
Frontiers in Microbiology 01 frontiersin.org

Vineyard practices reduce the 
incidence of Aspergillus spp. and 
alter the composition of 
carposphere microbiome in 
grapes (Vitis vinifera L.)
S. I. Testempasis 1*, C. V. Papazlatani 2, S. Theocharis 3, P. A. Karas 2, 
S. Koundouras 3, D. G. Karpouzas 2 and G.S. Karaoglanidis 1

1 Laboratory of Plant Pathology, Aristotle University of Thessaloniki School of Agriculture, Forestry and 
Natural Environment, Thessaloniki, Greece, 2 Laboratory of Plant and Environmental Biotechnology, 
University of Thessaly, Department of Biochemistry and Biotechnology, Larissa, Greece, 3 Laboratory of 
Viticulture, Aristotle University of Thessaloniki, School of Agriculture, Forestry and Natural Environment, 
Thessaloniki, Greece

Going through the new transitioning era of the “European Green Deal,” the search 
for alternative, non-chemical, disease control methods is essential. Aspergillus 
bunch rot is considered one of the most important diseases of grapevines resulting 
in severe yield losses and, major qualitative deterioration of grape products due 
to the production of mycotoxins. We investigated, in a two-year field study, the 
impact of agronomic practices like defoliation to enhance grape microclimate 
(DF), pruning method to reduce grape bunch density (LBD), and irrigation cut-
off (NIR), at three developmental stages of grapevine (Pea size berry, Veraison, 
and Harvest), on (i) grape composition (titratable acidity, pH, and total soluble 
solids), (ii) on the frequency of occurrence of Aspergillus on grape berries, and 
(iii) on the overall composition of grape carposphere microbiome. The density of 
Aspergillus on grape berries was significantly reduced by the applied management 
practices (DF, LBD, and NIR). Amplicon sequencing analysis showed that both 
the phenological stage and the agronomic practices employed (particularly NIR 
and DF) imposed significant changes in the α-diversity and β-diversity of the 
grape carposphere bacterial and fungal communities. The NIR, LBD, and DF 
treatments which supported lower Aspergillus populations, network analysis 
revealed negative co-occurrence patterns between Aspergillus and several 
bacterial genera (Streptococcus, Rhodococcus, and Melitangium) reported to 
have antifungal properties suggesting potential natural attenuation mechanisms 
for the control of Aspergillus. Overall, our study (i) showed that the application 
of halting of irrigation and thinning of leaves and grape bunches, reduce the 
occurrence of Aspergillus and hence the incidence of Aspergillus Bunch rot 
disease and (ii) identified preliminary evidence for interactions of Aspergillus with 
members of the epiphytic grape bacterial communities that might be  involved 
in the suppression of Aspergilli, an observation which will be further pursued in 
following studies in the quest for the discovery of novel biological control agents.
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Introduction

Grape products account for a significant portion of global 
agricultural production, with the total area covered by vineyards 
exceeding seven (7) million hectares in 2018 (FAO-OIV, 2019). 
Grapevine and, in particular, grape berries support a diverse epiphytic 
microbial community (collectively called carposphere microbiome) 
whose composition shows strong regional patterns, and it is affected 
by cultivar., vintage, and agronomic practices (Bokulich et al., 2013; 
Papadopoulou et  al., 2022). The grape carposphere microbiome 
encompasses microorganisms with a key role in downstream 
vinification processes (Bokulich et al., 2016; Liu et al., 2020), but also 
carries beneficial and pathogenic microorganisms (Pantelides et al., 
2015) whose interaction with each other and their host determine 
grapevine health and productivity (Bettenfeld et al., 2022). The grape 
berry pathobiome, in particular, is composed of several opportunistic 
fungal pathogens belonging to Aspergillus spp., Alternaria spp., 
Botrytis spp., Cladosporium spp., Fusarium spp., Rhizopus spp., and 
Penicillium spp. (Abrunhosa et al., 2001; Somma et al., 2012; Kizis 
et al., 2014; Ferranti et al., 2018), that can infect the grape berries 
under favorable conditions (Somma et al., 2012).

Aspergillus, a dominant member of the grapevine pathobiome and 
microbiome, is present in all the developmental stages of grapes 
(Battilani et al., 2003; Zhu et al., 2021). Aspergillus bunch rot is a late-
season disease caused by Aspergillus species belonging to the section 
Nigri (A. carbonarius and A. niger aggregate), and it may lead to severe 
quantitative and qualitative losses due to the production of potentially 
carcinogenic mycotoxins, such as Ochratoxin A (OTA) and Fumonisins 
(FB2 and FB4) (IARC, 1991, 2002) that deteriorate the quality of wine 
(Rousseaux et al., 2014; Zhu et al., 2021). Their capacity to cause grape 
berry rots is affected by a variability of biotic and abiotic factors, like 
variety, region, climate, agricultural practices, vineyard microclimate, 
and pests (Battilani et al., 2003; Chiotta et al., 2009; Passamani et al., 
2012; Setati et al., 2012). Aspergillus bunch rot disease management 
relies on field prevention practices that aim to minimize any mechanical 
damage or wound formation on grape berries (Covarelli et al., 2012). 
The European Commission, as dictated by recent actions like “The 
European Green Deal” action and the EU Directive 2009/128/EC on the 
sustainable use of pesticides, promotes the use of Integrated Pest 
Management (IPM) and alternative methods to control plant pests and 
diseases (Sante, 2017). In IPM, several agronomic practices like 
irrigation and canopy management have been suggested as means to 
minimize disease development in grapevine (Tello et al., 2015; Mosetti 
et al., 2016; Thomidis et al., 2016; Figueiredo et al., 2020; Wurz et al., 
2020). The integration of such agricultural practices is expected to 
influence the microclimate of berry clusters with reciprocal effects on 
the composition of the associated microbiome and pathobiome (Pastore 
et al., 2013). Most of the previous studies have investigated the impact 
of these agronomic practices on productivity, grape, and wine quality, 
and on the occurrence of various berry and foliar grapevine diseases 
such as Gray Mold (Botrytis cinerea) and Powdery Mildew (Erysiphe 
necator) (Austin and Wilcox, 2011; Pastore et al., 2013; Mosetti et al., 
2016; Thomidis et al., 2016; Pertot et al., 2017b; Hed and Centinari, 
2018; Wurz et al., 2020). However, little is known regarding the effect of 
such management practices on Aspergillus bunch rot disease and on the 
associated grape carposphere microbiome.

In this frame we  aimed to evaluate the impact of a range of 
agronomic practices often utilized in vineyards like defoliation, berry 

cluster density thinning and halting of irrigation on (i) the Aspergillus 
population on grapes (culture-based approach) and on the grape 
carposphere (culture-independent approach) and (ii) the overall grape 
carposphere fungal and bacterial community at three phenological 
stages (Pea size berry, Veraison, and Harvest). Parallel measurements 
of grape berry quality parameters provided insights into potential 
mechanisms driving changes in the abundance and diversity of the 
carposphere grapevine microbiota.

Materials and methods

Vineyard site and experimental design

A field trial was conducted in a commercial winery vineyard in 
the region of Pydna, Greece (40° 30′ 0″ North, 22° 31′ 60″ East) 
planted with 15 years old Vitis vinifera L. cv. Syrah (clone 470 grafted 
on R110). The vineyard was established on an east-facing slope of 5%, 
and the vines were spaced 1.2 m within the row and 2.2 m between 
rows, while the rows were orientated W-E. The soil was characterized 
as sandy clay, while the regional climate has been classified as Cfa 
according to Köppen’s classification (Kottek et al., 2006). Vine plants 
were trained according to a double cordon vertical shoot positioned 
(VSP) system with a trunk height of 1 m above ground and a canopy 
of 1.3–1.5 m over the fruiting wire. Since the establishment of the 
vineyard the Integrated Pest or Disease Management (IPM/IDM) 
principles were followed to combat pests and diseases and the use of 
conventional pesticides was limited.

The effects of six agronomic practices on Aspergillus Black rot 
disease incidence and grape carposphere microbiome were 
determined during two consecutive growing seasons (2019 and 
2020). We followed a split-block experimental design with three (3) 
replicated blocks and nine (9) grapevines per treatment. Each block 
consisted of the following treatments: (a) defoliated (DF), (b) 
non-defoliated (NDF), (c) irrigated (IR), (d) non-irrigated (NIR), 
(e) high bunch density (HBD), and (f) low bunch density (LBD). 
Defoliation (DF) was performed prior to berry set as total removal 
of leaves of the first 6 nodes from the base of the shoot until bunches 
were completely exposed to sunlight, while non-defoliated (NDF) 
grapevines were used as a control. Irrigation treatments (IR) 
involved irrigation on 15 days intervals from berry set through 
harvest. Irrigation was applied by a drip irrigation system positioned 
on either side of the trunk, while entirely rainfed grapevines were 
used in the non-irrigated (NIR) treatment as a control and no 
irrigation was applied at any stage. In bunch density treatments, the 
high (HBD) and low bunch (LBD) density treatments were achieved 
with the variation of the number of buds retained at winter pruning 
(low/high respectively). More specifically, in HBD treatments, 
grapevines were spur-pruned to 12 buds per plant, while to achieve 
LBD, 24 buds were retained per plant. During the first growing 
season, all treatments were evaluated for their efficacy in reducing 
Aspergillus incidence on grape berries at harvest. In the second year, 
Aspergillus incidence was assessed at three phenological stages 
(according to the BBCH-scale for grapes): pea-sized berries (BBCH 
75, ~2 months before harvest), veraison (BBCH 81, ~1 months 
before harvest) and harvest (BBCH 89); carposphere fungal and 
bacterial communities were determined at harvest via amplicon 
sequencing analysis.
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Culture-based determination of Aspergillus 
incidence on grape berries

A culture-based approach was followed to evaluate the impact of 
the applied agronomic practices on Black Aspergilli section Nigri 
incidence. In detail, asymptomatic grape bunches were collected at 
harvest (mid of August) in sterile sealed plastic bags and transferred in 
an ice-filled container to the laboratory, where they were processed. The 
isolation and counting of Aspergillus species was performed as 
previously described by Testempasis et al. (2022). Briefly, more than 300 
berries (10 berries × 30 bunches) per treatment were randomly selected 
from each sample and surface disinfected (1 min in a 1% sodium 
hypochlorite solution). Afterward, berry samples were transversely cut 
and placed onto Petri dishes containing Dichloran Rose Bengal 
Chloramphenicol-Agar media (DRBC-agar based) and incubated at 
27°C (dark) for seven (7) days. After the incubation period, Black 
Aspergilli section Nigri colonies were counted, and their occurrence 
frequency was calculated based on the number of obtained isolates per 
the total number of grapes. This analysis was performed in both years, 
while, in the second year, culture-based monitoring of Aspergillus 
occurrence was performed on each phenological stage of the grapevine.

Berry quality parameters

Berry samples were used to analyze quality parameters, such as 
total soluble solids (TSS), pH, and titratable acidity (TA). More 
specifically, eight (8) grape bunches per treatment were sampled at the 
harvest stage, transported to the laboratory as mentioned previously, 
and immediately processed. Berry samples were manually pressed at 
room temperature, and the juice was used to determine the TSS using 
a manual refractometer (HI96841, Hanna instruments, United States); 
the pH with a pH-meter (HI2020-02, Hanna instruments, 
United States); and TA by titration with NaOH (0.1 N).

Measurement of bunch density and water 
status

The bunch density was assessed at harvest. In total, 30 bunches 
were collected and evaluated per treatment (HBD and LBD), averaged 
across three replicates. For each bunch, measurements of: (a) cluster 
length (cm), (b) cluster mass (g), (c) rachis mass (g), (d) number of 
berries per cluster, (e) berry’s mass (g), and (f) cluster density index, 
were conducted. Berry mass and bunch density were calculated 
according to the following equations, as previously described by Tello 
and Ibanez (2014):

 
Berry Clustermass Rachismass

Numberofberriesmass =
−

 
Berry Clusterweight

Clusterlenght
Density = 2

Additionally, the water status of the irrigated and non-irrigated 
vines was estimated by measuring stem water potential (SWP) at 
harvest. Measurements were conducted at solar noon (12:00 to 13:30) 
using a pressure chamber, as previously described by Chone et al. 

(2001). Briefly, three (3) leaves from the inner part of the canopy of 
each vine were enclosed in plastic foil-covered bags for 90 min before 
the measurement to allow equilibration of water potential.

Analysis of the grape carposphere 
microbiome

Samples processing and DNA extraction
Grapevine bunches were collected during the second experimental 

season (2020) at three phenological stages: pea-sized berry, veraison, 
and harvest. In detail, 30 intact and asymptomatic bunches were 
collected (10 bunches × three replicates/treatment/phenological stage) 
from both sides of each grapevine and carefully placed in sterile 
stomacher bags. Samples were transferred to the laboratory in a cooler 
with dry ice and immediately processed for extraction of its 
carposphere DNA as previously described by Vitulo et al. (2019), with 
slight modifications. In detail, 250 g of grapes were placed into a sterile 
500 mL flask containing 250 mL of Phosphate Buffered Saline (PBS) 
isotonic solution. The microbial biomass on the surface of berries was 
detached via shaking for two (2) hours in a horizontal shaker 
(240 rpm) at room temperature. The suspension was then transferred 
to a sterile 250 mL centrifuge tube and centrifuged for 20 min at 
4000 rpm. The supernatant was discarded and the pellet was subjected 
to DNA extraction using the DNeasy PowerSoil Pro Kit (Qiagen, 
United  States) following the manufacturer’s protocol. DNA 
concentrations were determined using the Quan-iT kit with a Qubit 
Fluorometric device (Invitrogen, United States).

Amplicon sequencing analysis
The composition of the carposphere fungal and bacterial 

community was determined via multiplex amplicon sequencing of the 
ITS2 and the V4 region of the 16S rRNA gene, respectively. The 
amplification of the ITS2 region was performed using the primer set 
ITS7F/ITS4R (White et  al., 1990; Ihrmark et  al., 2012), while the 
bacteria 16 s rRNA gene was amplified with the primers 515F/806R 
(Parada et  al., 2016) (Supplementary Table S1). Amplification, 
facilitating sample-wise multiplexing, and libraries preparation were 
performed according to our in-house protocol as described in detail 
by Vasileiadis et al. (2015). Briefly, a two-step amplification protocol 
was followed for sample indexing. The first amplification step included 
28 cycles using the primer pairs mentioned previously, while the 
second amplification step consisted of 7 cycles using the same primer 
pairs with sample-specific 5′ overhangs (Supplementary Table S1). All 
PCR reactions were conducted with the Q5® HighFidelity DNA 
Polymerase (NEB, Massachusetts, United  States), while amplicon 
libraries were cleaned using the NucleoMag NGS Clean up and Size 
Select kit (Macherey-Nagel, Duren, Germany). Sequencing was 
performed in a NovaSeq Illumina platform in Rapid Mode 2×250 
paired-end in the Centre of Genomics, Biomedical Research 
Foundation Academy of Athens, Greece.

Bioinformatic analysis
Before the analysis, sequence de-multiplexing was performed using 

Flexbar 3.0.3 (Dodt et al., 2012). The dada2 package (v.1.18.0) (Callahan 
et al., 2016) of the R software version 4.0.5 (R Core Team, 2020) was 
used to quality-trim/filter the sequences, remove the chimerical 
sequences and generate the Amplicon Sequence Variant (ASVs) table. 
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The reference databases UNITE ITS v.8.2 (Abarenkov, 2020) and Silva 
v.138 (McLaren, 2020) were used for the assembly and the taxonomic 
classification of the produced ASVs. The final analysis excluded ASVs 
that had not been classified at the Kingdom and Phylum levels. 
Additionally, the downstream analysis included only the ASVs that were 
taxonomically annotated with at least 80% bootstrap confidence in the 
indicated domain/kingdom taxa, as previously suggested by Kozich 
et al. (2013). The microbiome package (v.1.12.0) (Lahti and Shetty, 2012) 
was utilized to calculate the α-diversity indices of observed richness, 
Pielou’s evenness (Pielou, 1966), Shannon (Spellerberg and Fedor, 
2003), and Inverse Simpson (Hill, 1973). Significant differences in ASVs 
differential abundance among treatments and plant phenological stages 
were assessed with the package Agricolae (v.1.3.3) (Mendiburu and 
Yaseen, 2020), using a parametric ANOVA or non-parametric Kruskal-
Wallis analysis of variance followed by Tuckey’s or Fisher’s least-
significant differences post hoc test, respectively. The β-diversity was 
addressed via canonical correspondence analysis (CCA) (ter Braak and 
Verdonschot, 1995) and redundancy analysis (RDA) (Israels, 1984) 
according to the first axis of detrended correspondence analysis (Leps 
and Šmilauer, 2003). Moreover, pairwise Adonis package v.0.0.1 
(Arbizu, 2019) was used to calculate β-diversity’s permutation analysis 
of variance between the ASVs and the covariates of interest.

A network analysis was performed to identify the positive or 
negative co-occurrence networks of fungal and bacterial genera that 
participate in 10% of the samples with at least 1% relative abundance. In 
detail, Spearman Correlation tests were performed among microbial 
genera, and the data were used as an adjacency matrix for the weighted 
network analysis using the igraph v.1.2.6 package of R software (Csardi 
and Nepusz, 2006). On the resulted undirected networks, the adjacency 
matrix was filtered using the minimum spanning tree algorithm 
choosing the shortest possible combinations among tree nodes (Drago 
et  al., 2017). Following that, the sub-community clusters were 
determined based on local densities, and the final network was plotted 
using the Fruchterman-Reingold layout (Fruchterman and Reingold, 
1991). Network analysis was performed based on the analysis code as 
previously described by Bekris et al. (2022). The sequencing data were 
submitted to the Sequence Read Archive of NCBI with BioProject 
accession number (ID: PRJNA958223).

Statistical analysis
The occurrence frequency of Aspergillus isolates among treatments 

was compared with the z-test analysis. The significance level of all 
hypothesis testing procedures was predetermined at p = 0.05. 
Additionally, a t-test analysis was performed to determine the 
statistical significance of the examined quality parameters. Statistical 
analyses were conducted using SPSS v.20.0 software (Armonk, NY, 
United  States). All the graphical presentations were created with 
GraphPad Prism (GraphPad Prism version 9.0.0 for Windows, 
GraphPad Software, San Diego, California, United States).

Results

Effect of agronomic practices on the 
Aspergillus incidence on grapevine berries

For both experimental years, we observed higher frequencies of 
Aspergillus occurrence, mainly at the harvest stage, followed by the 

veraison and pea-size berry stages (Figures 1A,B). In 2019, at the 
stages of pea size berry, veraison, and harvest, Aspergillus was detected 
at occurrence frequencies ranging from 0 to 8%, 0 to 10%, and 0 to 
94%, respectively (Figure  1A). Treatment comparisons revealed 
significant differences (p < 0.05) in Aspergillus occurrence frequencies 
at harvest. In detail, Aspergillus was isolated at significantly higher 
occurrence frequencies (p < 0.05) in IR (94%) vs. NIR (54%), HBD 
(40%) vs. LBD (0%) and NDF (54%) vs. DF (29%) treatments 
(Figure 1A). Similar results were obtained during the second year of 
experimentation with Aspergillus being detected at the pea-size berry, 
veraison, and harvest stages at occurrence frequencies ranging from 0 
to 6%, 0 to 14%, and 36 to 100%, respectively (Figure 1B). At harvest, 
Aspergillus showed significantly higher occurrence frequencies 
(p < 0.05) in the IR (100%) vs. NIR (68%), HBD (94%) vs. LBD (36%), 
and NDF (100%) vs. DF (56%) (Figure 1B).

Effects of agronomic practices on grape 
berries quality and status

Effect of agronomic practices on berry quality 
parameters

The impact of agronomic practices on berry quality traits (TSS, 
TA, and pH) was evaluated at harvest (Table  1). In 2019, TSS 

FIGURE 1

Heatmap graphical representation of Aspergillus spp. occurrence 
frequency (%) obtained from asymptomatic grape berries of all 
treatments (irrigated, IR; non-irrigated, NIR; high bunch density, 
HBD; low bunch density, LBD; defoliated, DF; non-defoliated, NDF), 
phenological stages (pea size berry, PSB; veraison and harvest), and 
year of sampling (A:2019; B:2020). Letters indicate the statistical 
significance between the treatments and their mock-pair on each 
phenological stage according to a series of z-test analyses (p  =  0.05).
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significantly increased (p < 0.05) in the treatments of NIR (23.4 
oBrix) and DF (18.9 oBrix) compared to IR (15.3 oBrix) and NDF 
(16.1 oBrix) respectively. However, no significant differences 
(p > 0.05) were evident in the TSS content between HBD and LBD 
(Table  1). TA and pH were only slightly affected by the tested 
agronomic practices (p > 0.05) with the sole exception of the 
significantly higher (p < 0.05) values in the LBD (7.3 g/L) vs. the 
HBD (6.2 g/L) treatment (Table 1). A similar pattern was observed 
in the second year: sugar content substantially increased (p < 0.05) 
in the NIR (22.1 oBrix) and DF (18.4 oBrix) treatments compared 
to IR (18.3 oBrix) and NDF (16.3 oBrix), respectively (Table  1) 
while TA significantly increased (p < 0.05) in the IR (8.5 g/L) and 
LBD (8 g/L) treatments compared to NIR (6 g/L) and HBD (7 g/L), 
respectively. No discernible pH variation among the tested 
treatments was found (Table 1).

Measurements of bunch density and water status
Significant differences between the HBD and LBD treatments 

were evident for the parameters studied (Supplementary Figures S1A,B). 
In both years, bunch density of the samples obtained from the HBD 
treatment (1.36 and 1.01  in 2019 and 2020 respectively) was 
significantly higher (p < 0.05) than the bunch density from LBD 
treatment (0.66 and 0.51), (Supplementary Figure S1). No noticeable 
differences were observed in berry mass measurements for both years 
with the values in HBD and LBD treatments ranging from 1.19 to 1.71 
and 1.26 to 1.65 g, respectively (Supplementary Figure S1).

Measurements of SWP were performed on vines of IR and NIR 
treatments to verify the impact of the contrasting irrigation treatments 
on grapevine water status. Indeed, grapevine water status considerably 
differed between the IR and NIR treatments, with the SWP values for 
both ranging from −1.20 to −1.22 MPa and − 1.50 to −1.56 MPa, 
respectively (Supplementary Figures S2A,B), suggesting a higher 
water deficit for the NIR plants at harvest since SWP values at the 
range of −1.10 to −1.30 MPa are considered as a moderated water 
deficit, whereas values inferior to −1.50 MPa are representative for 
severe water deficit (Theocharis et al., 2021).

Amplicon sequencing analysis

Microbial community composition and dynamics
Overall, 4,065,773 and 3,618,209 fungal and bacterial sequences 

were obtained. After quality control, an average of 37,998 ± 23,836 and 

33,815 ± 16,156 of high-quality sequences per sample were attained for 
fungi and bacteria, respectively. Rarefaction curves reached a plateau 
in all samples, indicating that the sequencing provided adequate 
microbial diversity coverage. The sole exception was one sample from 
the NIR treatment at harvest (replicate C) which was excluded from 
the analysis due to poor sequencing quality (Supplementary Figure S3).

Regardless of the treatment, the fungal communities were 
dominated by fungi of the order Capnodiales (46.78% ± 11.24), 
followed by Pleosporales (22.00% ± 5.74), Dothidiales (11.90% ± 6.70), 
Sporidiobolales (9.28% ± 5.34), Eurotiales (3.94% ± 2.22) and 
Tremellales (3.04% ± 1.65) (Figure 2A). Interestingly, at the harvest 
stage we observed a considerable increase in the relative abundance of 
Eurotiales, where Aspergillus species belongs, in the treatments NDF 
(9.62% ± 1.12) vs. DF (1.90% ± 0.31), HBD (7.05% ± 0.16) vs. LBD 
(0.96% ± 0.07), and IR (14.08% ± 0.92) vs. NIR (4.04% ± 1.38) 
(Figure 2A).

The carposphere bacterial microbiome was dominated by 
Gamma-proteobacteria, Alpha-proteobacteria, Actinobacteria, and 
Bacilli, with a mean relative abundance of 37.89% ± 12.7, 36.89% 
±12.9, 16.99% ± 11.35 and 4.05% ± 5.22, respectively (Figure 2B).

The effect of agronomic practices and 
phenological stage on the α-diversity of 
carposphere microbial communities

The analysis of variance (two-way ANOVA) of the two main 
factors (phenological stage and treatments) was addressed to 
determine if they significantly affect the α-diversity indices of the 
fungal and bacterial communities (Supplementary Table S2). 
Analysis revealed a significant interaction of treatment and 
phenological stage (p < 0.05) regarding the α-diversity indices 
(Supplementary Table S2). We first looked at the effects of different 
agronomic practices on the fungal α-diversity at each growth stage. 
At the pea size berry stage, agronomic practices did not induce any 
significant effect (p > 0.05) on any of the α-diversity indices 
measured, except of Shannon diversity which was significantly 
higher (p < 0.05) at the IR vs. NIR (Figure  3A). At veraison, 
we noted (i) a significantly higher richness but significantly lower 
Pielou’s evenness (p < 0.05) in the NIR vs. IR treatment and (ii) a 
significantly lower Inverse Simpson (p < 0.05) but a significantly 
higher dominance (p < 0.01) in the HBD vs. LBD treatment 
(Figure 3A). At harvest, we observed (i) a significantly reduced 

TABLE 1 Average values of total soluble solids (oBrix) (TSS), titratable acidity (g/L of tartaric acid) (TA), and pH of grape berries at the harvest stage 
during the 2019 and 2020 growing seasons in response to the applied agronomic treatments.

Treatment 2019 2020

TSS TA PH TSS TA PH

Irrigated *15.3 ± 0.1b 7.6 ± 0.4a 3.2 ± 0.05a 18.3 ± 0.3b 8.5 ± 0.5a 3.3 ± 0.02a

Non-irrigated 23.4 ± 0.9a 6.9 ± 0.2a 3.4 ± 0.03a 22.1 ± 0.4a 6.0 ± 0.4b 3.6 ± 0.04a

Defoliated 16.1 ± 0.2b 8.8 ± 0.1a 3.1 ± 0.09a 16.3 ± 0.2b 7.9 ± 0.5a 3.3 ± 0.02a

Non-defoliated 18.9 ± 0.6a 8.1 ± 0.4a 3.1 ± 0.04a 18.8 ± 0.3a 8.6 ± 0.6a 3.4 ± 0.04a

High bunch density 18.5 ± 0.9a 6.2 ± 0.2b 3.3 ± 0.09a 19.5 ± 0.3a 7.0 ± 0.0b 3.4 ± 0.02a

Low bunch density 19.8 ± 0.8a 7.3 ± 0.2a 3.3 ± 0.09a 20.6 ± 0.5a 8.0 ± 0.6a 3.4 ± 0.02a

* Mean value of TSS, TA, and pH measurements with respective standard deviations. Statistical analysis was performed between the treatment and its mock-pair using t-test analysis, while 
different letters indicate significant differences (p = 0.05).
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Shannon and Inverse Simpson indices (p < 0.05) in the NIR vs. IR 
treatment and (ii) a significant lower dominance of LBD (p < 0.001) 
and NIR (p < 0.05) compared to the HBD and IR treatments 
(Figure 3A). Regarding the α-diversity of bacteria, at the pea size 
berry stage, we noted significantly higher richness (p < 0.01) and 
Shannon diversity (p < 0.05) values in the LBD vs. HBD (Figure 3B). 
A reduction (p < 0.05) in Shannon diversity values in NDF and 
LBD treatments was noticed at veraison compared to their 
respective mock pairs (Figure 3B). Furthermore, a significantly 
higher (p < 0.05) dominance was observed in LBD vs. HBD. At 
harvest, agronomic practices did not induce significant effects 
(p > 0.05) on the α-diversity of bacteria except of the Pielou’s 
evenness, which was significantly reduced (p < 0.05) in DF vs. NDF 
(Figure 3B).

When looking across phenological stages we noted a significant 
increase (p < 0.05) in richness, Shannon, and inverse Simpson diversity 
indices at harvest, while the exact reverse pattern was evident for 
Dominance where significantly lower values were noted at harvest 
(Supplementary Figure S4A). Regarding bacteria, we  observed a 
significantly higher (p < 0.05) richness, Shannon and inverse Simpson 
values at veraison, unlike Evenness and Dominance which showed 
significantly higher and lower values (p < 0.05) respectively at harvest 
(Supplementary Figure S4B).

The effect of agronomic practices and 
phenological stage on the β-diversity of 
the fungal and bacterial communities on 
grape carposphere

The β-diversity of the fungal and bacterial community was 
significantly affected by the phenological stage of the grapevine 
(p = 0.001) with this factor contributing 36.2 and 4.7% of the total 
variance, respectively, (Supplementary Figures S5A,B). Pairwise 
comparison of the fungal and bacterial communities RDA fitted 
values between the different phenological stages revealed significant 
differences (p < 0.05) (Supplementary Figures S5A,B).

We further looked at the effect of the applied agronomic 
practices on the β-diversity of the fungal and bacterial carposphere 
communities. The performed treatments considerably affected the 
β-diversity of the fungal community (Figures  4A,C) with the 
exception of bunch density treatments (p = 0.071) which did not 
induce any significant effect on fungal communities (Figure 4E). 
In particular, the agronomic practices of irrigation (IR and NIR) 
(p = 0.001) and defoliation (DF and NDF) (p = 0.041), considerably 
affected the b-diversity of the fungal community as the RDA 
revealed that irrigation and defoliation explained the 25.5 and 
13.1% of the total variance, respectively (Figures  4A,C). In 

FIGURE 2

Stacked bar plots displaying the composition of the (A) fungal and (B) bacterial grape carposphere communities at the taxonomic level of Order and 
Class, respectively, across different phenological stages of grapevines (pea size berry, veraison, and harvest) and the agronomic treatments employed 
(irrigated, IR; non-irrigated, NIR; high bunch density, HBD; low bunch density, LBD; non-defoliated, NDF; defoliated, DF).
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addition, a pairwise comparison of the fungal community RDA 
fitted values between the IR vs. NIR and DF vs. NDF treatments 
revealed significant differences (p < 0.05). Further, the performed 

treatments significantly affected the bacterial community, as CCA 
performed for the treatments of irrigation (p = 0.001) (Figure 4B), 
defoliation (p = 0.006) (Figure 4D), and bunch density (p = 0.004) 

FIGURE 3

The α-diversity indices of the fungal (A) and bacterial (B) community in grape berries collected from the different treatments (irrigated, IR; non-
irrigated, NIR; high bunch density, HBD; low bunch density, LBD; defoliated, DF; non-defoliated, NDF), at the different phenological stages (Pea size 
Berry, PSB; Veraison and Harvest). Statistical analysis was performed using Sidak’s multiple comparisons test, while asterisks (p  <  0.05*, p  <  0.01**, 
p  <  0.001****) indicate significant differences.
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(Figure 4F) at all phenological stages explained the 7.1, 6.7, and 
6.7% of the total variance, respectively (Figures 4B,D,H). Pairwise 
comparisons of the bacteria community CCA fitted values between 
the IR vs. NIR (Figure 4B) and DF vs. NDF (Figure 4D) treatments 
showed significant differences (p < 0.05), while no significant 
differences (p > 0.05) were observed in the comparison of HBD vs. 
LBD treatments (Figure 4F).

The effect of agronomic practices on 
specific fungal genera at harvest

Based on the high occurrence of Aspergillus spp., mostly at the 
harvest stage, bacterial and fungal communities ASVs were 
agglomerated at genus level and screened for significant effects 
stemming by the different agronomic treatments (Figure 5). Regarding 

FIGURE 4

Redundancy analysis (RDA) and Canonical Correspondence Analysis (CCA) of the fungal (A) and bacterial (B) communities of grapes carposphere. 
Samples were ordinated based on the different treatment comparisons (IR vs. NIR; NDF vs. DF; HBD vs. LBD) (A–F), regardless of the grapevine 
phenological stage. Inserted tables present the comparisons of the microbial communities among the different treatments (A–F).
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fungi, ASVs belonging to Cladosporium were dominated in all 
treatments, except NIR which was dominated by ASVs of the genus 
Aureobasidium (Figure  5A). ASVs of the genus Alternaria were 
associated with the treatments HBD and NDF, while ASVs of the 
genus Aspergillus were strongly associated with treatments HBD, NDF, 
and IR (Figure 5A). We further verified the effect of the performed 
agronomic practices on the frequency of occurrence of Aspergillus 
spp., by using data from the amplicon sequencing analysis. The 
occurrence frequency of Aspergillus ASVs in the IR, HBD and NDF 
treatments was significantly higher (p < 0.05) compared to the NIR, 
LBD and DF treatments, respectively, (Supplementary Figures S6A–C).

Regarding bacteria, ASVs belonging to Massilia were favored in 
the treatments IR and HBD compared to NIR and LBD (Figure 5B). 
Likewise, ASVs belonging to Gluconobacter were significantly 
associated with treatments IR, HBD, and NDF. Finally, ASVs that 
belong to Pseudomonas was disfavored in the NIR treatments, whereas 
ASVs belonging to Tatumella were favored in IR and NDF treatments 
(Figure 5B).

Network co-occurrence analysis of 
epiphytic grapes microbial communities

Network co-occurrence analysis was employed to identify 
significant positive or negative co-occurrence patterns between 
Aspergillus and members of the epiphytic fungal and bacterial 
communities that are either systematic among all treatments or 
associated with specific treatments (Figure 6). We observed a negative 
co-occurrence pattern of Aspergillus with Alternaria and Romboutsia 
in the IR treatment and with Streptococcus in the NIR treatment 
(Figures  6A,B). A significant positive co-occurrence pattern was 
observed between Aspergillus and Gluconobacter in the HBD 
treatment, while Aspergillus was positively correlated with Rhodotorula 
and Massilia and negatively correlated with Rhodococcus in the LBD 
treatment (Figures 6C,D). Finally, a significant positive co-occurrence 
pattern was noted between Aspergillus – Wolbachia in the DF and 
between Aspergillus – Massilia in the NDF treatment. In contrast, a 
significant negative co-occurrence pattern was observed between 

FIGURE 5

Differential abundance (DA) heatmaps showing fungal (A) and bacterial (B) agglomerated ASVs at the genus level. Asterisks indicate significant 
differences (p  <  0.05*. p  <  0.01**) in the relative abundance among the treatments at the harvest stage. Presented DA values were standardized between 
0 and 1 for ease of visualization. Experimental treatments with individual replicates are noted below each heatmap, while the differential abundance 
and the mean relative abundance color scale bar were presented on the side of each heatmap.
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FIGURE 6

Network co-occurrence analysis of the fungal and the bacterial grape caropshere community in the different agronomic treatments: (A) NIR, non 
irrigated; (B) IR, irrigated; (C) LBD, low bunch density; (D) HBD, high bunch density; (E) NDF, non defoliated; and (F) DF, defoliated treatment. Network 

(Continued)

https://doi.org/10.3389/fmicb.2023.1257644
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Testempasis et al. 10.3389/fmicb.2023.1257644

Frontiers in Microbiology 11 frontiersin.org

Aspergillus and several bacterial genera like Melitangium, Rhodococcus, 
Belnapia, Roseomonas in DF, and between Aspergillus and Stemphylium 
in the NDF treatment (Figures 6E,F).

Discussion

It is now well documented that agricultural practices manipulating 
the canopy of grapevines or the compactness of grape bunches may 
influence the microclimate within grapevines by changing the 
aeration, illumination, temperature, and air humidity and establishing 
less favorable conditions (reduced light, low ventilation, and high air 
humidity) for fungal infections (De Bem et al., 2015). In our study 
we  report for the first time on the impact of such management 
practices (defoliation, irrigation, and bunch density) on the 
establishment of Aspergillus, as causal agents of bunch rot, and widely 
on the carposphere fungal and bacterial communities at three different 
phenological stages (pea size berry, veraison, and harvest).

By following a culture-based approach, we observed a reduced 
incidence of Aspergillus spp. in DF compared to NDF grapevines. In 
line with this observation, Duncan et al. (1995) reported that leaf 
removal reduced the population of many fungi on berries, such as 
Aspergillus spp., Penicillium spp., and Cladosporium spp. They 
suggested that leaf removal decreased the vigor of fungal conidia due 
to their higher exposure to ultraviolet radiation, aeration, and 
reduced humidity.

The effects of irrigation on numerous physiology and quality traits 
of vines and grapes have been investigated extensively over the past 
years (Garganese et al., 2016; Thomidis et al., 2016; Coniberti et al., 
2018; Alatzas et al., 2021; Bassoi et al., 2021). Most of these studies 
have focused on plant physiology, while only a few have assessed the 
impact of irrigation on disease development (Thomidis et al., 2016; 
Coniberti et al., 2018). According to our findings, water deficit (NIR) 
decreased the occurrence frequency of Aspergillus compared to 
irrigation treatments (IR). Likewise, researchers found a lower 
incidence of bunch rot disease in a recent study testing the under-
trellis cover crops to minimize water availability and vegetative growth 
(Coniberti et al., 2018). Climate change has affected viticulture due to 
rising temperatures, changes in rainfall patterns, and extreme events 
like droughts and heatwaves, leading to reduced water availability 
(Santos et  al., 2020), and requiring more efficient use of water 
applications (Chaves et al., 2010). In regions with seasonal droughts, 
strategic vineyard irrigation may contribute to the increase of the 
yield, the vegetative growth and maintain the quality of wine 
production. However, irrigation may promote excessive vegetative 
growth, negatively impacting berries quality and susceptibility to 
fungal diseases (Bravdo et al., 1985; Dry and Loveys, 1998). On the 
other hand, deficit irrigation may increase the yield, improve the 
quality, and increase the tolerance of grapevine to bunch rot pathogens 
by triggering strong immune responses (Santos et al., 2005; Chaves 
et al., 2010). More specifically, drought stress tolerance in grapevines 
was involved in the activation of polyamine oxidation and 

phenylpropanoid pathway and consequently reduced their 
susceptibility to bunch rot pathogens (Hatmi et  al., 2013; Alatzas 
et al., 2021).

Another significant factor investigated in our study was the 
impact of bunch compactness on Black Aspergilli frequency. 
We showed that their abundance was considerably higher in the grape 
bunches with higher density than loose bunches. Comparable results 
have been mentioned in the past by several researchers for other 
pathogens causing bunch rots like B. cinerea (Vail and Marois, 1991; 
Vail et al., 1998; Valdes-Gomez et al., 2008; Hed et al., 2009). Low 
bunch compactness improves the fungicide coverage and reduces the 
relative humidity levels inside the bunch due to enhanced inner 
aeration (Tello et  al., 2015). Moreover, loose bunches show less 
physical damage caused by berry-to-berry contact, which may result 
in the appearance of microscopic cracks in berries cuticles (Hed et al., 
2011; Becker and Knoche, 2012; Molitor et al., 2012).

We subsequently explored the composition of the grapevine 
carposphere microbiome and the effects of the different agronomic 
practices on its composition. The grape carposphere fungal 
communities was dominated by Ascomycetes (Capnodiales, 
Pleosporales, Dothidiales,and Eurotiales) and Basidiomycetes 
(Sporidiobolales, Tremellales), in line with previous reports (Gao et al., 
2019; Wei et  al., 2022). Similarly, the grape carposphere bacterial 
communities were dominated by Gamma-proteobacteria, Alpha-
proteobacteria, Actinobacteria, and Bacilli, in accord with previous 
studies (Portillo et al., 2016; Wei et al., 2022).

Phenological stage influenced the α-diversity of bacteria and fungi 
colonizing the grapevine carposphere. Fungal species richness and 
diversity increased along the grape growing stages, which has been 
attributed to the accumulation of sugars on grapes that favor fungal 
colonization (Renouf et al., 2005; Martins et al., 2014; Liu et al., 2020). 
In contrast, the α-diversity of bacteria showed an increasing richness 
and diversity at veraison. The variable temporal patterns of α-diversity 
could be attributed to the differences in the content of growing grapes 
that favor different microbial groups, high bacterial diversity at veraison 
in accordance with the higher acid content and lower sugar content of 
berries at this stage, and higher fungal diversity at harvest where the 
sugar content facilitate the establishment of a diverse and rich fungal 
community (Setati et al., 2012; Liu et al., 2020; Wei et al., 2022).

The β-diversity of the grapevine’s associated microbiota was 
considerably affected by the applied agronomic practices and plant 
development stage. No Irrigation (NIR) vs. irrigation (IR) induced 
significant changes in the composition of the carposhpere fungal and 
bacterial communities. In support of our findings, Wei et al. (2022) 
suggested that the water status of vineyards could strongly influence 
the composition of the grapevine microbiome. Similarly, defoliation 
(DF) significantly altered the composition of the carposphere 
microbiome compared to NDF. This is in accordance with previous 
studies by Liu et al. (2020) who suggested that such changes on the 
grapevine microbiota by defoliation may be associated with the greater 
exposure of grape berries to a range of abiotic stress conditions (UV 
radiation, temperature, and humidity).

analysis was performed with the fungal and bacterial genera whose relative abundance was >1% in 10% of the samples. Blue and green bubbles 
indicate the relative abundance of each microbial genera, (the higher the size of the bubble the higher the microbial relative abundance) respectively, 
while green and red links demonstrate significant positive and negative co-occurrence patterns, respectively, between the linked microorganisms. The 
width of the line is a measure of the level of the co-occurrence correlation between the linked microorganisms, as the greater width of the line implies 
a higher correlation between the co-occurrence of the microorganisms.

FIGURE 6 (Continued)
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Beyond treatments, the carposphere microbiota was strongly 
affected by the phenological stage studied. In line with our findings, 
Ding et al. (2021) showed that the carposphere fungal and bacterial 
communities on Ecolly grapes considerably differed at each 
phenological stage. This temporal change in the composition of the 
carposphere microbiota along the growing season is a common 
feature of several different plant hosts (Rastogi et al., 2012; Grady 
et al., 2019). It has been suggested that the ripening process induces 
strong changes in the nutrient composition of grapes, reciprocating 
changes in the community of bacteria and fungi colonizing the 
surfaces of growing grapes (Liu et al., 2020; Ranade et al., 2021).

We further investigated the effect of agronomic practices on the 
abundance of the dominant members of the fungal and bacterial 
community on grapevine carposphere to identify members whose 
relative abundance showed treatment–specific patterns. We noted that 
Aspergillus and Alternaria were both favored in the IR, HBD and NDF 
treatments. Regarding Aspergillus, their higher relative abundance on 
the carposphere of grapes in those treatments is in accordance with their 
higher occurrence in the culture-dependent measurements on grape 
berries. Members of Aspergillus and Alternaria have been identified as 
common pathogens of grapevines favored by conditions like humidity 
and damaged berries which prevail in those treatments (Belli et al., 
2007). Cladosporium was the dominant member of the carposphere in 
most treatments, but it seemed to be outcompeted by Aureobasidium 
when no irrigation was applied. Members of this genus are known 
biocontrol agents against several fungal pathogens like Aspergillus and 
their occurrence in grapevine carposphere has been commonly reported 
(Dimakopoulou et  al., 2008; Zhang et  al., 2019; Ding et  al., 2021). 
Regarding bacteria, members of the genus Massilia and Gluconobacter 
were associated with IR and HBD treatments. Previous studies by 
Bokulich et  al. (2013), showed that the relative abundance of 
Gluconobacter is negatively correlated with the TSS content of 
Chardonnay musts. This is in line with our study, where Gluconobacter 
species showed higher relative abundance in the HBD and IR treatments 
which were characterized by significantly lower TSS content of grapes.

We further examined the presence of significant co-occurrence 
patterns of Aspergillus with other fungal and bacteria genera and how 
these are affected by the different treatments employed. Interestingly, in 
the treatments of NIR, LBD, and DF, we observed negative co-occurrence 
patterns between Aspergillus and several bacterial genera like 
Streptococcus (NIR), Rhodococcus (LBD and DF) and Melitangium (DF), 
that carry antifungal properties. Streptococcus species could degrade 
Aspergillus spp. mycotoxins (Wiseman and Marth, 1981; Coallier-Ascah 
and Idziak, 1985), while in the human pathosystem, Streptococcus 
pneumoniae was found to disrupt Aspergillus fumigatus biofilm through 
hydrogen peroxide secretion (Iwahashi et al., 2020). Likewise, bacteria of 
the genus Rhodococcus are able to inhibit the growth and mycotoxin 
production of several Aspergillus species (Barbey et al., 2013; Pylak et al., 
2020; de la Huerta-Bengoechea et al., 2022). Species belonging to the 
genus Melitangium are well-known producers of the antifungal 
compound melithiazole A (Hyun et  al., 2016). Modifications in the 
carposphere microbiome’s composition carry significant implications for 
both disease management and the overall quality of grapes. Specific 
microbial species contribute to the sensory characteristics of grapes, such 
as flavor and aroma (e.g., Saccharomyces cerevisiae) (Swiegers et al., 2005), 
while some microbial groups play crucial roles in suppressing pathogenic 
organisms (e.g., Bacillus subtilis, B. amyloliquefaciens, Ampelomyces 
quisqualis, and Aureobasidium pullulans) (Pertot et al., 2017a). Even 

though the presence of microbial communities inside and outside plant 
tissues is a significant factor in disease development, there is limited 
understanding of how microbial consortia could effectively be used to 
prevent diseases (Lamichhane and Venturi, 2015). We suggest that these 
consistent negative co-occurrence patterns between the above epiphytic 
bacteria and Aspergillus might be part of a concerted natural attenuation 
mechanism of the grape microbial community to combat infestations by 
members of the grapevine pathobiome like Aspergillus. Still dedicated 
follow-up studies, using a combination of culture-dependent approaches 
(in vitro and in planta) along with metatranscriptomic analysis of the 
grapevine-associated microbiota, are needed to verify these interactions.

Conclusion

Our study constitutes the first attempt, using a combination of 
culture-based and omic approaches, to unravel the impact of 
phenological stages and three commonly used agronomic practices (leaf 
removal, bunch compactness, and irrigation) on Aspergillus occurrence 
and on the overall grapevine carposphere microbiome. Our two-year 
field study showed that defoliation in the fruiting zone, grape bunch 
loosening caused by an increased retained number of buds at pruning, 
and absence of irrigation reduced the occurrence frequency and relative 
abundance of Aspergillus on grape berries and strongly affected the 
composition of the carposphere fungal and bacterial communities. 
Further studies using shotgun meta-omic approaches will explore the 
pathogenic and general functional potential of the grapevine 
carposphere as affected by the different agronomic practices tested.
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