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Background: Stroke, even when minor, increases the risk of dementia. We aimed 
to determine whether patients with transient ischaemic attack (TIA) exhibit higher 
rates of cerebral and regional atrophy 1-year after first stroke symptoms and 
evaluate the relationship with small vessel disease and cognitive performance.

Methods: TIA patients and controls without cognitive symptoms underwent high-
resolution T1-weighted MRI and cognitive testing at baseline and 1-year. Percent 
brain volume change (PBVC) was measured, and the location of regional atrophy 
and small vessel disease (CSVD) burden was evaluated. Neuropsychological 
testing assessed memory, processing speed, and executive function.

Results: A total of 76 TIA patients and 53 controls of mean age 67 (SD  =  8) and 
68  years (SD  =  8) were recruited. TIA patients demonstrated greater improvement 
of visual memory and executive function at 1-year. TIA patients had greater 
median PBVC/year compared to controls (−0.79% [(−1.22)-(−0.38)] vs. -0.41% 
[(−0.62)-0.19]; p  <  0.001), and higher rates of volume loss (ml/year) in subcortical 
gray (−0.53 [(−1.09)-(−0.06)] vs. -0.13 [(−0.61)-0.31]; p  <  0.05) and white matter 
(−2.21 [−5.47, 0.40] vs. -0.93 [(−3.43)-2.10]; p  <  0.05). Linear regression showed 
that TIA, age, and systolic blood pressure (SBP) were associated with greater 
cerebral volume loss over 1-year. There was no significant relationship between 
PBVC and 1-year cognition.

Conclusion: A near two-fold increase in rate of cerebral atrophy 1-year after TIA is 
associated with higher SBP emphasizing the need for improved treatment of SBP. 
Cerebral and regional atrophy rates may be used to select patients for vascular 
risk reduction trials or novel therapeutics in future dementia prevention trials.
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1 Introduction

Mixed dementia is the most common form of dementia in the 
older population, with incidence increasing with age (1). It is now 
generally accepted that a significant contributor to the failure of 
therapeutic treatments for dementia is that diagnosis can only 
be reliably established late in the disease course, following years of 
neurodegeneration and small vessel disease (2). Stroke is a distinct and 
important risk factor for dementia, doubling the risk of later cognitive 
decline independent of known risk factors for dementia (3). 
Furthermore, some patients with transient ischaemic attack (TIA) 
who are presumed to have fully recovered and have had vascular risks 
assessed and managed, nonetheless have mild detectable cognitive 
deficits that may persist. Additionally, a diagnosis of TIA is associated 
with a five-fold increase in age and sex-adjusted dementia incidence 
1-year post-event and 15–20% incidence of dementia after 5 years (4, 
5). A plausible explanation is that stroke may trigger specific 
mechanisms initiating or accelerating neurodegeneration, with 
increased small vessel disease burden (6) and inflammation (7) 
proposed as possible contributors.

The identification of reliable neuroimaging markers for those at 
risk of developing dementia may allow for the implementation of 
therapeutic and pharmacological interventions in the earliest stages 
of the disease, prior to symptom presentation. One proposed 
framework supplements established neuroimaging markers of 
neurodegeneration with biomarkers of vascular disease (e.g., small 
vessel disease, cortical and sub-cortical stroke) (8). Increased 
macroscopic brain loss, as measured through serial magnetic 
resonance imaging (MRI), is one such established marker of 
neurodegeneration associated with cognitive decline in mild cognitive 
impairment (MCI) and Alzheimer’s disease (AD) (9–11). Microscopic 
lesions such as white matter hyperintensities (WMH), micro-bleeds, 
lacunes, and enlarged perivascular spaces have been linked to 
cognitive outcome in population-based studies (12).

In this longitudinal cohort study of cognitively normal TIA 
patients, we  primarily aimed to determine the annualized rate of 
percent brain volume change (PBVC), prior ventricular volume 
change (PVVC) and regional gray matter (GM) and white matter 
(WM) changes, as measured by serial high-resolution T1-MRI, in TIA 
participants and age-matched controls, and assess the relationship of 
PBVC in this cohort with vascular risk factor control, small vessel 
disease burden, and cognitive performance over 1-year.

2 Materials and methods

2.1 Study population

Consecutive high-risk TIA participants presenting with their first 
documented episode of transient stroke symptoms that fully resolved 
(13) in the anterior circulation (aphasia, motor weakness) or posterior 

circulation (visual field deficit, ataxia/vertigo plus one or more of 
motor, diplopia, hemiataxia) and control volunteers between the ages 
of 50–80 years were prospectively recruited between April 2015 and 
February 2019 (14) following written informed consent. Patients were 
diagnosed as TIA by a stroke neurologist. Subsequently, patients were 
reviewed by the senior neurologist (PAB) to ensure the inclusion 
criteria were met. Control participants were recruited from the 
community (e.g., hospital and community advertisements) and 
spousal partners. Ethics approval was provided by the University of 
Calgary Conjoint Health Research Ethics Board (REB13-0240).

2.2 Clinical data collection

The study design included a medical evaluation (clinical 
characteristics, demographics, medical history, medications, blood 
pressure) and neuropsychological testing, described in detail 
elsewhere (14). Both TIA patients and controls underwent the same 
evaluation. Premorbid intellect was calculated using the North 
American Adult Reading Test (NAART) (14). A total of 153 
consecutive participants were identified with baseline and follow-up 
MRI of adequate quality. The patients with TIA were age matched with 
control subjects by either a random 1:1 or 2:1 matching procedure 
using STATA 15.0. This resulted in a final 129 participants included in 
the analysis (Supplementary Figure S1). Excluded participants did not 
differ from included participants with respect to age or sex distribution 
(p = 0.467, p = 0.129); however, excluded participants had, on average, 
lower baseline systolic blood pressure (p = 0.014). Smoking risk was 
defined by current or previous regular use.

2.3 Image acquisition

All participants underwent MR imaging at baseline and follow-up 
using a 3.0 T MR scanner with a standard multi-channel head coil 
(General Electric Discovery 750). TIA patients were imaged within 
10 days of their presentation. T1-weighted, T2-weighted fluid-
attenuated recovery (FLAIR), and diffusion weighted imaging (DWI) 
sequences were acquired for this analysis, with the same imaging 
protocol used at both time points [specific acquisition parameters are 
described elsewhere (8)]. Quality assurance to detect image distortion 
was conducted to assess the adequacy of key image contrast and 
signal-to-noise.

2.4 Image processing

2.4.1 Percent brain volume, ventricular volume 
change and regional volume analysis

Brain tissue volume, normalized for subject head size, was 
measured with the FSL tool SIENAX (15), [RRID:SCR_002823]. 
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Percent brain volume change (PBVC) was measured with the FSL tool 
SIENA (16), [RRID:SCR_002823]. The percent ventricular volume 
change (PVVC) was calculated with the SIENA extension, VIENA 
(16), [RRID:SCR_002823], which calculates the average brain edge 
displacement that is converted to the PVVC using a volumetric scaling 
factor (outputted from SIENA) (17). PBVC and PVVC were 
annualized for each participant, based upon the number of days 
between scans, to account for variability in follow-up time. Quality 
control was conducted at each time point during analysis to ensure 
accurate brain extraction, registration, and segmentation. Regional 
anatomical volumes were measured using FreeSurfer (18, 19); 
[RRID:SCR_001847]. Specifically, the longitudinal FreeSurfer 
[RRID:SCR_001847] stream was used to obtain and calculate reliable 
intra-subject volumes for the regions of interest, namely cortical GM, 
subcortical WM, and subcortical GM (20).

2.4.2 Measurement of small vessel disease burden
Cerebral small vessel disease (CSVD) burden, as recommended 

by current STRIVE-2 guidelines (21), including white matter 
hyperintensities, chronic subcortical infarcts, enlarged perivascular 
spaces, and microbleeds, was rated visually on an ordinal scale from 
0 to 6 using a previously validated semi-quantitative scoring system 
(22, 23). Using this scoring system, two neurologists (PAB, AG) rated 
images for the presence of cerebral microbleeds (CMBs), lacunes, 
white matter hyperintensities (WMHs), and enlarged perivascular 
spaces (EPVS). Additionally, white matter hyperintensities (WMH) 
were segmented from FLAIR images using Cerebra-WML, a semi-
automated software that measures the volume of white matter lesions 
using the global threshold and contrast between different cerebral 
anatomical regions (24).

2.4.3 Diffusion lesions
Diffusion lesions were segmented by trained research assistants 

(MR, NR) from DWI images with ITK-SNAP [Version 3.6.01, 
RRID:SCR_002010], a semi-automated software used to segment 
structures in 3D medical images (25). DWI lesions were defined as per 
the STRIVE-2 guidelines (21).

2.5 Statistical analysis

Sample characteristics were described using descriptive statistics 
and frequency distributions. For crude group demographic 
comparisons, cognitive tests, and MRI metrics, Wilcoxon Rank Sum 
and Chi-square tests were used for continuous and categorical 
variables, respectively. Wilcoxon Signed Rank tests were used to 
compare total CSVD burden between baseline and follow-up, 
irrespective of group. Spearman correlations were performed to assess 
the relationship between DWI lesion volume and annualized PBVC/
PVVC, and regional volume changes, among DWI-positive TIA 
patients only. Bonferroni corrections were employed when necessary 
to adjust for multiple comparisons.

Multiple linear regression models were performed to examine the 
association between TIA status and annualized performance on 

1 www.itksnap.org

cognitive tests, while controlling for baseline age, sex, normalized 
brain volume (NBV), premorbid intellect (NAART), systolic BP, HDL 
cholesterol, smoking history, DWI volume, WMH volume, CSVD 
burden score. Moreover, multiple linear regression models were 
performed to examine the association between TIA status, annualized 
PBVC and PVVC, and the following covariates: baseline age, systolic 
blood pressure, HDL cholesterol, DWI volume, WMH volume, CVSD 
burden score change. Multiple linear regression models were also 
performed to investigate the association between annualized PBVC 
and cognitive scores at 1-year, after adjusting for TIA status, age, and 
sex. The assumptions of multiple linear regression models were not 
violated. All analyses were performed using IBM SPSS 28 
[RRID:SCR_002865].

3 Results

At total of 129 age-matched subjects had follow-up MRI of 
adequate quality at 1-year. The TIA and control groups did not 
significantly differ with respect to age, sex, baseline depression 
symptoms, baseline HDL cholesterol, history of diabetes, or smoking 
history (current/past) (Table 1). Missing complete cognitive test data 
(TMT-B) at baseline (1 TIA) and follow-up (3 TIA, 2 controls) (due 
to refusal, fatigue, etc.) was excluded on a pairwise basis 
from analyses.

The cognitive profiles of participants are summarized in Table 2. 
At baseline, TIA participants scored significantly lower on the BVMT 
Delayed (p = 0.005), WAIS-IV Coding (p < 0.001), and TMT-B tasks 
(p = 0.004), however at follow-up, there were no significant differences 
in scoring between groups (Table 2). TIA status significantly predicted 
the rate of improvement over 1-year on the BVMT Delayed (p = 0.007) 
and WAIS-IV DS Coding tasks (p = 0.029), as compared to controls, 
after controlling for baseline risk factors.

The MRI metrics of participants are summarized in Table 3. There 
was a trend for greater baseline WMH volume in TIAs vs. controls 
(2.80 mL [1.78–5.60], 1.84 mL [1.15–4.44], p = 0.051). Participants did 
not differ with respect to annualized WMH volume change or CVSD 
burden score change over 1-year (p = 0.750, p = 0.756, respectively). 
However, total CSVD burden significantly increased between baseline 
(1.0 [0.0–2.0]) and follow-up (2.0 [1.0–3.0]), irrespective of group 
(Z = −5.904, p < 0.001).

TIA patients exhibited significantly higher annualized rates of 
percent brain volume change (PBVC/year), when compared to 
controls (−0.79%/year [−1.22-(−0.38)%/year], −0.41%/year [−0.62-
(−0.19)%/year], respectively; p < 0.001) (Table  3). These values 
correspond to atrophy rates for TIA of −10.97 mL/year (−17.01-
(−5.80) mL/year) and controls of −5.23 mL/year (−8.63-(−2.87) mL/
year). There was a trend for greater PVVC in TIAs (+4.99%/year 
[2.21–7.57%/year], versus control values of +3.75%/year [0.64–6.10%/
year]; p = 0.064).

There was no volumetric difference in segmented regions at 
baseline (cortical GM, subcortical GM, subcortical WM) between TIA 
and control participants (p = 0.109, p = 0.183, p = 0.639; corrected 
± = 0 017. ). However, TIA participants were found to have higher rates 
of subcortical GM volume loss between baseline and follow-up, 
compared to controls (−0.53 mL/year [−1.09-(−0.06) mL/year], 
−0.13 mL/year [−0.61-(0.31) mL/year], respectively; p = 0.011). The 
TIA group also exhibited greater rates of volume loss in subcortical 
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WM compared to controls (−2.21 mL/year [−5.47–0.40 mL/year], 
−0.93 mL/year, [(−3.43)–2.10 mL/year], p = 0.049).

Within the TIA group, 27 patients (35.5%) were found to 
be  DWI-positive (0.27 mL, [0.08–0.60 mL]). The presence of a 
DWI-positive lesion was not significantly correlated with annualized 
PBVC or PVVC (ρ = −0.92, p = 0.650; ρ = 0.20, p = 0.320, respectively). 
DWI-positive TIA (n = 27) had an annualized PBVC of −0.95%/year 
(−1.23-(−0.32) %/year), while DWI-negative TIA (n = 49) had an 
annualized PBVC of −0.70%/year (−1.03-(−0.38) %/year). DWI 
lesion volume was not significantly correlated with regional volume 
changes (subcortical GM, ρ = −0.126, p = 0.530; subcortical WM, 
ρ = −0.323, p = 0.100).

Multiple linear regression results indicated an association between 
baseline risk factors and covariates and annualized rate of PBVC 
(Table  4). Within the model, TIA status (p = 0.040), greater age 
(p = 0.004) and baseline systolic blood pressure (p = 0.033) were 
significantly associated with increased annual PBVC, indicating a 

greater rate of whole brain volume loss. Finally, annualized PBVC was 
not found to significantly predict 1-year scores on any cognitive 
domain after adjusting for TIA status, age, and sex (p > 0.008 for all 
domains, adjusted for multiple comparisons, Table 5).

4 Discussion

This study demonstrates that TIA participants experience near 
double the rate of annualized percent brain volume loss in the first 
year after the initial stroke event, compared to controls. Subsequent 
regional analyses suggest that this effect is related to increased rates of 
subcortical GM and WM volume losses over this period, in the 
absence of significant differences in cortical GM volume change 
between TIA and control groups. Increasing age, TIA status, and 
systolic blood pressure are associated with a greater rate of percent 
brain volume loss. DWI lesions, despite frequently being detected in 

TABLE 2 Wilcoxon Rank-Sum tests comparing median (Q1-Q3) performance of TIA and control participants in neuropsychological testing at baseline 
and follow-up (α = 0.05).

Baseline Follow-up

TIA Control p-value TIA Control p-value

MMSE* 29.0 (28.0–30.0) 30.0 (30.0–30.0) < 0.001 N/A N/A N/A

MoCA 25.0 (23.0–27.0) 27.0 (25.0–28.0) 0.004 26.0 (24.5–28.0) 27.0 (25.0–29.0) 0.115

ACE-R total 91.0 (88.0–96.0) 95.0 (91.0–98.0) < 0.001 92.0 (88.0–95.0) 95.0 (91.0–98.0) 0.009

ACE-R verbal fluency 19.0 (15.0–21.0) 19.0 (19.0–21.0) 0.084 19.0 (15.0–21.0) 19.0 (15.0–21.0) 0.156

BVMT total 20.0 (15.0–25.0) 25.0 (19.0–30.0) < 0.001 24.0 (20.0–29.0) 28.0 (23.0–31.0) 0.020

BVMT delayed 9.0 (7.0–11.0) 11.0 (9.0–12.0) 0.005 10.0 (8.0–11.5) 10.0 (9.0–12.0) 0.369

RAVLT 10.0 (7.0–12.0) 11.0 (7.0–13.0) 0.071 9.0 (7.0–12.0) 12.0 (9.0–14.0) 0.008

WAIS-IV DS coding 54.0 (48.0–63.0) 64.0 (57.0–73.5) < 0.001 64.3 (53.0–78.0) 67.5 (57.0–79.0) 0.304

TMT-A** 32.1 (27.6–42.2) 32.0 (24.8–36.7) 0.431 32.7 (27.7–38.8) 29.6 (25.0–37.9) 0.194

TMT-B** 81.0 (64.5–99.6) 64.9 (53.2–85.1) 0.004 72.0 (57.3–102.0) 68.0 (53.4–81.8) 0.075

*MMSE only collected at baseline.
**TMT A and TMT B are reported as time (seconds) taken to complete the task.  
Bold values indicates significance of the alpha value.
MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; ACE-R, Addenbrooke’s Cognitive Examination-Revised; BVMT, Brief Visuospatial Memory Test; RAVLT, 
Rey Auditory Verbal Learning Test; WAIS-IV DS Coding, Wechsler Adult Intelligence Scale (4th Edition) Digit Symbol Coding; TMT, Trail Making Test.

TABLE 1 Sample characteristics for TIA patients and controls (α = 0.05).

Characteristics TIA (n  =  76) Control (n  =  53) p-value

Age, years 68.0 (61.0–75.0) 66.0 (60.5–73.0) 0.284

Sex, n women (%) 32 (42.1) 28 (52.8) 0.230

Education, years 13.5 (12.0–16.0) 15.0 (12.3–16.0) 0.021

Premorbid intellect (NAART) 108.7 (100.9–116.9) 113.6 (106.5–117.1) 0.042

Baseline to follow-Up, days 452 (376–495) 475.0 (421–582) 0.038

Baseline depression, raw CES-D 8.0 (3.0–16.0) 8.5 (4.0–14.0) 0.750

Systolic blood Pressure, mmHg* 140.7 (18.0) 127.6 (14.1) < 0.001

HDL cholesterol, mmol/L 1.3 (1.1–1.6) 1.5 (1.1–1.7) 0.322

Hypertension treatment, n (%) 45 (59.2) 16 (30.2) < 0.001

Diabetes, n (%) 7 (9.2) 1 (1.9) 0.090

Smoking, n (%) 39 (51.3) 20 (37.7) 0.128

NB: the reported numbers were medians with first quartile and third quartile unless otherwise stated; *Two-sample T-test used for systolic blood pressure and is presented as mean (SD).  
Bold values indicates significance of the alpha value.
NAART, North American Adult Reading Test; CES-D, Center for Epidemiological Studies-Depression Scale.
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TIA patients, were not associated with cerebral or regional rates of 
atrophy. The absence of a relationship between cerebral atrophy rates 
and DWI lesions supports our hypothesis that the observed brain 
volume changes are related to either chronic progressive incipient 
neurodegeneration, vascular mechanisms, or both (26).

Rates of whole-brain atrophy have been shown to parallel 
pre-clinical and clinical dementia progression, and is therefore 
frequently used as a disease biomarker for clinical trials (27). TIA 
participants had a median annualized PBVC of −0.79% per annum 
compared to −0.41% per annum for the control group. This is 
comparable to cerebral atrophy rates reported in mild cognitive 
impairment (MCI) (1.1% per annum) and in established AD (2–3% 
per annum) (10). In comparison, healthy controls experience an 
estimated cerebral atrophy rate of 0.2–0.5% per annum due to 
age-related decline, as is demonstrated by our control group (28). TIA 
patients therefore experience a lower atrophy rate than MCI patients, 

but a higher rate than healthy aging controls. It is, however, currently 
unknown if rigorous vascular risk reduction and lifestyle changes can 
limit this increased risk (4, 5). We found no significant relationship 
between cognition at 1-year and annualized PBVC, suggesting that 
structural changes can occur in the absence of short-term cognitive 
decline in TIA subjects (29). We  found improvement on multiple 
cognitive tests in both TIA and control groups over 1 year follow-up. 
It is recognized that performance can improve after repeat cognitive 
testing even when alternate forms of the test are implemented (30). 
However, the TIA patients showed greater improvement than the 
controls on tests of visual spatial memory and attention, implicating 
not only practice effects, but also possible recovery mechanisms 
following the TIA.

Our results indicate that an increased rate of subcortical GM 
volume loss may be a significant component of the increased rate of 
whole-brain atrophy observed in our TIA cohort. Previous research 

TABLE 4 Multiple linear regression model examining the associations between baseline risk factors (age, TIA status, systolic BP, HDL cholesterol, DWI 
volume, WMH volume, CSVD burden score change) and annualized rate of percent brain volume change (PBVC) (α = 0.05).

Adjusted R-squared  =  0.171
Model p-value <0.001

Standardized β 95% CI p-value

Age −0.242 −0.360 – (−0.008) 0.004

TIA −0.184 −0.408– (−0.076) 0.040

Systolic BP −0.187 −0.396 – (−0.028) 0.033

HDL cholesterol 0.040 −0.347 – (−0.027) 0.626

DWI volume −0.126 −0.293 – 0.040 0.136

WMH volume −0.018 −0.198 – 0.153 0.827

CSVD burden score change 0.028 −0.135 – 0.191 0.733

NB: No potential collinearity among the independent variables was identified based on variance inflation factor and condition index. Bold values indicates significance of the alpha value.

TABLE 3 Baseline and follow-up MRI metrics of TIA and control participants compared using Wilcoxon-Rank Sum tests (α = 0.05).

TIA (n  =  76) Control (n  =  53)

Median Q1-Q3 Median Q1-Q3 p-value

NBV BL, mL 1441.19 1393.93–1486.27 1425.23 1356.18–1506.00 0.394

WMH BL, mL 2.80 1.78–5.60 1.84 1.15–4.44 0.051

WMH FU, mL 3.45 2.24–5.86 2.67 1.71–5.30 0.121

WMH change, mL/year 0.36 −0.06-0.98 0.30 −0.01-0.76 0.705

DWI volume BL, mL* 0.27 0.08–0.60 N/A N/A N/A

CSVD burden score change 0 0–1 0 0–1 0.977

PBVC, % per year −0.79 −1.22-(−0.38) −0.41 −0.62-(−0.19) < 0.001

PVVC, % per year 4.99 2.21–7.57 3.75 0.64–6.10 0.064

Cortical GM change, % per year −0.05 −0.44-0.28 0.17 −0.32-0.44 0.210

Cortical GM change, mL/year −0.54 −5.69-3.36 3.18 −3.40-6.49 0.054

Subcortical GM change, % per year −0.04 −0.09-(−0.01) −0.01 −0.04-0.03 0.011

Subcortical GM change, mL/year −0.53 −1.09-(0.06) −0.13 −0.61-0.31 0.011

Subcortical WM change, % per year −0.19 −0.43-0.04 −0.07 −0.29-0.15 0.039

Subcortical WM change, mL/year −2.21 −5.47-0.40 −0.93 −3.43-2.10 0.049

*DWI volumes were only measured in 27 DWI-positive TIA patients. Bold values indicates significance of the alpha value.
BL, baseline; FU, follow-up; NBV, normalized brain volume; WMH, white matter hyperintensities; DWI, diffusion weighted image; CSVD, cerebral small vessel disease; PBVC, percent brain 
volume change; PVVC, percent ventricular volume change; GM, gray matter; WM, white matter.
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has identified cross-sectional subcortical GM volume differences, in 
regions such as the hippocampus, amygdala, and nucleus accumbens, 
between MCI and controls (31). In patients with MCI, increased 
subcortical GM atrophy has been identified as a risk factor for AD 
conversion and has been shown to correlate with cognitive impairment 
severity (32).

Higher systolic blood pressure was found to be  significantly 
associated with annualized PBVC in our cohort. Hypertension is a 
consistent risk factor for both stroke and dementia (30, 33). 
Hypertension has been associated with increased brain atrophy in 
cross-sectional (34) and longitudinal studies (29). There is a direct 
relationship between midlife hypertension, brain atrophy, and 
increased AD pathology (e.g., amyloid plaques, neurofibrillary 
tangles) at autopsy (35). The mechanisms by which hypertension 
affects cognitive function remain uncertain, but it is conceivable that 
high blood pressure may dysregulate cerebral blood flow resulting in 
regional hypoperfusion, ischemia, and inflammation (30, 33). This 
may lead to breakdown of the blood–brain barrier, contributing to 
progressive accumulation of small vessel disease and 

neurodegeneration (30, 33). Cerebrovascular disease has significant 
influence on cognitive performance in aging and commonly interacts 
with AD and other neurodegenerative diseases (36).

We did not find an association between WMH and cerebral 
atrophy rates, unlike previous studies of TIA and minor stroke (29), 
possibly because the relationship between WMH and cerebral atrophy 
is stronger when there is established stroke. Previous studies have 
found that increased WMH burden and decreased cerebrospinal fluid 
amyloid-beta levels are independently associated with greater brain 
atrophy in healthy control subjects, but not in MCI or AD patients, 
possibly because the latter two entities represent a more severe stage 
of disease (10). These results suggest that other sensitive markers of 
vascular disease, such as quantitative cerebral blood flow or white 
matter diffusion tensor imaging, should be measured to determine the 
relation of small vessel disease with brain atrophy rates (8). The 
analysis of total cerebral SVD burden demonstrated no significant 
differences between TIA and controls in our cohort at baseline, but 
further studies will be required to evaluate the relationship of cerebral 
SVD accumulation and how it contributes to measurable changes in 
brain volume over time. Previous studies have yielded mixed results 
on the relationship between markers of small vessel disease and 
volumetric cerebral atrophy changes (37). As there have been no 
previous comparisons of a global semi-quantitative CSVD burden 
score and rates of atrophy, there are opportunities for future 
subdomain analyses of this burden score (CMBs, lacunes, WMHs, 
EPVS) as they relate to brain atrophy.

This study has several potential limitations. We  attempted to 
mitigate the impact of selection bias with a thorough description of 
the study cohort and the blinding of our analysis to group allocation. 
We also recognize the limitations of a relatively small sample size 
when utilizing regression analyses, with the risk of overfitting the 
statistical models. We also acknowledge that the inclusion of multiple 
outcome variables in our analyses may inflate the Type I error rate. 
The inclusion of healthy controls is limited by the challenges of 
identifying an appropriate match to participants in the disease group. 
However, the control outcome variables described in this study, 
including measures of brain atrophy, are in line with other published 
control data, indicating that these controls are similar to those 
included in other studies. Furthermore, we restricted our cohort to 
ages 50–80 resulting in a TIA cohort that is slightly younger, on 
average, than the general TIA population. This age range was chosen 
to evaluate younger patients presenting with early volumetric changes 
quantified by structural MRI and cognitive performance. We therefore 
acknowledge that these results may not be  generalizable to the 
older patient.

This study has several important findings. First, we demonstrated 
a near two-fold increase in the rate of cerebral atrophy 1-year after TIA 
that is associated with higher systolic blood pressure, emphasizing the 
need for improved blood pressure control in high-risk populations. 
The increased rate of cerebral and regional brain atrophy occurred 
independently of the presence of a DWI lesion. Second, these changes 
in brain structure over 1-year occurred in the absence of significant 
cognitive change in association with PBVC, indicating that increased 
rates of brain atrophy occur prior to the development of clinically 
evident cognitive impairment. Therefore, and most importantly, this 
period of declining brain volume prior to cognitive change provides a 
window for preventative or novel therapeutics to mitigate the complex 
disease processes that may be contributing to the increased rate of 

TABLE 5 Multiple linear regression models examining the associations 
between annualized PBVC and cognitive scores within different cognitive 
domains at 1-year.

A. Visual 
memory

Standardized β 95% CI p-value

BVMT delayed 0.130 −0.216-1.295 0.137

B. Verbal 
memory

Standardized β 95% CI p-value

RAVLT 0.100 −0.402-1.478 0.202

C. Verbal 
fluency

Standardized β 95% CI p-value

ACE-R verbal 

fluency

−0.027 −1.156-0.851 0.870

D. 
Processing 
speed

Standardized β 95% CI p-value

TMT-A 0.025 −2.537-3.380 0.990

E. 
Executive 
function

Standardized β 95% CI p-value

WAIS-IV DS 

coding

−0.076 −7.500-3.141 0.487

TMT-B −0.067 13.067–5.961 0.370

Each cognitive score was tested in a separate model after adjusting for TIA status, age, and 
sex (α = 0.008, adjusted for multiple comparisons).
ACE-R, Addenbrooke’s Cognitive Examination-Revised; BVMT, Brief Visuospatial Memory 
Test; RAVLT, Rey Auditory Verbal Learning Test; WAIS-IV DS Coding, Wechsler Adult 
Intelligence Scale (4th Edition) Digit Symbol Coding; TMT, Trail Making Test.
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brain atrophy. This study offers a unique insight into the early changes 
in brain volume detectable by MRI and the relationship with SBP even 
after a relatively short follow-up period of 1-year from the incident 
TIA. Predictors of early neurodegeneration, such as change in brain 
volume, are promising pre-clinical biomarkers that could monitor 
vascular risk management in the short-term, and ultimately improve 
subject selection strategies for future clinical trials.
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