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Introduction: Bedwetting, also known as enuresis, is the second most common

chronic health problem among children and it affects their everyday life

negatively. A first-line treatment option is the enuresis alarm. This method

entails the child being awoken by a detector and alarm unit upon urination at

night, thereby changing their arousal mechanisms and potentially curing them

after 6–8 weeks of consistent therapy. The enuresis alarm treatment has a

reported success rate above 50% but requires significant effort from the families

involved. Additionally, there is a challenge in identifying early indicators of

successful treatment.

Methods: The alarm treatment has been further developed by the company

Pjama AB, which, in addition to the alarm, offers a mobile application where users

provides data about the patient and information regarding each night throughout

the treatment. The wet and dry nights are recorded, in addition to the actual

timing of the bedwetting incidents. We used the machine learning model

random forest to see if predictions of treatment outcome could be made in

early stages of treatment and shorten the evaluation time based on data from 611

patients. This was carried out by using and analyzing data from patients who had

used the Pjama application. The patients were split into training and testing

groups to evaluate to what extent the algorithm could make predictions every

day about whether a patient’s treatment would be successful, partially

successful, or unsuccessful.

Results: The results show that a large number of patient outcomes can already

be predicted accurately in the early stages of treatment.

Discussion: Accurate predictions enable the correct measures to be taken earlier

in the treatment, including increasing motivation, adding pharmacotherapy, or
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terminating treatment. This has the potential to shorten the treatment in general,

and to detect patients who will not respond to the treatment early on, which in

turn can improve the lives of children suffering from enuresis. The results show

great potential in making the treatment of enuresis more efficient.
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1 Introduction

Bedwetting, or enuresis, is a very common chronic health issue

among children. Studies indicate that approximately 5% to 10% of

7-year-olds experience enuresis, and for a subset of individuals this

problem can persist into their teenage and adult years (1). Enuresis

substantially impacts children’s wellbeing, leading to challenges

such as diminished self-esteem, increased anxiety, and heightened

stress levels (2).

There are currently two main available methods for treating

enuresis: alarm treatment and using the antidiuretic medication

desmopressin. The enuresis alarm is a well-established initial

treatment for enuresis (1). The principal objective of this

therapeutic approach is to gradually modify the sleep and arousal

of the child by consistently awakening them immediately when

their bladder is emptied during sleep. This is achieved through the

utilization of a sensitive urine detector that promptly triggers a

distinct audible signal upon the appearance of the initial urine

droplet. The efficacy of the alarm treatment exhibits considerable

variation across various studies, typically ranging from 50% to 80%

(3–7) and most children that are successfully treated can be

considered cured (1).

As per the guidelines outlined by the International Children’s

Continence Society (ICCS), treatment with the enuresis alarm

should be discontinued if no positive effects are observed within

6–8 weeks. In the event of progress during this time frame, the

treatment should be continued until the child achieves a streak of 14

consecutive dry nights (1). If, after a duration of 16 weeks, the child

fails to reach this milestone, the treatment can be deemed partially

successful if there is a reduction of 50% or more in the frequency of

wet nights per week compared with the baseline measurements.

Otherwise, it is classified as an unsuccessful treatment (8).

To achieve a successful treatment, adherence to certain key

factors is crucial. First, consistent nightly use of the alarm is highly

important. Second, having a parent sleep near the child and

promptly respond to the alarm is necessary, as children often do

not wake up on their own, especially during the initial weeks of

treatment. Last, regular support from an instructor is essential to

provide encouragement and address any technical issues that may

arise. Both the motivation of the child and the family play a crucial

role in the treatment’s effectiveness (1).
02
There are several disadvantages with the alarm treatment of

enuresis. First, treatment for 6–8 weeks will, for numerous families,

be challenging due to the alarm waking the whole household and

the need for one parent to sleep in the same room as the child (1).

Consequently, there are issues with treatment adherence (7).

Another downside is that there is a relative lack of predictors for

successful treatment (9). This is especially problematic for patients

who have to undergo 6–8 weeks of treatment without any positive

results. Ideally, these patients should be detected early and be given

an alternative or parallel treatment. Due to these circumstances,

there is substantial interest in identifying the predictive factors for

treatment outcomes and shortening the period needed before

evaluation regarding continuation of the treatment is carried out.

The use of artificial intelligence in medicine is already

widespread in numerous medical fields (10). The objective of this

study was to explore the potential of utilizing artificial intelligence

with enuresis data collected from a mobile application developed by

Pjama Inc, a company specializing in enuresis alarm treatments. The

aim was to assess whether the use of AI could help shorten the

evaluation period of enuresis alarm treatment. Similar research has

been conducted previously in Tokar et al.’s “Application of Machine

Learning Techniques for Enuresis Prediction in Children” (11), and

in Franco et al.’s “Initial outcomes using a novel bedwetting alarm

(Gogoband®) that utilizes real time artificial intelligence to wake

users prior to wetting” (12). What distinguishes our research from

these studies is that it covers the usage of AI during the treatment

process, enabling early predictions of the enuresis treatment

outcome. This requires a dynamic approach to data collection and

machine learning (ML) models, due to the continuous refinement of

the model throughout each day of the treatment process.

Random forest is a popular ensemble learning algorithm in ML.

Ensemble learning refers to algorithms making predictions from

more than one model, and the random forest does this through the

combination of multiple decision trees (13). Decision trees are also

an established method used for classification in ML, but in larger

datasets, where overfitting may be an issue, random forest is

preferred due to the variation offered by it (14, 15). Each tree is

constructed using a random subset of features and samples of the

patient data frame to create diverse sets of trees that are less likely to

be correlated and more likely to capture different aspects of the

underlying pattern with minimum redundancy. The final
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predictions are obtained through the algorithm aggregating the

predictions of all the individual decision trees (14).

In machine learning, a hyperparameter is a parameter assigned a

value before the algorithm runs, thereby influencing the results (16).

In random forest some important hyperparameters include: the

numbers of decision trees, how deep each tree can grow, and how

many features are used for each split. For example, if the numbers

of trees and features and the depths are large, the model is more

likely to be overfitted to the training data, and if they are too small,

the model will be underfitted (17). Therefore, it is crucial to

validate the performance and hyperparameters of the model

when optimizing it.

K-fold cross-validation is a popular technique for evaluating

ML models (18). The algorithm divides the training set into “k”

subsets, with one subset serving as test/validation data and the

others serving as training data. The process repeats “k” times,

training and validating the model in different subsets (17).

Analyzing metrics such as mean accuracy and standard deviation

across these iterations provides insights into the model’s real-world

performance and enables measurement of the randomness of ML

pipelines. This helps detect the issues arising from imbalanced or

mishandled datasets, which may lead to overfitting or underfitting.

To enhance this approach, K-fold cross-validation can be combined

with grid search (17). Grid search allows the testing of various

hyperparameter values set by the user. For instance, when “k” is 5,

the training data split into five parts, and grid search was used to test

the hyperparameter combinations across these five data segments.

Evaluating the mean accuracy and observing hyperparameter

behavior across splits and combinations offers a comprehensive

overview of model performance. This also highlights the consistent

hyperparameter values with favorable outcomes (19).
2 Materials and methods

This study is based on enuresis data provided by the Pjama

mobile application, which consists of the data of 3,649 patients who

had undergone enuresis alarm treatment. The patients involved in

the study were both those who received the enuresis alarm from

pediatric outpatient wards in Sweden and individuals who self-

initiated the alarm treatment without healthcare supervision. The

patients utilized a body-worn alarm in conjunction with the Pjama

mobile application to record essential data during their treatment.

Upon registering in the Pjama application, patients were required to

answer 16 mandatory questions and input specific information

before commencing the treatment process. These questions were

chosen thoughtfully; they have either been proven to be of

significance in the decision of treatment outcomes or are highly

suspected to be significant. Some questions were also chosen since

they are warning signals for other medical problems, and could lead

to the patient being advised to seek medical care instead. The

questions were age, sex, type of alarm, how heavy the child’s sleep

was, the usual frequency of enuresis, if the child had incontinence

issues during the daytime, if they had problems with urgency, if the

child had previously tried any treatment (medication and/or alarm),

if the child took relaxing medication for the bladder, if they had
Frontiers in Urology 03
contact with a nurse, how high their motivation was, if they usually

experienced enuresis once or twice per night, if the child was very

thirsty, if the child had a weak beam when urinating, and finally, if

the child had previously been dry at night.

In addition to the data from the registration, data were

continuously gathered during the treatment process. Each day

data regarding whether the night was dry or wet were collected,

in addition to responses to other questions that provided significant

data about the previous night. These questions were related to the

severity of wetness, the method of awakening (whether through the

alarm or parental intervention), and if any subsequent instances of

bedwetting occurred during the same night. If the night had been

dry, the question of if the child had woken up to urinate was asked.

The time of the enuretic events was also registered by

the application.

Out of the 16 questions asked during registration, 26

registration variables were generated. Due to the addition of

questions throughout the data collection process from patients,

some patients had missing values for specific data points. To

address this issue, two approaches were employed. Either the

median or the average for a given variable was used, and these

were calculated using the responses from other patients who had

provided data. Alternatively, a neutral value was used, as for the

question about how difficult it was to wake the child, where the

answer “don't know” was used.

Based on the information recorded from users each night, 12

different variables describing the events of that night were assigned

values. Examples of these variables include whether the night was

wet or dry, whether the child wet the bed more than once, or

whether data were missing for that particular day.

From the entirety of the data that users input on a daily basis, 14

computational variables were created for each day and each patient.

The primary objective of these variables was to enable the model to

capture relationships across different days during the course of

treatment. Illustrative examples of these computational variables

were the count of wet nights a patient experienced in the last 14

days, the number of missed days in the last 14 days, and the number

of wet nights experienced in the current week divided by the

number of wet nights experienced in the first week. As with the

registration data, missing and unreasonable data were treated. For

most computational variables, compensatory measures were

implemented in instances of missing data, ensuring that the

absence of data for a specific day was not simply disregarded. For

instance, this was carried out when calculating the number of wet

nights during the last 14 days, as there were days within this time

frame for which no data were available. In this case the missing

nights was seen as neither dry or wet, and an expected value based

on the preceding days of treatment was calculated instead. Measures

were also taken to filter out unreasonable data, such as when the

parent reported that the child wet the bed 17 hours after going to

sleep, and replacing these with a mean or median.

After having undergone treatment, the patients were marked as

successful, partially successful, unsuccessful, or as dropouts based

on the ICCS guidelines. The patients were marked as to what

treatment result they had after 8 weeks of treatment. According to

the current guidelines for enuresis treatment, a patient should have
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14 consecutive dry nights for the treatment to be considered

successful (1). To avoid overlooking patients who may have

attained dryness but occasionally failed to record their daily

status, 2 missing days were deemed tolerable, provided that the

remaining 12 days were dry. A dropout was defined as a patient who

had not fulfilled at least 6 weeks of treatment, and who had not

managed to be dry for 14 consecutive nights before this time. The

exclusion criteria for patient selection were if a patient had had 14

consecutive missing days prior to week 8, and that they were not

successful in this period. They were then marked as a dropout and

excluded from further analysis. A patient that was not marked

successful or as a dropout was classed as either partially successful

or unsuccessful. To decide which of these applied, the first 2 weeks

of the patient’s treatment were compared with the last 2 weeks. If

the number of the wet nights experienced had decreased by 50% or

more when looking at the last 2 weeks, the patient was considered to

be partially successful. The patient was otherwise marked as

unsuccessful. The patients used for analysis included all those

who were not marked as dropouts.

The data from 3,649 patients who utilized the Pjama application

were analyzed. Out of this initial pool, 611 patients were identified

as non-dropouts and subsequently included in the study. Within

this subset, 70% of patients were then assigned to the training

group, while the remaining 30% of patients constituted the testing

group. A visual representation of the patient selection process can

be found in Figure 1.

The distribution of the variables generated when patients

initially registered in the Pjama application for the training and

test groups and for all patients is presented in Table 1.

The training data consisted of 126 patients who experienced

successful treatment, 107 patients with partially successful

outcomes, and 194 patients for whom the treatment was

unsuccessful. The test data consisted of 47 patients who
Frontiers in Urology 04
experienced successful treatment, 44 patients with partially

successful outcomes, and 93 patients for whom the treatment was

unsuccessful. The distributions are presented in Figures 2, 3.

In order to utilize the collected data with ML models, they

underwent appropriate processing. All data were converted into

integer representations, and any instances of missing values were

addressed using the previously outlined method. To resolve the

issue with the class imbalance in the training set, the oversampling

technique SMOTE was used (20). After applying oversampling,

each of the three classes in the training data comprised 194 patients.

The synthetic samples were created through nearest neighbors (21)

with a default value of 5.

The random forest model was chosen as a classifier, and each

day for the treatment period of 8 weeks, a model was trained. The

model was trained each day using all the data from that day and

the preceding days. Each model was validated with a fivefold cross

validation. Parallel to the fivefold cross validation, the grid search

was used to test different combinations of hyperparameter values

to receive optimized values based on the data. The search space

comprised four different hyperparameters, namely the number of

estimators, maximal depth, splitting criterion and maximal

features (17). The search space included variations in the

number of estimators, ranging from 50 to 200 in increments

of 50. Similarly, the maximal depth explored values of 25, 50,

100, 150, and 200. In terms of maximal features, the options

considered were “sqrt” and “log”. and additionally, the splitting

criterion encompassed “entropy,” “gini,” and “logloss”. The

hyperparameter values that resulted in the best result from the

grid search were saved and utilized during the actual training for

each of the models.

The scikit learn library was used for the implementation of

random forest, cross-validation, linear regression, grid search, and

nearest neighbors (22).
FIGURE 1

Flowchart of the patient selection process.
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Predictions were conducted daily for all patients in the test

group. The results yielded three distinct probabilities, each

representing the likelihood of a patient’s treatment outcome from

the three possible outcomes. To evaluate the model’s ability to
Frontiers in Urology 05
predict the treatment outcome, various methodologies were

employed. To prevent overfitting in the model, the mean accuracy

of the fivefold cross validation with the standard deviation was

measured. For the purpose of obtaining a comprehensive
TABLE 1 Distribution of registration variables.

Train Test Total

(n = 427) (n = 184) (n = 611)

Age 8.47 ± 4.19 8.72 ± 4.61 8.55 ± 4.32

Sex (male/female) 73.77% / 26.23% 82.42% / 17.58% 76.61% / 23.39%

Wet once or twice (once/twice) 95.09% / 4.91% 97.29% / 2.71% 97.75% / 2.25%

Motivation (1–5) 4.05 ± 0.36 4.05 ± 0.51 4.05 ± 0.47

Alarm type (alarm with pants/Pjama connect/alarm with
underwear/other alarm/no or unknown alarm)

53.39% / 17.56% / 5.38% /
22.24%
/ 1.43%

49.46% / 15.76% / 5.98% /
28.26%
/ 0.54%

52.21% / 17.02% / 5.57% /
24.06%
/ 1.14%

How heavy the child sleeps
(almost impossible to wake up/difficult to wake up/neither easy or
difficult to wake up/easy to wake up/don’t know)

10.77% / 52.22% / 22.48% /
3.75%
/ 10.78%

8.15% /
26.1% /
9.23% / 50% /
/ 6.52% /

9.98% / 51.55% /
23.57% / 4.58% /
10.32%

Enuresis frequency per week 5.05 ± 1.93 5.18 ± 1.88 5.09 ± 1.91

Bladder-relaxing medicine
(yes/no)

3.28% / 96.72% 4.89% / 95.11% 3.76% / 96.24%

Alarm treatment before
(yes/no)

25.60% / 74.40% 25.00% / 75.00% 25.43% / 74.57%

Medication treatment before (yes/no) 40.34% / 59.66% 41.28% / 58.72% 40.61% / 59.39%

Sudden urination in the daytime (yes/no) 47.58% / 52.42% 48.26% / 51.74% 47.78% / 52.22%

Wet during day (yes/no) 13.04% / 86.96% 17.44% / 82.56% 14.33% / 85.67%

Contact with nurse (yes/no) 52.05% / 47.95% 63.16% / 36.84% 54.35% / 45.65%

Weak beam (yes/no) 3.07% / 96.93% 2.73% / 97.27% 2.97% / 97.03%

Thirsty at night (yes/no) 10.17% / 89.83% 10.38% / 89.62% 10.23% / 89.77%

Dry before but now wet (yes/no) 16.31% / 83.69% 13.66% / 86.34% 15.51% / 84.49%
FIGURE 2

Distribution of patient treatment outcomes within the training set.
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assessment of the model’s predictive performance concerning the

treatment outcome for the test group, the accuracy was measured

for each individual day. In addition to the accuracy metric and to

highlight the class imbalances, precision and recall for the

classifiers, and also stacked bar plots using certain threshold

values for the probability of a patient being successful, partially

successful, or unsuccessful, were implemented.

To receive an appropriate threshold for different outcomes, an

optimization was carried out. The purpose of the optimization was

to determine the threshold that resulted in the largest number of

true positives while minimizing the occurrence of false positives.

Therefore, quotients between true positives and false positives

were calculated for each possible combination of threshold values

each day. For all possible combinations, the sum of the quotients

from day 1 through day 56 was calculated and the combination

with the highest sum (highest true positive-to-false positive ratio)

was chosen as the most appropriate threshold combination to

receive the best result based on the criterion. Due to our goal of

making early predictions regarding treatment outcomes, the

thresholds were optimized from the beginning of week 3 to the

end of week 5. This was further motivated by the fact that

predictions about treatment outcomes in the final weeks held

little interest for the patients. In addition, the initial 2 weeks of

treatment provided insufficient information for us to make

qualified predictions.
2.1 Ethical considerations

The study was approved by the Swedish Regional Ethics

Authority (2021–00206) and conducted in accordance with the

Declaration of Helsinki. The utilization of the data that were

provided by patients from the application was cleared in

accordance with the General Data Protection Regulation. The

identities of the patients were unknown to the researchers.
Frontiers in Urology 06
3 Results

3.1 Cross validation

Of the 611 patients who were not considered dropouts, 427

patients were used when training the random forest classifiers.

Figure 4 presents the mean accuracy and standard deviation from

the fivefold cross-validation each day. A regression line fitted to the

data of the mean accuracy is also presented. The regression line has

a slope of 0.0065 and coefficient of determination (R2) of 0.98. The

interpretation of these metrics is that the mean accuracy is rising in

a linear manner, and that the data variability is low. The standard

deviation is shown to consistently decrease as more days pass. These

results indicate that the model presents reliable results no matter

what section of the data frame is used.
3.2 Accuracy

Of the 611 patients who completed treatment, the 184 patients

who were not included in the training process were used to assess

the predictive performance of the trained random forest classifiers.

The accuracy values depicted in Figure 5 were obtained from these

predictions. Although day-to-day accuracy fluctuations were noted,

an overarching trend revealed a gradual enhancement in the

accuracy over time. The average accuracy in week 3 (day 15 to

day 21) was equal to 0.51, that in week 4 was equal to 0.59, and that

in week 5 was equal to 0.64. The regression line has a slope of 0.0079

and coefficient of determination (R2) of 0.95.
3.3 Precision and recall

Figures 6, 7 showcase the precision and recall of the model

throughout the 56-day treatment process. Notably, both metrics
FIGURE 3

Distribution of patient treatment outcomes within the test set.
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exhibit consistent improvement across all patient groups during the

course of treatment. It is also noteworthy that the precision values for

the unsuccessful patient group surpassed those of the other groups

throughout the entire treatment duration. In terms of recall, the

successful and unsuccessful groups initially exhibited closely aligned

values for the majority of the treatment. However, recall for the

successful group surpassed that of the unsuccessful group in the final

weeks of treatment. Notably, the patient group classified as partly

successful demonstrates the lowest scores for both precision and recall.
3.4 Patient classification

Figures 8-13 showcase the predictions of patient outcomes using

different threshold values for the probability of different outcomes.

Out of the 184 patients in the test group, 47 were marked as
Frontiers in Urology 07
successful, 44 as partially successful, and 93 as unsuccessful based

on the ICCS guidelines. In Figure 8, the threshold is set to show

patients with a probability larger than 0.5 for a successful treatment,

and Figure 10 shows the same probability, but for an unsuccessful

treatment. In these plots, a large number of both true and false

positives is observed. As the treatment progresses, the number of false

positives decreases, while the number of true positives increases. In

Figures 9, 11, the threshold was increased to 0.7, resulting in a large

decrease in false positives, and also in a decrease in true positives. It is

important to note that the overall amplitude decreases when the

threshold values increase.

In Figures 12, 13, optimized thresholds have been applied for

predicting unsuccessful and successful patients, spanning from

week 3 to the conclusion of week 5. The adjustment of the false

positive-to-true positive ratio optimized the outcomes, yielding a

nuanced variation compared with the utilization of a fixed threshold
FIGURE 5

Accuracy of the classifiers each day in predicting the treatment outcome.
FIGURE 4

Mean accuracy and standard deviation each day using fivefold cross-validation.
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at 0.7. The observed outcome manifests as a reduction in the

number of false positives coupled with an increase in the number

of true positives.

Looking at the first 2 weeks of the plots, there is an uncertainty

observed, with a similar ratio of false positives to true positives.
4 Discussion

4.1 Results

The overall results demonstrate potential in identifying patients

at an early stage in the treatment that are on the path of being
Frontiers in Urology 08
successful or unsuccessful. From week 2 onwards, there was a

noticeable number of patients classified correctly, and this

number progressively increased each week. With varying and

narrowing the threshold values these can be identified without

substantial risk of including false positives. Optimal results in the

threshold plots are achieved when classifying unsuccessful patients,

as this configuration yielded a larger number of true positives and

an enhanced ratio of true positives to false positives. This

interpretation of the results was also supported by the precision

plot, which measured the ratio of the true positives to all the

positives. The considerable factors were the unsuccessful group,

which consists of twice as many patients as the successful group.

This did not only mean that the amplitude was higher, but that the
FIGURE 7

Recall of the classifiers.
FIGURE 6

Precision of the classifiers.
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probability of an unsuccessful patient acting as a false positive in the

successful predictions was also higher, and therefore the successful

plots had a smaller amplitude and a larger number of false positives.

In most cases though, as seen in the results, the false positives were

partially successful patients. This is not as big of a problem as, for

instance, a successful patient being predicted to be unsuccessful.

Taking into account every prediction plot and recall analysis,

the initial 2 weeks exhibit limited predictive efficacy. Consequently,

the interpretations of predictions during this period should be

approached with caution. If these predictions were to be

incorporated into a patient portal for tracking treatment progress,
Frontiers in Urology 09
it might not be ideal to display the predictions before day 14, due to

their reduced reliability.
4.2 Clinical utility

It is worth noting that a significant drawback of enuresis alarm

therapy is the substantial effort and sleep disturbance it imposes on

both the patient and their family (2). One session of several months of

unsuccessful treatment could make the family disinclined to ever try

the therapy again. Furthermore, adherence to therapy is another
FIGURE 8

Number of patients predicted to have more than a 50% probability of successful treatment each day.
FIGURE 9

Number of patients predicted to have more than a 70% probability of successful treatment each day.
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problemwith the enuresis alarm. Perhaps not even half of the users will

manage to continue therapy for every night, as instructed, for more

than 1 or 2 weeks (9). Presumably, many of the non-adherent patients

would have become dry if they continued. The clinical usefulness of

these predictions is thus clear. The likelihood of the individual patient

achieving dryness can be communicated either to the healthcare

provider or to the patient and their family. This way, patients with a

significant chance of treatment success can be encouraged to adhere to

therapy, whereas those with a low chance of becoming dry can be
Frontiers in Urology 10
advised to stop treatment and seek other help, thus not having to

undergo several more weeks or months of futile efforts.

A difficult question that arises when predictions with the model

are made is what level of inaccuracy is tolerable. For instance, when

predicting which patients will have an unsuccessful treatment, only

a small share of patients can be correctly predicted during the initial

weeks of treatment, if no to very few false predictions are accepted.

Although this approach may initially appear optimal, it raises

ethical concerns about subjecting children with only a minimal
FIGURE 10

Number of patients predicted to have more than a 50% probability of unsuccessful treatment each day.
FIGURE 11

Number of patients predicted to have more than a 70% probability of unsuccessful treatment each day.
frontiersin.org

https://doi.org/10.3389/fruro.2023.1296349
https://www.frontiersin.org/journals/urology
https://www.frontiersin.org


Jönsson et al. 10.3389/fruro.2023.1296349
likelihood of a successful treatment to 8 or more weeks of the alarm

treatment as opposed to exploring alternative treatment options.

The correct approach might be a compromise, where more true

predictions are made early, at the cost of also having some false

predictions. The optimal approach regarding these questions is

something that should be discussed among healthcare professionals

and enuresis experts.
4.3 Real-world validity and
data trustworthiness

When assessing the model’s efficacy and potential applications,

real-world relevance was crucial. This involves how accurately the
Frontiers in Urology 11
model’s predictions aligned with the actual outcomes for patients

undergoing treatment. The training and evaluation of the model

relied on treatment data recorded in the Pjama application’s

calendar. However, the presence of missing days in some patients’

calendars posed some challenges. The primary concern was the

potential bias when users left days unfilled, influenced by factors

such as wet nights receiving more attention than dry nights.

Illustrating this, a hypothetical patient consistently reporting wet

nights but no dry nights could achieve success in reality but not be

classified as such. Another aspect of this issue involves our decision to

categorize patients with 1 or 2 missing days within a 2-week span as

successful if all other days were dry. Allowing 0 or 1 missing days was

unrealistic due to the high alarm treatment response rate. Conversely,
FIGURE 12

Predictions of successful patients using thresholds optimized for weeks 3–5.
FIGURE 13

Predictions of unsuccessful patients using thresholds optimized for weeks 3–5.
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permitting more missing days would create different issues. To strike a

balance, allowing 2 missing days was deemed optimal and minimizes

incorrect patient categorizations in terms of both success and failure.
4.4 Potential improvements of the model

While the results are promising, there are still improvements

that could be made. One potential improvement could result from

an increase in the amount of available data. As time passes and

more patients use the application, two aspects of the model could

improve. First, more patients could be used for training the

algorithm. Second, the choice of which patients are used for

training and testing the model could be more selective if more

patients were available. By excluding patients with many missing

days, the real-world validity of the marking of patient outcomes and

the accuracy of predictions could also potentially increase. The

dataset may also expand through the collection of more data from

each patient. New questions could be introduced in the registration,

or users may be presented with additional questions regarding

information about each night. Some questions might be strong

predictors of a certain outcome, while others could have no effect on

the predictive performance of the model. Questions should thereby

be added with care. In the worst case, new questions could have the

opposite effect, since more questions each day might discourage

families from filling in the calendar, leading to more missing days. If

more questions are added, they should not have a negative impact

on the user experience, and be related to the factors known or

suspected to affect the treatment outcome.
5 Conclusion

The prediction of the treatment outcome has great potential in

making the treatment of enuresis more efficient. When the model is

able to identify certain patients early and without risks of involving

false positives, correct treatment interventions, guidelines, and

motivational pushes can be provided to optimize the treatment

and speed up the results. In the near future, when more patients

have used the Pjama application, the results will likely improve even

more. This could revolutionize the treatment of enuresis as a whole,

and also open the door for other improvements in the field.
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early treatment data as predictors of enuresis alarm therapy response. J Pediatr Urol
(2023) 19(2):173. doi: 10.1016/j.jpurol.2022.11.003
10. Amisha, Malik P, Pathania M, Rathaur VK. Overview of artificial intelligence in

medicine. J Family Med Prim Care (2019) 8(7):2328–31. doi: 10.4103/
jfmpc.jfmpc_440_19

11. Tokar B, Baskaya M, Celik O, Cemrek F, Acikgoz A. Application of machine
learning techniques for enuresis prediction in children. Eur J Pediatr Surg (2021)
5):414–9. doi: 10.1055/s-0040-1715655

12. Franco I, Coble J. Initial outcomes using a novel bedwetting alarm (Gogoband®)
that utilizes real time artificial intelligence to wake users prior to wetting. J Pediatr Urol
(2023) 19(5):557.e1-.e8. doi: 10.1016/j.jpurol.2023.04.024
Frontiers in Urology 13
13. Sagi O, Rokach L. Ensemble learning: A survey. WIREs Data Min Knowl
Discovery (2018) 8):1249. doi: 10.1002/widm.1249

14. Biau G, Scornet E. A random forest guided tour. TEST (2016) 25:197–227.
doi: 10.1007/s11749-016-0481-7

15. Breiman L. Random forests. Mach Learn (2001) 45):5–32. doi: 10.1023/
A:1010933404324

16. Probst P, Boulesteix A, Bischl B. Tunability: Importance of hyperparameters of
machine learning algorithms. J Mach Learn Res (2019) 20(1):1934–65. doi: 10.48550/
arXiv.1802.09596

17. Probst P, Wright MN, Boulesteix A. Hyperparameters and tuning strategies for
random forest. WIREs Data Min Knowledge Discov (2019) 9(3):e1301. doi: 10.1002/
widm.1301

18. Berrar D. Cross-validation. In: Encyclopedia of bioinformatics and computational
biology. Amsterdam; Oxford; Cambridge: Elsevier. (2019). p. 542–5. doi: 10.1016/B978-
0-12-809633-8.20349-X

19. Ramadhan M, Sitanggang I, Nasution F, Ghifari A. Parameter tuning in random
forest based on grid search method for gender classification based on voice frequency.
DEStech Trans Comput Sci Eng (2017). doi: 10.12783/DTCSE/CECE2017/14611

20. Fernandez A, Garcia S, Herrera F, Chawla N. SMOTE for learning from
imbalanced data: progress and challenges, marking the 15-year anniversary. J Artif
Intell Res (2018) 4(2):1883. doi: 10.1613/jair.1.11192

21. Peterson L. K-nearest neighbor. Scholarpedia (2009) 61(1):863–905.
doi: 10.4249/scholarpedia.1883

22. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
PScikit-learn: machine learning in python. J Mach Learn Res (2011) 12:2825–30.
frontiersin.org

https://doi.org/10.1016/j.juro.2010.08.041
https://doi.org/10.1016/S0022-5347(01)67152-0
https://doi.org/10.1002/14651858.CD002911.pub2
https://doi.org/10.1136/adc.57.5.394
https://doi.org/10.1016/j.jpurol.2010.04.018
https://doi.org/10.1016/j.jpurol.2022.11.003
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.4103/jfmpc.jfmpc_440_19
https://doi.org/10.1055/s-0040-1715655
https://doi.org/10.1016/j.jpurol.2023.04.024
https://doi.org/10.1002/widm.1249
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.48550/arXiv.1802.09596
https://doi.org/10.48550/arXiv.1802.09596
https://doi.org/10.1002/widm.1301
https://doi.org/10.1002/widm.1301
https://doi.org/10.1016/B978-0-12-809633-8.20349-X
https://doi.org/10.1016/B978-0-12-809633-8.20349-X
https://doi.org/10.12783/DTCSE/CECE2017/14611
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.3389/fruro.2023.1296349
https://www.frontiersin.org/journals/urology
https://www.frontiersin.org

	Improving the efficacy of enuresis alarm treatment through early prediction of treatment outcome: a machine learning approach
	1 Introduction
	2 Materials and methods
	2.1 Ethical considerations

	3 Results
	3.1 Cross validation
	3.2 Accuracy
	3.3 Precision and recall
	3.4 Patient classification

	4 Discussion
	4.1 Results
	4.2 Clinical utility
	4.3 Real-world validity and data trustworthiness
	4.4 Potential improvements of the model

	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	References


