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ABSTRACT 

Accurate data on crop canopy are among the prerequisites for hydrological modelling, 
environmental assessment, and irrigation management. In this regard, our study concentrated 
on an in-depth analysis of optical satellite data of Sentinel-2 (S2) time series of the leaf area 
index (LAI) to characterise canopy development and inter-row management of grapevine fields.  
Field visits were conducted in the Ouveze-Ventoux area, South Eastern France, for two years 
(2021 and 2022) to monitor phenology, canopy development, and inter-row management of 
eleven selected grapevine fields. Regarding the S2-LAI data, the annual dynamic of a typical 
grapevine canopy leaf area was similar to a double logistic curve. Therefore, an analytic 
model was adopted to represent the grapevine canopy contribution to the S2-LAI. Part of the 
parameters of the analytic model were calibrated from the actual grapevine canopy dynamics 
timing observation from the field visits, while the others were inferred at the field level from the 
S2-LAI time series. The background signal was generated by directly subtracting the simulated 
canopy from the S2 LAI time series. Rainfall data were examined to see the possible explanations 
behind variations in the inter-row grass development. From the background signals, we could 
group the inter-row management into three classes: grassed, partially grassed, and tilled, which 
corroborated our findings on the field. To consider the possibility of avoiding field visits, the 
model was recalibrated on a grapevine field with a clear canopy signal and applied to two fields 
with different inter-row management. The result showed slight differences among the inter-row 
signals, which did not prevent the identification of inter-row management, thus indicating that 
field visits might not be mandatory.
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INTRODUCTION 

Grapevine (Vitis vinifera L.) cultivation is one of the most 
widespread cultivations worldwide, and its practice in 
the Mediterranean is millennia-old (Corti et al., 2011).  
According to reports given by an international organisation 
of grapevine and wine (Roca, 2022) on the world, viticultural 
surfaces covered around 7.3 million hectares in 2021, with 
3.3 million hectares within the EU (European Union) zone; 
Spain (13 % of the grapevine area) produced the most wine 
with France (11 %) in second.

Grapevines mostly require good soils and, for table grapevines, 
good water resource management, too (Darouich et al., 2022). 
Conventionally, grapevines have been rainfed perennial 
woody crops as irrigation was prohibited by authorities for 
several wine qualities (Darouich et al., 2022). Nevertheless, 
because soil water stress seriously impacts the growth, yield, 
and grape quality (Zarrouk et al., 2012), irrigation practices 
have become more and more frequent, specifically across dry 
areas of South Europe (Esteban et al., 2001; Permanhani et al., 
2016). Irrigation practices can vary a lot according to various 
factors: the soil type, the climatic demand, or the target in 
production quality. Inter-row management might differ by the 
management of the grass cover between the rows of grapevine. 
The grass can be kept in the field, leading to constant coverage 
that might have a positive impact on runoff, infiltration, and 
erosion, while a higher water consumption from the inter-row 
and an increased fire hazard might negatively impact the crop 
performance (Steenwerth and Belina, 2010; Whitmore and 
Schröder, 2007).

On the contrary, the grass is removed by frequent tillages, 
leading to opposite benefits and drawbacks. An intermediate 
situation is where part of the rows are tilled while in the 
other part, the inter-row is left grassed. In the context of 
climate change, there is an increasing need to irrigate 
perennial woody crops as vineyards that were rarely 
irrigated until now, especially with wine grapevine to gain 
in quality. Moreover, there is also a willingness to enhance 
ecosystem services of cropping systems, the management 
of inter-row being one of the levers to go in that direction.  
Therefore, delineating the green cover between the grapevine 
canopy and the vegetation in the background is an important 
issue for both the characterisation of the grapevine water 
need and, thus, the amount of irrigation and the detection of 
inter-row management practices. Moreover, Abubakar et al. 
(2023) have shown that inter-row management may lead to 
confusion in mapping the different perennial woody crops.

During the last decades, remote sensing is playing a significant 
role in crop supervision. Earth-observing (EO) satellites 
can record multispectral images with constant temporal 
revisit occurrence, documenting variations in spectral 
patterns among surfaces. This allows the detection of the 
spatial and temporal differences in crops. In recent times, 
the utilisation of remotely sensed information to promote 
decision and policy rulings has raised within the sectors of 
agriculture and forestry (Borgogno-Mondino et al., 2018; 
De Petris et al., 2019; Sarvia et al., 2019; Testa et al., 2014).  

Regarding viticulture, airborne and spaceborne sensors can 
be utilised to characterise crop’s yield spatial variability 
and describe soil features, crop varieties, and crop 
diseases (Arnó et al., 2009; Hall et al., 2003; Hall, 2018; 
Hall and Wilson, 2013; Karakizi et al., 2016a). Vegetation 
indices (VI) derived from multispectral reflectance can be 
exploited to acquire data on phenology, vegetation water 
content, and biomass over a growing season. In the past 
decades, several VI were unfolded (Gao, 1996; Huete, 1988; 
Motohka et al., 2010; Qi et al., 1994), with NDVI (normalised 
difference vegetation index) being the most widely used for crop 
growth dynamic descriptions. However, despite that fact, NDVI 
can be faced with some limitations like sensitivity restriction 
to vegetative photosynthetic dynamics (Wang et al., 2017), 
whereas biophysical variables like LAI (leaf area index) can 
be substituted to VI and were used advantageously to delineate 
different crop types (Abubakar et al., 2022). Interpretation 
of the VI times series can bring advanced information on 
crop systems (Beniaich et al., 2022), management practices 
(Abubakar et al., 2022), irrigation needs (Darouich et al., 
2022), and risk assessments on soil erosion (Rizzi et al., 
2021).

The spatial resolution has a strong impact on the way to 
interpret remote sensing data, especially for perennial woody 
crops, which have spatial patterns (row, tree crown) that may 
be larger than the resolution. With a very high-resolution 
satellite (resolution lower than 5 m as WorldView-2 
(Karakizi et al., 2016a)), it is possible to investigate within 
canopy details, for instance, the separation of the canopy and 
the soil background. However, such spaceborne sensors are 
mostly owned by private companies/firms, generating costs. 
Moreover, the revisit time might be large, preventing access to 
times series data capable of grasping the temporal feature over a 
crop cycle. Nonetheless, larger spatial resolution can be used 
to characterize vineyard inter-row management using time 
series, thanks to the difference in vegetation growth dynamics 
between grapevine and inter-row (Palazzi et al., 2022).  
As an alternative, decametric resolution satellites such as the 
European Sentinel-2 (S2) can offer 10 m spatial resolution 
imagery and fine temporal revisits while being free of charge. 
Such spatial resolution does not permit a direct separation 
of the different field’s components, but the free access and 
the possibility to access densely sampled times series are 
interesting properties to build applications.

Vaudour et al. (2010) used imageries coming from the SPOT 
satellite to zone viticultural terroirs in South Africa, while 
in Spain, Landsat images were used to detect grapevine 
fields by Rodriguez et al. (2006). Semmens et al. (2016) 
estimate daily field-scale evapotranspiration from satellite 
data coming from Landsat-8, MODIS (Moderate Resolution 
Imaging Spectroradiometer), and GEOS (Geosynchronous 
Equatorial Orbit Satellite) across two vineyards. 
Johnson et al. (2003) used multispectral high-resolution 
satellite imageries coming from IKONOS to characterise wine 
grapevine’s leaf area. High-resolution satellite imageries 
were used, and it was observed that satellite information 
possesses the possibility to characterise or delineate quality 
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parameters of wine grapevines (Kandylakis and Karantzalos, 
2016). Landsat-8-derived NDVI (normalised difference 
vegetation index) was found to be highly correlated with 
aerial imagery-derived NDVI at the grapevine plot scale 
when evaluating grapevine vigour to build recommendation 
maps (Borgogno-Mondino et al., 2018). Nevertheless, some 
conducted research showed that the spatial resolution images 
coming from medium-resolution satellites are rarely adequate 
for grapevine field assessments because of the narrow 
spacing of the inter-row; such constraint is more evident 
among grapevine fields with huge heterogeneity, and higher 
resolution satellite information is capable of producing similar 
or equivalent results using aerial platforms (Erena et al., 
2016; Matese and Filippo Di Gennaro, 2015). For instance, 
a detailed comparative analysis of grapevine multispectral 
imagery delivered by decametric satellite resolution (S2) and 
low-elevation UAV (unmanned aerial vehicle) platforms was 
proposed by (Khaliq et al., 2019). The success of S2 imagery 
and the UAV’s high-resolution images was assessed while 
considering the known relation between NDVI and crop 
vigour. Comparisons were made between the information 
obtained from UAV and the S2 imagery by evaluating three 
different NDVI indices to accurately examine the grapevine’s 
different spectral contribution in the surroundings by 
taking into note: (i) the total cropland surface (ii) the 
grapevine canopies only, and (iii) the grapevine inter-row.  
The results showed that the resolutions of the raw S2 satellite 
imagery might not be directly used to delineate grapevine 
variability. In reality, the inter-row surface contribution to 
the remotely sensed information might influence the NDVI 
estimation, leading to biased crop descriptors. Conversely, 
vigour maps calculated from the UAV imagery using pixel 
representation of crop canopies tend to be more linked to the 
in-field evaluation in comparison to the S2 satellite imagery. 
In a different study on the characterisation of grapevines 
using high-resolution imagery, an object-based classification 
framework for grapevines was designed, developed, and 
evaluated to detect grapevine canopy and variety separation 
(Karakizi et al., 2016b). Innovative features (spectral, 
spatial, and textural), rules, segmentation scales, and a set 
of frameworks were suggested according to image analysis 
(object-based). The proposed methodology was evaluated 
on WorldView-2 (multitemporal) satellite imagery in Greece 
across four diverse regions for viticulture. The performed 
quantitative assessment showed the suggested approach 
detected over 89 % of grapevines with high completeness and 
correct detection rates. Evaluation of the grapevine canopy 
extraction was above 96 %, while the quantitative evaluation 
of the variety separation was above 85 % at the plot scale, 
although it is important to note that such satellite imagery 
with a very high spatial resolution (0.5 m) is not freely 
accessed. Anastasiou et al. (2018) aimed to assess spectral 
vegetation indices obtained via satellite and proximal sensing 
across different growth phases (veraison to harvest) of table 
grapevines of which NDVI and GNDVI (green normalised 
difference vegetation index) were computed by employing 
Landsat-8 satellite imagery and proximal sensing to examine 
the grapevine yield and quality characteristics. In this study, 

the proximal sensing was more accurate concerning the grape 
yield and quality in comparison to the satellite sensing.

However, in this current study, free, open-source 
multi-temporal data of S2 are used, and field-scale analysis 
was done. Time series of the leaf area index (LAI) and spectral 
bands are exploited in this study to characterise features of 
grapevine, particularly the canopy and inter-row coverage. 
At the field scale, analysis according to temporal evolutions 
of the LAI was used to examine inter-field differences 
of grapevine canopy and soil management strategies  
(i.e., identification of grassy and non-grassy inter-rows).

Recently, a phenology-based classification of perennial 
woody fruit crops (orchards, grapevines, and olives) based 
on S2 temporal profiles was conducted in South-Eastern 
France (Abubakar et al., 2023) with encouraging results. 
Despite the good results obtained, there is still room for 
improvement, especially among the grapevine class.  
The difficulty with the grapevine LAI signal is that confusion 
can occur between the grapevine canopy and the background 
leading to both signals having the same order of magnitude 
leading to some misclassifications. This is not the case 
with orchards that have a tree canopy contribution to the 
LAI signal significantly larger than that of the background. 
Consequently, we arrived at a different scientific question to 
be addressed in this current study concerning the grapevines 
classes. Can we separate the canopy signal and background 
signal, which depends on management practices, from the 
remote sensing (RS) LAI S2 data.

The objective of this paper is to develop a method based on 
decametric resolution remote sensing as that of Sentinel-2 
or Landsat to characterise two features of interest for 
grapevine: the canopy leaf area to assess the transpiration 
and the resulting water need and the interrow management 
by identifying grassed and tilled interrows. The scientific 
issue is then to delineate in observed LAI the contribution 
from the vine and that from the background. In this study, 
we assumed that the LAI times series derived from remote 
sensing together with agronomic knowledge of the grapevine 
development across an annual cycle can be used to separate 
the contributions of the different vegetation components of a 
grapevine. The method was developed and implemented in 
the South-East of France.

MATERIALS AND METHODS 

1. Description of the study site and grapevine 
management 
The research was carried out in the Ouvéze-Ventoux areas 
in the years 2021 and 2022. The area is located in southern 
France (44° 10’ N and 5° 16’ E) and covers a surface of 
59 km² and an altitude ranging between 230 and 630 m a.s.l 
(Figure 1.) The study area encompasses forest and crops 
(mostly vineyards and orchards), the latter 57.7 % of the 
surface, 34 % of which being vineyards (Abubakar et al. 
2023). The study site has a typical Mediterranean climate 
recognised by cold and moist winters with dry, hot summers; 
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yearly rainfall is roughly 750 mm with a mean temperature 
of 12 °C.

The grapevines are planted in rows of 2 to 2.50 m apart 
for wine grapevines and 2.50 to 2.80 m apart for table 
grapevines. The ‘’V’’ shape trellis was predominantly used 
for table grapevines. Part of the vineyards are irrigated 
(mostly the table grapevines) via drip irrigation. Irrigation 
strategies are different with small inputs in the case of wine 
grapevines to escape from very dry conditions while the 
amount of irrigation is much larger with table grapevine to 
maximise the fruit production. Inter/intra-row grass cover 
(background) development is governed by rainfalls and 
inter-row management. There are mainly three modes of 
inter-row management: tilled with regular harrowing to 
suppress weeds, grassed inter-row with regular mowing of 
the grass, and a mix of the two by tilling one inter-row over 
2 or 3. Dry summer conditions lead to a drying out of the 
herbaceous stratum, with a very small remaining fraction of 
the green grass, whatever the inter-row management method.

2. Ground data

2.1 canopy development and phenology monitoring
The experiment was conducted across two years (2021 and 
2022). Eleven (11) plots of grapevines (4 table grapevines 
and 7 wine grapevines) were selected across the study area 
(Table 1). In each plot, five grapevine tree were randomly 
chosen to observe phenology and characterise the leaf 
development. On each grapevine tree, two branches were 
selected to count the leaves during the whole growing season 
(11 field visits every year) to characterise the dynamic of the 
leaf development. The standard protocol was to count the 
leaves number on the main branches and the sub-branches. 
In addition, specific observations were made to establish 
allometric relationships to infer leaf surface area from the leaf 

counts. Therefore, at three dates across the grapevine cycle 
(20-05-2022, 05-07-2022, and 07-10-2022), the leaf lengths 
(from the petiolar sinus to the end of the apical lobe) of every 
leaf on a selection of monitored branches (from 58 to 30) were 
measured. The lengths thus measured were then converted 
into surface area using a relationship between length and 
surface area established on sets of leaves of different sizes 
taken from each of the plots. The results showed that a single 
relationship was sufficient to characterise the leaf area of the 
different grapevine varieties monitored in this work. At the 
end of the process, we obtained three allometric relationships 
for each of the leaf length measurement dates linking the 
leaf surface (cm2 per branch) to the leaf number (Figure 2). 
Figure 2 exhibits a variation of the relationship across the 
year and, thus, the different relationships were estimated 
as follows. Up until March 20th, we used the allometric 
function established on 20-05-2022. From March 21st to 
October 6th, we applied the second relationship established 
on 05-07-2022, and finally, the relationship obtained on 
07-10-2023 was applied after October 7th. The estimated 
leaf surface per branch was then averaged at the field level 
and then normalised using the maximum value of every time 
series.

2.2 Assessments of background coverage
Standardised RGB photos were taken using a digital camera 
to characterise the background coverage using vertical views in 
three locations in the plot inter-row, the location remaining 
the same across the season to maintain the same ROI (region 
of interest). To estimate the degree of soil surfaces covered 
by the background vegetation, the percentage of the ground 
cover was estimated using the SegVeg model for semantic 
segmentation of RGB photos into soil background portion, 
green vegetation portion, and senescent portion as described 

FIGURE 1. Map of France showing the location of the study site (Ouvèze-Ventoux) in the South-Eastern part of the 
country including photos of irrigated table and non-irrigated wine grapevine fields.
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by Serouart et al. (2022). It is in conformity with the U-net 
model that delineates vegetation from the background (after 
training across a dataset that is very large and diverse).  
Pixels of the vegetation are subsequently classified using a 
Support Vector Machine (SVM) shallow machine learning 
approach trained on grids extracted pixels applied to the 
RGB photos. We used an already trained SegVeg model 
(Serouart et al. 2022), leading to a vegetation cover fraction 
ranging from 0 to 1. The presence of senescent vegetation 
(pruned residues or dried grasses) was not taken into account 
in the vegetation cover. A qualitative assessment of the results 
was done, leading to the removal of images with shadows 
from the analysis.

3. Rainfall conditions at the experimental site.
Among the components of weather, only rainfall data was 
used. The rainfall data used in this study were extracted from 
the weather station of Entrecheaux for both years (2021 
and 2022) located in the studied area with a distance to the 
fields that range from 1 to 5 km. The cumulated rainfall 
value for 2021 was 664.8 mm, and for 2022 was 754.8 mm, 
respectively. In particular, the year 2022 was wetter (more 
precipitation) than 2021 but also had the driest summer. 
Rainfall data analysis was useful to examine grass dynamics, 

especially in the summertime when grass regrowth might be 
stimulated by a rainfall event.

4. Satellite data
In this study, we used Sentinel-2 (S2) time series (optical 
images) collected from both Sentinel-2A and Sentinel-2B, 
considering all cloud-free images during the years 2021 
and 2022. Images were provided by an open-source service 
centre named THEIA (https://www.theia-land.fr/, accessed 
on 17 January 2023). We worked with S2 level 2A, which 
is spatially registered and corrected for atmospheric effects. 
The products are delivered with a cloud mask used to filter 
the images. The number of used images varies across the 
two years; for instance, there were 50 and 53 available 
images in 2021 and 2022, respectively.

The leaf area index (LAI) utilised in this research was 
calculated via the BVNET algorithm (Weiss et al., 2002), 
which is based on the green (B3), red (B4), and near-infrared 
(B8) bands. The quality of this algorithm was proven and 
thus it was incorporated into the ESA (European Space 
Agency) S2 toolbox. The algorithm is based on the neural 
network trained on simulated spectral reflectance using the 
SAIL radiative transfer model (Weiss et al., 2002). The SAIL 

Plot ID Variety Inter-row management strategy Irrigation

45 Table grapevine Grassed Irrigated

203 Wine grapevine Partially grassed Non-irrigated

204 Wine grapevine Constantly tilled Non-irrigated

1901 Table grapevine Grassed Irrigated

2026 Wine grapevine Tilled Non-irrigated

2335 Wine grapevine Tilled Non-irrigated

3064 Table grapevine Grassed Irrigated

3121 Table grapevine Tilled Irrigated

3138 Wine grapevine Tilled Non-irrigated

3140 Wine grapevine Tilled Non-irrigated

3358 Wine grapevine Partially grassed Non-irrigated

TABLE 1. Descriptions of the eleven selected grapevine fields. 

FIGURE 2. The three linear allometric relations (a) for main branches and (b) sub-branches used for the conversion 
of leaves number to surface area for the year 2022.
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model is adapted to homogeneous canopies as field crops, 
and using it to structured plant cover such as orchards and 
vineyards remains questionable. However, in Abubakar et al. 
2023, it was found that the LAI derived from the BVNET 
algorithm can track the leaf development dynamic. The LAI 
was computed on each 10m resolution pixel, and then the LAI 
average was computed for every field using the R function of 
zonal statistics (Zonal Statistics in R | GeoProfesja, 2016).  
To avoid any border effect, a buffer of 20 m from the field 
limit was removed before the averaging.

5. Analytic model and calibration
In this study, we assumed that the vine leaf area dynamic 
can be represented by a double logistic model (Fisher et al., 
2006; Fisher and Mustard, 2007), which has proved to be 
efficient in describing the LAI dynamic of orchards and 
vineyards (Abubakar et al., 2023). The analytic relationship 
is given in Equation 1.

where V(t) represents a vegetation index (LAI in our case) 
at time t, vmin is the minimum V value, and vamp is the 
amplitude of V variations. Parameters m1, n1, m2, n2 
are the curve-shape controlling parameters. The n1 and 
n2 parameters represent the slope at inflexion points, as 
shown below in Figure 3a, while m1 and m2 are the timing 

of the inflexion point. The problem with the vineyard is that 
there is a risk of confusion between the grassed background, 
which has its dynamic on the grapevine canopy since both 
components might have a similar weight in the overall LAI 
(Figure 3c). This hampers the possibility of determining the 
double logistic model parameters and consequently prevents 
identifying the vine canopy development. Such a feature 
was noticed in Abubakar et al. (2023) with the possibility of 
vineyard misclassification due to early grass development that 
provides leaf growth earlier than expected with grapevine.  
The results of the leaf development observations are 
displayed in Figure 3b. The observed leaf surface should be 
considered as a proxy of the LAI, whose main characteristic is 
to describe the temporal dynamic of the canopy development. 
The leaf surfaces were normalised using the maximum value 
observed in each field. Figure 3b clearly shows the relevance 
of using the double logistic model and shows a good 
synchronisation of the temporal patterns over the growing 
and plateau phases.

These observations were the foundation of the additional 
hypothesis used to constrain the fitting procedure. Based on 
the field observations, we can determine critical dates that 
correspond to vmin, vmax=vmin+vamp, and intermediate 
points in the growing and senescence phases corresponding 
to (Vmin+¼Vamp), ½, and ¾ of the amplitude (see Figure 3c). 
To determine the V value at those critical times, we need to 

FIGURE 3. (a) analytic model showing Eq. 1 parameter effect (b) canopy developments from the field visits data 
showing selected time used for the model calibration (c) the simulated canopy from the S2 data showing the calibration 
points (d) the separation of canopy and background from S2 data of a given irrigated table grapevine field.

𝐸𝐸𝐸𝐸. 1: 𝑉𝑉(𝑡𝑡)  =  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ( 1
1 + 𝑒𝑒𝑚𝑚1−𝑛𝑛1𝑡𝑡 − 1

1 + 𝑒𝑒𝑚𝑚2−𝑛𝑛2𝑡𝑡) 
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determine Vmax and Vmin. These values were taken from 
the LAI time series. Vmin was derived from a field with a 
tilled interrow, taking into account the field presenting a flat 
and the lowest LAI in winter. This value was then applied to 
all other fields. Vmax is characterised on every field’s times 
series by taking the minimum value during the plateau phase. 
In doing so, the underlying assumption is that, whatever the 
inter-row management method, there is a point during the 
summer drought when the vegetation is completely dried out, 
allowing us to hypothesise that the grassed contribution to 
LAI is negligible.

From that hypothesis, we can generate a grapevine LAI 
time series at the critical times mentioned above. Then, the 
parameters n1, n2, m1, and m2 were determined using a 
non-linear fitting algorithm (nls function in R). The last step 
is to remove from the observed LAI time series the fitted vine 
LAI to obtain the LAI of the background (Figure 3d).

RESULTS 

1. Grapevine canopy and background field 
observation
The data obtained on the evaluation of the grapevine leaf 
area were presented (Figure 3b) and partially discussed in the 
previous section. The measurements obtained on a sample of 
branches provide a good reflection of leaf evolution but do 
not allow us to compare LAI from one plot to another since 
the number of branches per grapevine is also an important 
datum that was not recorded. The evolution clearly shows the 
growth, plateau, and senescence phases. The first two phases 
are remarkably synchronous despite the diversity of the grape 
varieties used (different varieties for wine grapes and table 
grapes). More marked differences can be observed in the 
senescence phase. Between the two years, we noted a slight 
shift of a few days, with vegetation in 2022 ahead of 2021. 
The surface dynamic shows a drop at the beginning of the 
plateau, in line with thinning operation. Such an operation 
could have an impact on the detection of minimum LAI in 
the plateau phase.

The temporal patterns of the inter-row grass coverage 
are displayed in Figure 5 for the two years. The temporal 
patterns reflect the weather nature of the study area by 
having a significant drop in summer and a rise in both winter 
and autumn, as shown in Figure 5. From DOY 150 to 215, 
i.e., when the inter-row decline was observed, strong water 
deficits were recorded with cumulative daily rainfall of 
54 mm (the potential evapotranspiration being 325 mm) in 
2021 and 37.6 mm (the potential evapotranspiration being 
315 mm) in 2022. Due to the significant variation in inter-row 
management strategies among the selected grapevines, the 
drop in the green vegetation still varies among fields with 
some having a drastic drop (for instance the constantly 
tilled plots), while in some fields the drop is not so drastic  
(for instance plots that have grassed inter-row). Such a 
drop in the summer confirms our hypothesis that in the 
summer, there are times when the grass contribution to LAI 
is negligible. However, the hypothesis is questionable with 
table grapevine fields 45, 1901, and 3064 that had a grassed 
inter-row and were irrigated. In that case, the grapevine 
canopy is very high, and the impact of the grassed inter-row 
might be minimised.

2. Delineation of canopy and soil background 
from the remote sensing data
The method was applied to each field, considering the 
specific Vmax for each of them. The canopy development 
for one of the selected grapevine is displayed below with 
all the calibration points (Figure 5). In this figure, we can 
make a qualitative assessment of the background dynamic 
as displayed by the picture. After tillage within some part of 
the growing season, there is re-emergence of the inter-row 
grasses coverage as seen in Figure 5 below; which can 
be explained by rainfall that may stimulate the regrowth 
between the two tillage events shown in the two mid photos. 
The regrowth of the grass shown in the last picture is also 
visible on the background LAI signal. When comparing the 
grapevine results, we can see that the timing of the growing 
and senescence phases was consistent. For the background, 
the overall trend is well reproduced, with high LAI in 
spring and fall while the grass cover decreases strongly in 

FIGURE 4. Temporal pattern of the inter-row green vegetation cover from the field visits data (with plot ID indicated 
above the figures) in 2021 (a) and 2022 (b).

https://oeno-one.eu/
https://ives-openscience.eu/


OENO One | By the International Viticulture and Enology Society8 | volume 57–4 | 2023

summer. Some variations in both signals were not always 
consistent due to some shifts in acquisition dates and very 
sharp variations in grass dynamics due to tillage and rainfall.  
The main parameters used including their timings are  
vmin_deb (110 DOY), vmin+vamp1/4 (144 DOY), 
vmin+vamp1/2 (158 DOY), vmin+vamp3/4 (167 DOY) 
vmin+vamp_SOP (199), vmin+vamp_EOP (272 DOY), 
vmin+vamp1/2 (304 DOY), vmin_end (346 DOY).

3. Evaluation of the vine LAI
The developped method was evaluated by considering 
the observations made the 03/08/2023 when 
the canopy is expected to be fully developped.  

The average and standard deviation of the canopy width 
from the five selected grapevine trees were determined across 
each field. A relation was determined between the remotely 
sensed LAI (RS-LAI) and the average canopy width (of 
the same date) for each field with error bars on the ground 
measurements, as shown in Figure 6 below. The evaluation 
was done independently for table (Figure 6a) and wine 
grapevines (Figure 6b), as the grapevine trees are managed 
differently. The increase in the RS-LAI is somewhat directly 
linked to an increase in the canopy width, but the strong 
uncertainties on the ground observations might affect this 
evaluation strongly.

FIGURE 5. Results obtained with field ID 3140: (a) Separation of canopy and background green cover from remote 
sensing LAI signal and the rainfall data of a grapevine plot with field ID 3140. The points on the yellow curve are 
those used to calibrate the grapevine LAI curve. In (b), the curves correspond to the observed canopy leaf area and 
background green vegetation cover.
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4. Identification of inter-row management 
strategies from remote sensing data
The background LAI time series are displayed in 
Figure 7, and the colour scheme is used to distinguish the 
three management classes: tilled, partially grassed, and 
grassed. For the grassed class (black lines), we can observe 
strong variations in LAI that reflect growth, mowing, and 
summer senescence. Overall, the grassed class presented a 
yearly average LAI, which was significantly larger than the 
other modes, with an average of 0.36 compared to 0.19 to 
0.21 values obtained with the other two classes. One can 
note that the differences were even larger when considering 
the spring period until DOY = 150. Therefore, the yearly 
(or spring average) average LAI over the year might be a 
useful metric to separate grassed and tilled inter-rows. As a 
matter of fact, the lowest yearly average in the grassed class 
(0.30) is always larger than the maximum obtained in the 
other class (0.24). On the other hand, the tilled and partially 
grassed classes are difficult to distinguish. A comparison of 
the retrieved LAI with the inter-row vegetation cover led to 
a significant relationship with an R² = 0.4. The quality of this 
comparison is affected by the uncertainties in the vegetation 
cover due to the sampling, the error in image processing, and 
the difference in time between the remote sensing data and 
the close field observation. However, a qualitative assessment 

made with the field pictures as shown in Figure 5 showed 
consistency between the background LAI time series and the 
grass development in the inter-rows.

DISCUSSION 

1. Impact of grapevine trimming and thinning 
management.
Grapevine canopies are subjected to several management 
practices, such as pruning, trimming, or thinning, among 
others, for canopy structure manipulations. The shoot 
trimming is done to regulate the excess growth spread of 
the grapevines across the fields (regulate shoot vigour) by 
adopting several approaches of canopy management (shoot 
trimming or thinning) (Smart, 1985). Thinning or trimming 
of shoot remains one of the extensively adopted management 
strategies in viticulture to regulate canopy density, improve 
interception of sunlight, optimise photosynthetic dynamics, 
improve fruit microclimate, and eventually enhance fruit 
yield and quality of the wine (Costa et al., 2016).

Figure 8 displays the temporal data obtained from the field 
visits and RS-LAI time series. With the field observation, one 
can notice that, in general, there is a slight decrease in the leaf 
surface area observations (highlighted with a red circle) on 
the sixth field visit which corresponds to 12–13 of July 2021. 

FIGURE 6. Table grapevine RS-LAI and canopy width relations (a) and wine grapevine RS-LAI and canopy width 
relations (b).

FIGURE 7. Temporal patterns of background LAI time series for 2021 (a) and 2022 (b). The black curves correspond 
to the grassed, green to the partially tilled, and orange to the tilled inter-row management.
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Such drop in the leaf surface area is ascribed to the first 
shoot thinning management, as demonstrated by the picture 
showing the removed shoots left on the ground.

On the contrary, the RS-LAI signals from Figure 8 have 
failed to display such a reduction in leaf area. It is interesting 
to implement our approach that needs to take profit of a 
minimum value, and it is interesting to have it not impacted 
by a thinning event. However, it also reflects that LAI 
estimated by remote sensing is not so sensitive to leaf area 
reduction within the grapevine canopies. This questions the 
LAI algorithm itself but also indicates that some management 
practices such as thinning and pruning can not be observable 
on the 10-metre resolution images delivered by the Sentinel 2 
satellite.

2. Is the proposed method dependent on field 
observations
The leaf growth is governed by the temperature 
(Malheiro et al., 2013) and is tightly linked to the 
phenology. It also depends on grapevine varieties, while 
water stress may impact the grapevine LAI dynamic. In our 
study, the timing of the plant development as the growth, 
the plateau, and the senescence phases were set up on 
ground observations. In other locations having different 
climates and grapevine varieties, there is a need to adapt 
the timing of the different phases. One can question the 
need for field observation and then the resulting burden of 
collecting leaf area in several fields. One can ask if such 
an observation step is mandatory or if we can infer the 
timing characteristics directly from the RS times series.  

In our data set, we can take profit from vineyards where 
the LAI time series is dominated by the grapevine canopy.  
A good candidate for that is a field with an LAI times series 
having low LAI in winter and spring and a LAI significantly 
higher during the crop seasons, as shown with field 3121 in 
Figure 9a. From that curve, we can determine the Vmax as 
done previously and then determine the time corresponding 
to the start and the end of the season (t0-deb and t0-end), the 
plateau (tSOP and tEOP), and the intermediate points during 
the growing and senescence phases (t1/4, t1/2, and t3/4). 
These points are displayed in the orange curves in Figure 9a. 
The differences in time between the remote sensing and field 
approaches reached a maximum of 17 days for tSOP and 
was, on average, equal to 10 days. The plateau duration was 
expended by 20 days, and the senescence phase was delayed 
when using the remote sensing time series in comparison to 
the field observations. If such differences in the development 
timing have no impact on the maximum LAI, their impacts 
on the vegetation component time series might be significant. 
Figure 9b displays the LAI times series of the background 
using the two methods (with or without field observation) 
on three fields representative of the three management 
classes. As expected, differences were found during the 
growing and senescence phases. However, such differences 
remain small in comparison to the differences observed 
between management practices and, thus, the possibility to 
identify grassed inter-row remains possible. Such a result is 
encouraging and opens the possibility of applying the method 
in different areas with the use of remote sensing data only. 
This is an important property for the model scalability and its 
implementation in wide areas.

FIGURE 8. Temporal evolution of canopy dynamic and the temporal evolutions of the RS-LAI signal for the year 
2021.
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CONCLUSIONS 

In this work, we propose a method for characterising 
two important characteristics of grapevines, namely the 
LAI of the grapevine canopy and inter-row management. 
We showed that these data are accessible from the LAI time 
series derived from a decametric resolution satellite such 
as Sentinel 2, which has the advantage of offering frequent 
and free data over the whole globe but at a resolution 
that does not allow us to enter into the description of the 
constituent elements of a plant canopy such as the vineyards.  
The proposed method is based on assumptions about canopy 
dynamics supported by field observations, and on the 
presence of periods during the summer when the contribution 
of the herbaceous canopy may be neglected, due either to 
tillage or to the drying out of the grass as a result of water 

stress. The method was applied to eleven (11) vineyards with 
different types of management and grape varieties. The results 
obtained led to interesting qualitative results on LAI, and we 
have succeeded in separating grass-covered vines from vines 
in which the inter-row is tilled. We have shown that we can 
dispense with field observation and base our methods solely 
on remote sensing data. These promising results now need to 
be evaluated against more quantitative data and applied on a 
larger scale.
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