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Changes in Treg and Breg cells
in a healthy pediatric population

Yiyi Luo1,2,3, Daniel Acevedo1,2,3, Alexandru Vlagea2,4,
Anna Codina5, Ana Garcı́a-Garcı́a1,2,3, Angela Deyà-Martı́nez1,2,3,
Celia Martı́-Castellote1,2,3, Ana Esteve-Solé 1,2,3*†

and Laia Alsina1,2,3,6*†

1Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology
Department, Hospital Sant Joan de Déu, Barcelona, Spain, 2Clinical Immunology Unit, Hospital Sant
Joan de Déu-Hospital Clı́nic, Barcelona, Spain, 3Study Group for Immune Dysfunction Diseases in
Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain, 4Biomedic Diagnostic
Center (CDB), Hospital Clı́nic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-
Hospital Clı́nic de Barcelona, Barcelona, Spain, 5Biobanco Pediátrico para la Investigación Hospital
Sant Joan de Déu, Barcelona, Spain, 6Department of Surgery and Medical Specializations, Facultat de
Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
The interpretation of clinical diagnostic results in suspected inborn errors of

immunity, including Tregopathies, is hampered by the lack of age-stratified

reference values for regulatory T cells (Treg) in the pediatric population and a

consensus on which Treg immunophenotype to use. Regulatory B cells (Breg)

are an important component of the regulatory system that have been poorly

studied in the pediatric population. We analyzed (1) the correlation between the

three immunophenotypic definitions of Treg (CD4+CD25hiCD127low,

CD4+CD25hiCD127lowFoxP3+, CD4+CD25hiFoxP3+), and with CD4+CD25hi and

(2) the changes in Treg and Breg frequencies and their maturation status with

age. We performed peripheral blood immunophenotyping of Treg and Breg

(CD19+CD24hiCD38hi) by flow cytometry in 55 healthy pediatric controls. We

observed that Treg numbers varied depending on the definition used, and the

frequency ranged between 3.3–9.7% for CD4+CD25hiCD127low, 0.07-1.6% for

CD4+CD25hiCD127lowFoxP3+, and 0.24-2.83% for CD4+CD25hiFoxP3+. The

correlation between the three definitions of Treg was positive for most age

ranges, especially between the two intracellular panels and with CD4+CD25hi vs

CD4+CD25hiCD127low. Treg and Breg frequencies tended to decline after 7 and 3

years onwards, respectively. Treg’s maturation status increased with age, with a

decline of naïve Treg and an increase in memory/effector Treg from age 7

onwards. Memory Breg increased progressively from age 3 onwards. In

conclusion, the number of Treg frequencies spans a wide range depending on

the immunophenotypic definition used despite a good level of correlation exists

between them. The decline in numbers and maturation process with age occurs

earlier in Breg than in Treg.
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1 Introduction

Regulatory T cells (Treg) are a main component of immune

regulation and tolerance; quantitative (frequency) and/or

qualitative (function) defects in Treg lead to autoimmunity,

inflammation, lymphoproliferation, and/or severe atopy (1–3).

Tregopathies are a growing group of primary immune regulatory

disorders (PIRD) (4, 5) in which Treg development and function

are directly affected. At present, mutations in 10 genes are

responsible for Treg defects, and these are either loss-of-function

mutations [forkhead box P3 (FOXP3), cluster of differentiation 25

(CD25) (interleukin 2 receptor A), CD122 (interleukin 2 receptor

B), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), LPS

Responsive Beige-Like Anchor Protein (LRBA), broadcomplex-

tramtrack-bric-a-brac and Cap’n’collar homology 2 (BACH2),

FERM domain containing kindlin 1 (FERMT1), and DEF6

guanine nucleotide exchange factor (DEF6)] or gain-of-function

mutations [signal transducer and activator of transcription 3

(STAT3) and IKAROS family zinc finger 1 (IKZF1)] (2, 3). Apart

from the aforementioned genes, recent findings reported that the

Neurobeachin Like 2 (NBEAL2) interacts with CTLA-4 and thereby

up-regulates CTLA-4 expression signaling (6). As might be

expected, the loss of function mutation in NBEAL2 leads to a

secondary CTLA-4 deficiency in activated T cells; however, Treg

function appears to be unaffected (6). Therefore, further studies are

needed to evaluate the impact of NBEAL2 deficiency on Treg

phenotype and activity.

The diagnostic approach for suspected inborn errors of

immunity (IEI) including Tregopathies consists of what is defined

as the “wholly trinity approach” which includes medical history,

genetic studies, and immunological tests (2, 3, 7). Next-generation

sequencing (NGS) has made genetic diagnosis more affordable and

approachable and it is a powerful tool for targeted therapy (8).

Nonetheless, genetic studies present limitations including a lower

than desirable diagnostic yield, which is below 30-40% in pediatric

patients (8), and the difficulty in interpreting the causal relationship

between genotype and clinical phenotype (8–11). New

multidisciplinary models are being implemented to resolve these

limitations (12). In fact, the challenges are greater for variants of

unknown significance and also for phenotypes without

confirmatory genetics as locus heterogeneity and incomplete

penetrance make it difficult to draw firm conclusions in cause-

effect relationship (8, 9, 13–16). Current guidelines for investigating

the causality of sequence variants in IEI incorporate immunological

tests including immunophenotyping mostly by flow cytometry to

assess the biological effects of mutated genes (9, 10, 13, 16–20).

Immunophenotyping is also included in different international

consensus documents to enable the clinical diagnosis of IEI in the

absence of a genetic diagnosis (13, 21, 22).

The first described and best-known Treg defect is the immune

dysregulation polyendocrinopathy enteropathy X-linked syndrome
Abbreviations: Breg, Regulatory B cells; CD, cluster of differentiation; eTreg,

effector Regulatory T cells; FoxP3, forkhead box P3; IPEX, immune dysregulation

polyendocrinopathy enteropathy X-linked syndrome; PIRD, primary immune

regulatory disorders; Treg, regulatory T cells.
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(IPEX). IPEX is caused by hemizygous pathogenic variants in the

FOXP3 gene (15). There are over 70 FOXP3 mutations associated

with IPEX (15, 17, 18, 23) but still no well-defined genotype-

phenotype correlation which can interfere with patient diagnosis

and decisions on therapeutic interventions (24). Currently, 20-30%

of patients presenting clinical features of IPEX have no mutations in

FOXP3 and are termed “IPEX-like” (25). In the European Society

for Immunodeficiencies (ESID) Registry working definitions for the

clinical diagnosis of IEI (13, 21), evaluation of Treg (Foxp3

expression in CD4+CD25+ cells) appears as a diagnostic criterion

in IPEX and IPEX-like suspected disease (13). Furthermore,

evaluation of Treg may also be of value in other IEI besides

Tregopathies, such as hemophagocytic lymphohistiocytosis

(HLH) (26), very early onset inflammatory bowel disease (VEO-

IBD) (27), autoimmune lymphoproliferative syndrome (ALPS) (28,

29), activated phosphoinositide 3-kinase delta syndrome (APDS)

(28, 30), and common variable immunodeficiency (CVID) (31–33).

Tregopathies, and most PIRD, are early-onset diseases (18, 19,

34). Thus, Treg assessment in the healthy pediatric population is

needed for the interpretation of patients’ results. This has only been

previously performed in two smaller cohorts (35, 36). Furthermore, it

can help to better characterize Treg norm-biological development

during early life as it shapes the future regulatory immune system. An

outstanding question is the markers used to define Treg: the most

accurate definition for clinical diagnosis includes the use of both

surface and intracellular markers: CD4+CD25hiCD127lowFoxP3+ (25,

37–39). However, current literature reports three other different

marker combinations for both research and clinical use:

CD4+CD25hiCD127low cells (35, 40), CD4+CD25hiFoxP3+ cells (18,

41, 42), and CD4+CD25hiCD127lowCCR4+ (43, 44). As for the latter,

C-C chemokine receptor 4+ (CCR4+) is highly expressed in Treg and

plays a key role in Treg infiltration to the inflammatory tissue (45),

thus CCR4 should be used as an additional marker applied for

defining memory Treg (CD45RO+) with effector capacity called

effector Treg (eTreg) (36, 37, 46). Therefore, herein, we defined

CD4+CD25hiCD127lowCD45RO-CCR4- as naïve Treg and

CD4+CD25hiCD127lowCD45RO+CCR4+ as eTreg. Finally, the

expression of IL-2R (CD4+CD25hi) is of clinical use in Treg

evaluation as well (13, 21). This lack of agreement on the definition

of the Treg phenotypemarker highlights the need to evaluate whether

a variation exists in Treg numbers depending on the marker

combinations used in the absence of a consensus, especially when

intended for clinical use (39).

Regulatory B cells (Breg) or interleukin (IL)-10 producing

B cells (B10) are also widely accepted as an important

modulatory component of the immune system that suppresses

T cell differentiation and promotes peripheral tolerance (47–49).

Specifically, Breg suppresses T helper (Th) 1/17 cells differentiation

and their capacity to release inflammatory cytokines (i.e., IFN-g and
TNF-a) (48, 50); Breg also enhances the activity of Treg (48). Thus,
the breakdown of Breg activity is assumed to be associated with

both autoimmunity (49, 51, 52) and immunodeficiency (53–55). In

contrast to Treg, one of the main challenges in defining Breg is the

lack of consensus on their phenotypic definition and the

identification of the lineage-specific transcription factor (47).

Currently, the most widely accepted phenotype for Breg is
frontiersin.org
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CD19+CD24hiCD38hi (immature cells) (48, 50, 56–59), and for

memory Breg, it is CD19+CD24hiCD27+ (also IL-10 producing

cells) (60, 61). However, this definition of Breg remains

controversial. Expression of both CD24 and CD38 is highly

present in bone marrow-derived immature B cells, so many

authors have described CD19+CD24hiCD38hi cells as transitional

B cells (36, 62). Nevertheless, several works have demonstrated that

these CD19+CD24hiCD38hi cells do exhibit inhibitory capacity (47,

48, 62, 63), whereas CD19+CD24intCD38int cells do not (50), which

further reinforces the notion that CD19+CD24hiCD38hi are B cells

with regulatory functions. Unlike Treg, Breg is only rarely evaluated

in the context of IEI (33). Nonetheless, it is of interest to define

Breg’s norm-biological development during early life for future

work (53–55).

In summary, our aim was to study the correlation between the

three currently most used Treg definitions, and with CD4+CD25hi,

to find out whether they are comparable, and then to evaluate the

changes in both Treg (three definitions) and Breg in the pediatric

population, which could help improve the understanding of the

development of the regulatory population’s biological process in

health and disease, and their use in the clinical diagnosis of IEI.
2 Methods

2.1 Sample collection

Peripheral blood was collected in vacutainer tubes containing

lithium heparin as an anticoagulant (Becton Dickinson, Cat 367885,

Franklin Lakes, New Jersey, United States) and maintained at room

temperature until processing within 24h after collection.

The control population of pediatric patients was recruited with

the support of the Hospital Sant Joan de Déu-Biobank, following

the circuit established by the Biobank for this objective and after

signing the specific informed consent. Included healthy pediatric

controls were patients receiving elective surgery (i.e., ear, nose, and

throat surgery; phimosis surgery) supervised by pediatricians from

the Hospital Sant Joan de Déu. Inclusion criteria: a) age under 18

years of age; b) signing of informed consent and assent specific to

the healthy controls. Exclusion criteria : a) diagnosis of

chromosomal diseases, cardiac or midline malformations, and

oncological, hematological, or immune-related diseases; b)

presenting any type of acute or chronic infection known at the

time of blood sample collection.
2.2 Sample processing

For surface staining of both Treg and Breg, 50µL of heparinized

whole blood was incubated for 15 min at room temperature (RT)

with the appropriate concentration of mAbs. Cells were then

incubated with 2 ml of BD lysing solution 1x (BD Bioscience,

United States) for 15 min at RT to lyse erythrocytes and fix cells.

Finally, cells were washed two times with phosphate-buffered saline

(PBS) 1X. For Treg intracellular staining, Treg Detection Kit (CD4/
Frontiers in Immunology 03
CD25/FoxP3) (Cat: 130-093-142, Miltenyi Biotec, Bergisch

Gladbach, Germany) was used following the manufacturer’s

instructions. Briefly, after surface mAb staining, cells were fixed

with 500ml of fixation buffer for 30 min at 4°C. Cells were washed

two times with PBS 1X and after that incubated with perm buffer for

cell permeabilization. To block non-specific mAb binding, cells

were incubated with 20ml of perm buffer and 5ml of FcR Blocking

Reagent (Cat: 130-059-901, Miltenyi Biotec, Bergisch Gladbach,

Germany) for 5 min at RT. Cells were then stained with FoxP3-APC

mAb for 30 min at 4°C and finally washed with PBS 1X.

Populat ions were defined as fo l lows : 1) Treg as

CD4+CD25hiCD127low, CD4+CD25hiCD127lowFoxP3+, and CD4+

CD25h iFoxP3+ , and 2) Treg subse t s as na ïve Treg

(CD4+CD25h iCD127lowCD45RO-CCR4-) , eTreg (CD4+

CD25hiCD127lowCD45RO+CCR4+), and activated eTreg

(CD4+CD25hiCD127lowCD45RO+CCR4+HLA-DR+) (Supplementary

Figure 1). We studied Treg with (1) an extracellular panel including

CD3-APC-H7 (Cat: 641415), CD4-V450 (Cat: 651849), CD25-PE (Cat:

555432), CD127-PE-Cy7 (Cat: 560822), CD45RO-APC (Cat: 340438),

C-C chemokine receptor type 4 (CCR4)-BV510 (Cat: 563066), and

human leukocyte antigens-DR (HLA-DR)-FITC (Cat: 555811) and (2)

an intracellular panel including CD3-V450 (Cat: 560365), CD4-FITC

(Cat: 345768), CD25-PE (Cat: 555432), CD127-PE-Cy7 (Cat: 560822),

and FoxP3-APC (130-125-580). Transitional Breg was defined as

CD19+CD24hiCD38hi and memory Breg as CD19+CD24hiCD27+. We

studied Breg with CD19-BV510 (Cat: 562947), CD24-PerCP-Cy5.5

(Cat: 561647), CD38-PE-Cy7 (Cat: 335825), and CD27-APC (Cat:

558664). Monoclonal antibodies (mAbs) used for all panels were

from BD Biosciences (Franklin Lakes, New Jersey, United States),

with the exception of anti-FoxP3 mAb which was from Miltenyi

Biotec, Bergisch Gladbach, Germany.
2.3 Sample acquisition and
statistical analysis

All samples studied with flow cytometry were acquired using a

FACSCanto-II (BD Bioscience) cytometer. A minimum of 20,000

events were acquired for the different populations studied: T cells

for Treg and B cells for Breg flow cytometry data were analyzed with

Flowjo v.10.

We used SPSS 19.0 (AN BIM® Company) for the statistical

analysis. The normal range of each cell subset was defined in both

absolute count (cells 109/L) and relative frequency (% populations)

based on the median, minimum, and maximum. The absolute

number of subsets was calculated from the absolute number of

lymphocytes provided by the hematological analyzer (ADVIA 2120,

Siemens, Germany). As data did not follow a Gaussian distribution,

we performed non-parametric tests to study the significance of the

correlation between cell subset/age (Spearman test) and the

comparisons between the age groups (Mann-Whitney U test). In

the Spearman test, the perfect negative correlation was referred to as

-1 and the perfect positive correlation as +1. Low positive

association was 0.1-0.3; moderate positive association was

between 0.3-0.5; and strong positive association was 0.5-1 (64).
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Negative correlations follow the same criteria. We used Prism 7.04

s o f twa r e (G r aphPad , L a J o l l a , CA , USA) f o r t h e

graphical representation.

This study was carried out in accordance with the

recommendations of the Ley General de Sanidad (25/4/1986) Art.

10. The protocol was approved by the Ethics Committee of the

Hospital Sant Joan de Déu (Comité Ético de Investigaciones

Clıńicas number PIC-129-18). All parents/legal guardians of

children included in this study signed the informed consent,

complying with current legislation.
3 Results

The study cohort included 55 peripheral blood samples from

healthy pediatric donors aged 1 to 18 years old: 12 aged 1 - 3 years

(11 boys, 1 girl); 6 aged >3 - 5 years (6 boys); 9 aged >5 - 7 years (7

boys, 2 girls); 14 aged >7 - 10 years (11 boys, 3 girls); 6 aged >10 - 14

years (2 boys, 4 girls); and 8 aged >14 - 18 years (4 boys, 4 girls),

all Caucasian.
3.1 Correlation between the different
definitions of Treg and CD4+CD25hi

Firstly, we tested the comparability of the definitions of Treg

including both extracellular (CD4+CD25hiCD127low) and intracellular

panels (CD4+CD25hiCD127lowFoxP3+ and CD4+CD25hiFoxP3+).

Overall, we observed: 1) a moderate positive correlation (r = 0.3-

0.5) between the extracellular panel and the two intracellular panels

and (2) a strong positive correlation between the two intracellular

panels (r = 0.750; p = 9.21E-15); all results mentioned were statistically

significant (Figure 1). Then, we analyzed the correlations by age range

(Supplementary Figure 3) and the results suggested a strong

correlation between the two intracellular panels for most age ranges.

Concretely, the correlation between CD4+CD25hiFoxP3+ and

CD4+CD25hiCD127lowFoxP3+ for the age groups 1-3 years (r =

0.678; p = 0.015), 7-10 years (r = 0.713; p < 0.009), and 14-18 years

(r = 0.943; p < 0.005) was strongly positive.

In addition, due to the importance of CD4+CD25hi for the diagnosis

of PIRD (21), we analyzed the correlation between CD4+CD25hi and the

three Treg definitions. Overall, we saw a low positive correlation (r =

0.28) with CD25hiFoxP3+, a moderate positive correlation (r = 0.44)

with CD4+CD25hiCD127low, and a strong positive correlation (r = 0.54)

with CD4+CD25hiCD127lowFoxP3+; the results mentioned were

statistically significant (Figure 1). However, when analyzing the

comparison by age range, the definitions CD4+CD25hi and

CD4+CD25hiCD127low were comparable for most age groups with a

moderate-strong correlation: 1-3 years (r = 0.755; p = 0.005), 5-7 years

(r = 0.9; p < 0.037), and 7-10 years (r = 0.771; p < 0.003) (Supplementary

Figure 3). In summary, the frequency of CD4+CD25hi showed a positive

correlation with both CD4+CD25hiCD127low and CD4+CD25hi

CD127lowFoxP3+, and this correlation was more prominent with

CD4+CD25hiCD127low by age range.
Frontiers in Immunology 04
3.2 Marked variability in total Treg
frequency with the different gating
definitions and with age

The Treg subset relative frequency (%) and absolute counts are

shown in Table 1A. In broad terms, we observed large differences in the

relative frequency range of Treg depending on the gating strategy (from

1-18 years): 3.3–9.7% for CD4+CD25hiCD127low, 0.07-1.6%

for CD4+CD25hiCD127lowFoxP3+, and 0.24-2.83% for

CD4+CD25hiFoxP3+; the % is from CD4+ cells. The CD4+CD25hi

frequency presented a strong decline with age (r = -0.546; p = 1.05E-4),

mainly from the age of 7 years onwards (Figure 2A; Supplementary

Figure 4A). This decline was consistent with the decrease in the total

Treg frequency: there was a moderate negative correlation with age

regarding the gating definitions CD4+CD25hiCD127low (r = -0.308; p =

0.024) and CD4+CD25hiCD127lowFoxP3+ (r = -0.396; p = 0.007),

respectively (Figures 2B, C). The decline of CD4+CD25hiCD127low

FoxP3+ was particularly notable from the age of 7 years onwards with a

median drop from 0.68% at 5-7 years to 0.325% at 7-10 years (p =

0.015) (Figure 2C; Supplementary Figure 4C). Interestingly, we

observed a tendency for CD4+CD25hiFoxP3+ to increase from 3 to 7

years compared to the youngest (1-3 years) (median 0.9% at 1-3 years

vs 1.77% at 5-7 years; p = 0.045), although it did not reach statistical

significance at 3-5 years. After 7 years of age, the CD4+CD25hiFoxP3+

frequency decreases by half until 18 years (Figure 2D; Supplementary

Figure 4D). In summary, the frequency of Treg showed a broad

variability depending on the immunophenotypic definition used, and

a marked reduction with age, mainly after the age of 7 years.
FIGURE 1

Correlation between gating strategies of regulatory T cell (Treg) and
CD4+CD25hi. The three Treg definitions are CD4+CD25hiCD127low,

CD4+CD25hiCD127lowFoxp3+, and CD4+CD25hiFoxP3+. The overall
correlation was positive moderate-strong between the Treg
definitions, with the similarity between the intracellular panels being
especially remarkable. The values inside the boxes indicate the
Spearman correlation strength. Low association was between 0.1-
0.3; moderate positive association was between 0.3-0.5; and strong
positive association was 0.5-1. (*) p value ≤ 0.05; (**) p value ≤ 0.01.
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3.3 Treg undergo a maturation process
with age

Regarding the maturation process of Treg, the maturation

s ta tus increased wi th age . Spec ifica l l y , na ïve Treg

(CD4+CD25hiCD127lowCCR4-CD45RO-) presented a strong negative

correlation with age (r = -0.600 p = 5.1E-6), and this decrease was

significantly prominent from the age of 7 onwards compared with the

youngest groups (median 58% at 5-7 years vs 42.25% at 7-10 years; p =
Frontiers in Immunology 05
0.023) (Figure 2E; Supplementary Figure 4E). In contrast, the eTreg

cells (CD4+CD25hiCD127lowCD45RO+CCR4+) presented a strong

positive correlation with age (r = 0.660; p = 2.55E-7) (Figure 2F;

Supplementary Figure 4F). The increase in both subsets was prominent

from the age of 7 onwards, which correlates with a parallel decrease in

naïve cells. Interestingly, activated eTreg (CD4+CD25hiCD127low

CD45RO+CCR4+HLA-DR+) showed an increasing trend from 3 to 7

years, were more marked in the 5–7-year range (median 22.8% at 1-3

years vs 34.4% at 5-7 years; p = 0.012), and the frequency decreased
TABLE 1 Age-stratified values of regulatory T and B cells (Treg/Breg) in both relative frequency (%) and absolute count (109/L).

A) Treg and subset values.

Treg/subset From
Cell
frequency

1-3 years > 3-5 years > 5-7 years > 7-10 years > 10-14 years >14-18 years

(n)
Median
(min-
max)

(n)
Median
(min-
max)

(n)
Median
(min-
max)

(n)
Median
(min-
max)

(n)
Median
(min-
max)

(n)
Median
(min-
max)

CD3+CD4+CD25hi
(IL-2 receptor)

CD3+
CD4+

% 12
6.8

(1.9-9.5)
5

5.55
(3.2-
8.41)

5
6.21
(3.61-
8.86)

12
3.85
(1.42-
7.47)

5
3.59
(2.57-
4.97)

6
3.02
(1.32-
5.67)

109cells/L 12
0.1

(0.01-
0.17)

5
0.03

(0.006-
0.1)

5
0.03

(0.006-
0.083)

12
0.015
(0.002-
0.08)

5
0.01

(0.003-
0.02)

6
0.07

(0.001-
0.03)

CD3+CD4+
CD25hiCD127low
(Treg: extracellular
panel)

CD3+
CD4+

% 12
7.2

(4.8-9.3)
6

6.06
(5.1-
6.79)

9
7.31
(4.4-
8.53)

14
6.17
(3.83-
9.7)

6
5.99
(5.16-
9.36)

7
5.37
(3.29-
6.72)

109cells/L 12
0.1

(0.025-
0.17)

6
0.03
(0.01-
0.06)

9
0.03
(0.01-
0.08)

14
0.02

(0.004-
0.1)

6
0.015
(0.01-
0.04)

7
0.012
(0.002-
0.03)

CD3+CD4+
CD25hiCD127low
Foxp3+
(Treg: intracellular
panel)

CD3+
CD4+

% 12
0.4

(0.25-
1.06)

5
0.58
(0.43-
0.62)

5
0.68
(0.35-
1.52)

12
0.33
(0.13-
0.66)

5
0.2

(0.11-0.5)
6

0.18
(0.07-
0.84)

109cells/L 12
0.004
(0.001-
0.02)

5
0.003
(0.001-
0.005)

5
0.003
(0.001-
0.014)

12
0.001

(0.0001-
0.01)

5
0.001

(0.0001-
0.002)

6
0.0004

(0.00004-
0.004)

CD3+CD4+
CD25hiFoxp3+
(Treg: intracellular
panel)

CD3+
CD4+

% 12
0.9

(0.3-1.9)
5

1.42
(1.03-
2.04)

5
1.77
(1.15-
2.83) 12

0.81
(0.24-
2.01) 5

0.64
(0.44-
1.48)

6
0.7

(0.31-
1.78)

109cells/L 12
0.008
(0.002-
0.034) 5

0.007
(0.002-
0.02)

5
0.01

(0.002-
0.03) 12

0.003
(0.0002-
0.02) 5

0.002
(0.001-
0.01)

6
0.002

(0.0002-
0.01)

CD3+CD4+CD25hi
CD127lowCCR4-
CD45RO-
(Naïve Treg)

CD4+
CD25hi
CD127low

% 8
59

(46.4-
77.9)

6
51.05
(43.5-
66.1)

9
58.9
(47.2-
68.4)

14
42.25
(21.3-
69.1)

6
38.4
(33.6-
43.6)

6
38.9
(28.5-
67.1)

109cells/L 8
0.04
(0.01-
0.13) 6

0.01
(0.004-
0.04)

9
0.02

(0.004-
0.06) 14

0.01
(0.001-
0.07) 6

0.01
(0.002-
0.02)

6
0.005

(0.0006-
0.02)

CD3+CD4+
CD25hiCD127low
CCR4+CD45RO+
(Effector Treg)

CD4+
CD25hi
CD127low

% 8
28.85
(14.5-
35.8)

6
28.5

(22.2-43)
9

35
(22.6-
43.2)

14
42.85

(21.5-71)
6

50.3
(46.3-
51.7)

6
48.6
(23.6-
58.3)

109cells/L 8
0.02

(0.004-
0.06)

6
0.01

(0.002-
0.03)

9
0.01

(0.002-
0.04)

14
0.01

(0.001-
0.07)

6
0.01

(0.003-
0.02)

6
0.006

(0.0005-
0.02)

CD3+CD4+
CD25hiCD127low
CCR4+CD45RO+

Effector
Treg

% 8
22.8
(16.2-
39.3)

6
32.6

(16.5-41)
9

34.4
(24.9-51)

14
25.15
(12.9-
36.2)

6
22.45

(14.6-34)
6

16.95
(10-30)

(Continued)
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thereafter (Supplementary Figure 4G). In summary, mature Treg

populations increase from the age of 7, while the naïve population

decreases. The age range interval from 3 to 7 years seems to be

important for the maturation process of Treg.
3.4 Breg are an abundant population
during the first years of life

The age-stratified transitional Breg (CD19+CD24hiCD38hi) and

memory Breg (CD19+CD24hiCD27+) relative frequencies and absolute

numbers are shown in Table 1B. The frequency of transitional Breg

showed a moderate negative correlation with age (r = -0.401; p =

0.003), and this decrease was clearly prominent from 3 years of age

onwards (Figure 3A; Supplementary Figure 5A). In fact, the median of

transitional Breg dropped from 13.75% at 1-3 years to 6.58% at 3-5

years (p = 0.049). In contrast, memory Breg (CD19+CD24hiCD27+)

presented a low positive correlation with age although it did not reach

statistical significance since this increase was mainly prominent from

the age of 3 years onwards (5.28% at 1-3 years to 9.055% at 3-5 years;

p = 0.039) and remained stable thereafter (Figure 3B; Supplementary

Figure 5B). In summary, transitional Breg has an abundant population
Frontiers in Immunology 06
during the first years of life and undergoes a maturation process early

on in the first 3 years of life.
4 Discussion

Treg and Breg are of increasing interest in the field of IEI as a

breakdown of immune homeostasis may result in both

autoimmunity and immunodeficiency (13, 14, 54). Although most

PIRDs are early-onset diseases (2, 3, 13, 14), in the present

literature, there are limited well-established reference values for

the regulatory population in the pediatric population. Herein, we

describe the changes observed in both Treg and Breg in a healthy

pediatric population (1-18 years). Our main findings suggest: 1)

Treg and Breg are abundant populations before the age of 7 and 3,

respectively, presenting special biological meaning as the

immunotolerance process occurs during early childhood, and 2)

the three different definitions of Treg (see below) are highly

comparable between them. Therefore, biologically, our

preliminary data contribute to improving the understanding of

the normal biological course of regulatory populations during early

life, which could be of interest in subsequent studies with larger
TABLE 1 Continued

A) Treg and subset values.

Treg/subset From
Cell
frequency

1-3 years > 3-5 years > 5-7 years > 7-10 years > 10-14 years >14-18 years

(n)
Median
(min-
max)

(n)
Median
(min-
max)

(n)
Median
(min-
max)

(n)
Median
(min-
max)

(n)
Median
(min-
max)

(n)
Median
(min-
max)

HLA-DR+
(Activated effector
Treg)

109cells/L 8
0.014
(0.004-
0.065)

6
0.01

(0.002-
0.025)

9
0.012
(0.002-
0.04)

14
0.006
(0.001-
0.04)

6
0.003
(0.001-
0.01)

6
0.002

(0.0002-
0.01)
fro
The values in bold are the "median" and the values in brackets are the min-max.

B) Breg and memory Breg values

Breg/subset From
Cell
frequency

1-3 years > 3-5 years > 5-7 years > 7-10 years > 10-14 years >14-18 years

(n)
Median
(min-
max)

(n)
Median
(min-
max)

(n)
Median
(min-
max)

(n)
Median
(min-
max)

(n)
Median
(min-
max)

(n)
Median
(min-
max)

CD19+
CD24hiCD38hi
(Transitional
Breg)

CD19+
(B cell)

% 12
13.75

(6.4-26.9)
6

6.58
(4.18-
22.1)

9
8.04
(4.58-
10.4)

14
6.82
(2.57-
12.7)

6
7.9

(3.46-
10.3)

5
10.3
(5.63-
12.8)

109cells/L 12
0.12

(0.03-0.5)
6

0.03
(0.01-
0.14)

9
0.04
(0.01-
0.07)

14
0.03

(0.003-
0.15)

6
0.02
(0.01-
0.04)

5
0.02

(0.004-
0.04)

CD19+
CD24hiCD27+
(Memory Breg)

CD19+
(B cell)

% 8
5.28
(2.61-
9.52)

6
9.1

(5.6-11)
9

11
(4.79-
21.9)

14
10.83
(1.73-
19.8)

6
8.76
(4.62-
22.4)

5
9.88
(4.65-
19.9)

109cells/L 8
0.042
(0.01-
0.17)

6
0.04

(0.01-0.1)
9

0.06
(0.01-
0.15)

14
0.042
(0.002-
0.2)

6
0.02
(0.01-
0.08)

5
0.02

(0.003-
0.06)

The values in bold are the "median" and the values in brackets are the min-max.
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cohorts. Clinically, our study is of interest for the clinical diagnosis

of IEI including PIRDs.

A consensus on Treg phenotypical definition is needed for a

better characterization of Treg for both clinical and research use (39).

The most accurate phenotypic definition for Treg is

CD4+CD25hiCD127lowFoxP3+ (39) since FoxP3 is essential for Treg

immune suppressive activity (65), and the inclusion of FoxP3 reduces

the variability in the % of Treg (39). Also, the marker CD127 is key to

discerning between CD127+ T cells from Treg (CD127low) (66, 67).

Herein, we studied the correlation between the different definitions

described in the current literature to verify their equitability. Overall,

the preliminary results suggested a strong correlation between 1) the

extracellular definitions: CD4+CD25hi vs CD4+CD25hiCD127low, and

2) the two intracellular definitions: CD4+CD25hiCD127lowFoxP3+ vs

CD4+CD25hiFoxP3+. The correlation between the extracellular and

intracellular definitions was moderately positive for most age ranges

(1-18 years), so we cannot confirm their full interchangeability with

the current results. However, the correlation between

CD4+CD25+CD127low and CD4+CD25+Foxp3+ cells was previously
Frontiers in Immunology 07
confirmed with a strong correlation in a study including 43 healthy

donors above 18 years of age (66). This indicates that the findings

observed in adults cannot be fully extrapolated to pediatric

populations and highlights the need for reference values by age

range, including those of regulatory cells.

In addition, depending on the Treg definition, the frequency of

Treg is in different interval scales, making it difficult to interchange

results for clinical interpretation. For instance, our results showed

that the relative frequency in a healthy pediatric population (1-18

years) for CD4+CD25hiCD127low oscillates between 3.3–9.7% of

CD4+ cells, which was consistent with another study showing 2.2-

7.7% of CD4+ cells (1-18 years; n = 81) (35). However, when we

analyzed Treg with the definition CD4+CD25hiCD127lowFoxP3+, it

fell to 0.07-1.6% of CD4+ cells. The current Working Definitions for

Clinical Diagnosis of Primary Immunodeficiency recommend

studying FoxP3 expression in CD4+CD25hi cells (21). However, at

present, there is no consensus on the definition of Treg nor are there

reference values in pediatric populations for all three definitions

(36). Because of this inter-laboratory variation, and despite the
B

C

D

E

F

A

FIGURE 2

Correlation of regulatory T cell (Treg) frequency with age. Total Treg frequency decreases with age along with a maturation process. Specifically,
(A–D) represent a negative correlation of CD25 expression and total Treg frequency with age (three definitions), each with its degree of Spearman
correlation strength. Graph (E) represents a strong negative correlation of naïve Treg (CD4+CD25hiCD127lowCD45RO-CCR4-) with age and graph
(F) represents a strong positive correlation of effector Treg (CD4+CD25hiCD127lowCD45RO+CCR4+) with age. All correlations reached statistical
significance. The frequency of CD25, CD25hiCD127low, CD25hiCD127lowFoxP3+, and CD25hiFoxP3+ are calculated from CD4+ cells. The naïve and
effector Treg cells are calculated from CD25hiCD127low cells. Low association was between 0.1-0.3; moderate positive association was between 0.3-
0.5; and strong positive association was between 0.5-1.
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correlation between values from different Treg cell definitions, we

stress the need for age-range reference values of the regulatory

populations specific for all three definitions.

Overall, Treg decreases with age; this decrease is more evident

when the CD127 marker is included (CD4+CD25hiCD127low and

CD4+CD25hiCD127lowFoxP3+) and is especially prominent after the

age of 7 years. This result was consistent with a previous study

reporting a slight decline in Treg (CD4+CD25hiCD127low) frequency

with age (35). Regarding the maturation process of Treg, we saw an

increment of memory Treg (CD4+CD25hiCD127lowCD45RO+) with

age (strong correlation; data not shown). Similarly, R. van Gent et al.

and M. Garcia-Prat et al. described an evident increase in memory

Treg (CD4+CD25hiCD127lowCD45RO+), with the same markers we

used (35, 36). This increase showed significant differences with the

groups older than 7 years (36). Regarding this last point, we observed

an increase in eTreg (CD4+CD25hiCD127lowCD45RO+CCR4+) and a

decline of naïve Treg CD4+CD25hiCD127lowCD45RO-CCR4-),

mainly from the age of 7 years. In addition, we studied the

activated eTreg (CD4+CD25hiCD127lowCD45RO+CCR4+HLA-

DR+), which presented a special increment from 5-7 years of age

and then underwent a marked decrease. The age range interval from

3 to 7 years thus seems to be important for the maturation process of

Treg. This increase in activated eTreg could be explained by the need

to generate tolerance for the transition from perinatal life to the first

encounters in infancy with new environmental antigens (dietary

changes, aeroallergens, and nursery), especially for harmless

antigens (68–71). In summary, although our results are

preliminary, they suggest that the Treg profile undergoes a change

in its maturational profile at around 7 years of age, with a decline of

naïve Treg and the increment of memory/effector Treg.

Transitional Breg (CD19+CD24hiCD38hi) is an abundant

population during the perinatal period (pre- and post-natal),

promoting tolerogenic responses during pregnancy and at birth. In

fact, we (50) and Sarvaria et al. (63) demonstrated that transitional Breg

is a highly frequent population in human umbilical cord blood with

potent inhibitory activity such as the suppression of Th1 cell
Frontiers in Immunology 08
differentiation and effector functions while enhancing Treg activity

(47–49). For instance, transitional Breg from cord blood could be of

benefit to mitigate chronic graft-versus-host disease after hematopoietic

transplantation when using this source as opposed to bone marrow

since these IL-10 B cells present a strong inhibitory capacity (63). After

birth, transitional Breg is known to be important for peripheral

immuno-tolerance and their dysregulation has been associated with

autoimmune conditions, such as juvenile dermatomyositis (72) and

arthritis (52), and more recently, immunodeficiency including CVID

(53). The results of the present study further reinforce the notion that

Breg remains an abundant population up to 3 years of age along with a

progressive increment of memory Breg with age.

Currently, CD19+CD24hiCD38hi is the most widely accepted

phenotypical definition for Breg (48, 50, 56–59). However, as the

term Breg is a collective one for those B cells that exhibit

immunosuppressive capacity, all B cells may present the capacity to

differentiate into IL-10-producing cells depending on the environmental

requirement although some subsets are more suitable than others (73).

Thus, B cells from different developmental stages can exercise regulatory

functions, such as immature B cells (CD19+CD24hiCD38hi) (48, 50, 56–

59), mature B cells (CD19+CD24hiCD27+) (60), and plasmablast cells

(CD19+CD138hiTACI+CXCR4+CD1dintTim1intBlimp-1+IgG-) (73).

Here, we evaluated the changes of CD19+CD24hiCD38hi cells in a

pediatric population, accepting the limitation that CD19+CD24hiCD38hi

cells resemble the transitional B cell phenotype (CD19+IgM+CD38hi)

(36, 62). In fact, our results are consistent with those described by M.

Garcia-Prat et al. showing a decline of transitional B cell

(CD19+CD24hiCD38hi) frequency with age, and this decrease was

prominent after the age range of 3-4 years (36).

As the number of PIRD cases increases, the need to better

characterize Treg and Breg to better understand the pathophysiology

of these diseases becomes greater. At present, there is still a discrepancy

in the denotation of Treg and Breg, both in their phenotypic and

functional characterization and much less is known about their

subpopulations. In this context, our work differs from previous

studies by analyzing the most common definitions of Treg in a
BA

FIGURE 3

Correlation of regulatory B cell (Breg) frequency with age. The total Breg (CD19+CD24hiCD38hi) frequency decreases mainly after 3 years of age
along with an increase in memory Breg (CD19+CD24hiCD27+). (A) Moderate negative correlation of Breg frequency (%) with age (statistically
significant). (B) Low positive correlation of memory Breg with age (tendency: it reached no statistical significance). The frequency of both Breg and
memory Breg was calculated from CD19+. Low association was between 0.1-0.3; moderate positive association was between 0.3-0.5; and strong
positive association was between 0.5-1.
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healthy pediatric population since the gating strategy remains a non-

consensus issue (18, 35, 37, 38, 40–43). Recognizing the limitation of

sample size, our results were mostly consistent with those in the current

literature. Interestingly, there is evidence that in cord blood, the

frequency and functionality of female Treg is higher than in males

(74), suggesting that gender is an important factor to consider when

analyzing regulatory subsets. However, we did not include this variable

due to the small sample size. Furthermore, when establishing normality

parameters for general populations, it is crucial to take ethnicity into

account. Nevertheless, all the healthy controls in this study are of

Caucasian origin. Hence, we encourage a comprehensive and large

sample size analysis of regulatory cells in future work to establish age-

stratified reference values in healthy pediatric populations including

these two variables.

Herein, we analyzed CD25 and FoxP3 expression. However,

other functional markers exist to define Treg (i.e., CTLA-4, ICOS,

and PD-1), and most of them are assessable by flow cytometry.

CTLA-4 is a co-inhibitory surface molecule that is constitutively

expressed in Treg and its expression assay is of great interest for the

diagnosis and clinical management of both PIRDs (75–78) and

autoimmune diseases (rheumatic diseases) (79). For instance, we

and others analyzed the CTLA-4 expression in Treg to evaluate

patients with immune dysregulation when no genetics were

identified (75–77). In addition, given the suppressive capacity of

CTLA-4, the use of CTLA-4-Ig (fusion protein: IgG1 Fc+CTLA-4)

is an effective approach in treating CTLA-4 haploinsufficiency.

Indeed, CTLA-4 expression in Treg has recently been used in the

field of rheumatology for the evaluation of abatacept (fusion

protein: IgG1 Fc+CTLA-4) responses (79). Mainly, the use of

abatacept resulted in the reduction of IL-6 (inflammatory

cytokines) and the normalization of Treg frequency after 6-12

months of treatment (79). However, in the field of PIRD, CTLA-4

expression in Treg has not been included in the ESID diagnostic

criteria as a standardized tool for diagnosis (13). We believe it could

be of much interest. Besides Treg’s phenotypic description,

functional assays are of paramount importance for the diagnosis

of PIRDs as deficiency of suppressor capacity needs to be correlated

to an altered Treg frequency. Current Treg cell suppression assays

are based on the in vitro co-culture of Treg cells and T cells and the

evaluation of the T cell proliferation rate (80). This functional assay

has limitations, such as 1) the difficulty of extrapolating the results

to in vivo conditions, 2) the inability to evaluate each inhibitory

mechanism separately since suppression of T-cell proliferation is

the result of Treg inhibitory mechanisms as a whole, and 3) the

technical implementation in the clinical setting due to sample

availability, processing time, costs, and technical complexity. In

future studies, we suggest designing new strategies for Treg

functional assay implementation.

To conclude, there is a good level of correlation between the Treg

definitions (CD4+CD25hiCD127low, CD4+CD25hiCD127lowFoxP3+, and

CD4+CD25hiFoxP3) and CD4+CD25hi, mainly when comparing the two

intracel lular panels (CD4+CD25h iCD127lowFoxP3+ vs

CD4+CD25hiFoxP3+) and the two extracellular panels (CD4+CD25hi

vs CD4+CD25hiCD127low). The numerical values of Treg frequency span

a wide range in all ages depending on the marker combinations; the

median oscillates between 0.64 – 7.31% of CD4+ cells. Our results suggest
Frontiers in Immunology 09
that the total frequency of both Treg and Breg tend to decline after 7 and

3 years onwards, respectively, along with a maturation process with age.

Based on these results, a consensus on which Treg definition to use and

age-stratified reference values for regulatory populations for each

definition are needed for the clinical diagnosis of IEI.
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Lower functional and proportional characteristics of cord blood treg of male newborns
compared with female newborns. Biomedicines (2021) 9(2):170. doi: 10.3390/
biomedicines9020170
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Marsal J, et al. Case report: Challenges in immune reconstitution following hematopoietic
stem cell transplantation for CTLA-4 insufficiency-like primary immune regulatory
disorders. Front Immunol (2022) 13:1070068. doi: 10.3389/fimmu.2022.1070068
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