, W., Wang, G., Shi, H., Wang, K., Yang, H., et al. (2019).
NR1B2 suppress kidney renal clear cell carcinoma (KIRC) progression by
regulation of LATS 1/2-YAP signaling. J. Exp. Clin. Cancer Res. 38, 343.
doi:10.1186/s13046-019-1344-3

You, Y., Ren, Y., Liu, J., and Qu, J. (2021). Promising epigenetic biomarkers associated
with cancer-associated-fibroblasts for progression of kidney renal clear cell carcinoma.
Front. Genet. 12, 736156. doi:10.3389/fgene.2021.736156

Yu, G., Wang, L. G., Han, Y., and He, Q. Y. (2012). clusterProfiler: an R package for
comparing biological themes among gene clusters. Omics a J. Integr. Biol. 16 (5),
284–287. doi:10.1089/omi.2011.0118

Yu, C. P., Ho, J. Y., Huang, Y. T., Cha, T. L., Sun, G. H., Yu, D. S., et al. (2013).
Estrogen inhibits renal cell carcinoma cell progression through estrogen receptor-β
activation. PloS one 8 (2), e56667. doi:10.1371/journal.pone.0056667

Zhang, C., Liu, J., Wang, J., Zhang, T., Xu, D., Hu, W., et al. (2021). The interplay
between tumor suppressor p53 and hypoxia signaling pathways in cancer. Front. Cell.
Dev. Biol. 9, 648808. doi:10.3389/fcell.2021.648808

Zhang, W., Chen, P., Li, Z., Zhang, R., and Zhang, J. (2023). Clinical implication of
keratin-15 quantification for renal cell carcinoma management: its dysregulation and
association with clinicopathologic characteristics and prognostication. Tohoku
J. Exp. Med. 260 (2), 99–107. doi:10.1620/tjem.2023.J017

Znaor, A., Lortet-Tieulent, J., Laversanne, M., Jemal, A., and Bray, F. (2015).
International variations and trends in renal cell carcinoma incidence and mortality.
Eur. Urol. 67 (3), 519–530. doi:10.1016/j.eururo.2014.10.002

Frontiers in Genetics frontiersin.org14

Livesey et al. 10.3389/fgene.2023.1291043

https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1093/nar/gkv350
https://doi.org/10.1097/PAS.0b013e318299f2d1
https://doi.org/10.1097/PAS.0b013e318299f2d1
https://doi.org/10.1186/s13046-020-01609-8
https://www.proteinatlas.org/ENSG00000186051-TAL2/pathology/renal+cancer
https://www.proteinatlas.org/ENSG00000163071-SPATA18/pathology/renal+cancer
https://www.proteinatlas.org/ENSG00000163071-SPATA18/pathology/renal+cancer
https://doi.org/10.1111/j.1467-9868.2011.01004.x
https://doi.org/10.1038/s41379-021-00737-6
https://doi.org/10.1038/s41379-021-00779-w
https://doi.org/10.2307/3001913
https://doi.org/10.5858/arpa.2016-0218-RA
https://doi.org/10.1016/j.kint.2018.11.031
https://doi.org/10.1016/j.kint.2018.11.031
https://doi.org/10.1155/2019/5648783
https://doi.org/10.1155/2019/2325765
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1016/j.cyto.2022.156021
https://doi.org/10.3389/fonc.2022.1024956
https://doi.org/10.1186/s13046-019-1344-3
https://doi.org/10.3389/fgene.2021.736156
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1371/journal.pone.0056667
https://doi.org/10.3389/fcell.2021.648808
https://doi.org/10.1620/tjem.2023.J017
https://doi.org/10.1016/j.eururo.2014.10.002
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1291043

	Assessment of the progression of kidney renal clear cell carcinoma using transcriptional profiles revealed new cancer subty ...
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition and processing
	2.2 Data normalization
	2.2.1 Tracking cancer progression

	2.3 Hierarchical clustering
	2.4 Feature analysis
	2.4.1 Differential gene expression
	2.4.2 Marker gene selection using machine learning

	2.5 Predictive and validation of marker genes
	2.6 Survival analysis
	2.7 One-way ANOVA
	2.8 Enrichment

	3 Results
	3.1 Cancer clusters detection with normalized expression
	3.2 Differential gene expression analysis
	3.3 Selection of optimal gene subset
	3.3.1 Validation of optimal RFE gene subset

	3.4 Identification of prognostic genes
	3.5 Gene expression patterns between risk subcategories
	3.6 Enrichment analysis

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


