

Angiogenesis and MMP-2expression in Oral Squamous Cell Carcinoma&Verrucous Carcinoma and its Correlation with Clinicopathological Parameters

Bashar H. Abdullah (PhD.), Seta A. Sarkis (PhD.), Ban F. AL Drobie (PhD.)*

Abstract

Background: An important step of tumor progression in which Matrix metalloproteinase have been implicated is angiogenesis, because these enzymes degrade the extracellular matrix and provide a permissive microenvironment for the growth of new blood vessels.

The present study conducted to evaluate the immunohistochemical expression of Matrixmetalloproteinase -2(MMP-2) and angiogenic marker (CD34) in Oral squamous cell carcinoma(SCC) versus vertucous carcinoma(VC) and to correlate their expressions with the clinicopathological parameters.

Material & Methods: MMP-2 and CD34 expression was examined immunohistochemically in twenty four paraffin tissue blocks of squamous cell carcinoma and verrucous carcinoma (twelve cases of each).

Results: All cases of Oral SCC exhibited positive immunostaining for MMP-2, while only one case of VC showed –ve expression. Interestingly all cases of VC showed –ve MMP-2 immunostaining of the basal cell layer. Generally lymphatic vessels were more than blood vessels in both VC&SCC cases. The mean MMP-2 immunoexpression was (59.00%) for both stage I &stage II, while the higher CD34 immuno expression was in stage I. The mean expression of MMP-2 was higher in well differentiated OSCCs, while for CD34 it was higher in poorly differentiated OSCCs followed by moderately differentiated, then well differentiated, however no statistically significant difference was found. Non- significant correlation was found concerning the expression of both markers for both lesions.

Conclusion: No statistical correlation was found between MMP-2 expression and angiogenesis in OSCC and OVC.

Key word: SCC, VC, MMP-2, CD34

* Department of Oral Diagnosis/ College of Dentistry/ Baghdad University/ Baghdad/ Iraq.

Introduction

Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the oral cavity, accounting for over 90% of the malignant neoplasms in this region. The prognosis of SCC is related to the proliferative activity of the tumour, degree of differentiation, and invasion and metastatic potential.[1] The last two processes involve multiple steps, such as degradation of the basement membrane and extracellular matrix (ECM), alterations in cell adhesiveness, tumour cell motility, and angiogenesis.[2]

Oral Verrucous carcinoma (OVC) is a lowgrade variant of oral SCC. In 1948, Lauren V. Ackermann first described this neoplasm of the oral mucous membrane, which is also known as (Verrucous carcinoma of Ackermann) or Ackermann's tumor [3].

At present, therapeutic decisions in SCCs are based on clinical and pathological parameters, including age, metastasis stage and histological grade of the tumour. However, these factors frequently fail to distinguish between more or less aggressive tumours. Therefore, specificmarkers need to be identified that are related to tumour progression and thus permit the establishment of therapeutic strategies against specific antigens [4,5].

Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases that are able to degrade all ECM proteins. [6] are associated with **MMPs** tumour progression and a poor prognosis due to their capacity to rupture these physical barriers and to regulate angiogenesis and cell proliferation. In significant number of cases MMPs are expressed by stromal cells, a finding indicating that, in addition to endogenous production of these enzymes, tumour cells utilizes proteinases produced by stromal cells. [7]

Type IV collagen is the main component of basement membrane, and degradation of this structural protein is favored by 2 metalloproteinases, namely, the gelatinase A (MMP-2) and gelatinase-B (MMP-9). MMP-2 and MMP-9 are known to be closely associated with the malignant potential of tumor cells [8].

Angiogenesis, which is the formation of new vessels from preexisting vessels, is thought to be of crucial importance to the growth, maintenance and metastasis of solid tumors. Tumor angiogenesis are often activated during the early preneoplastic stages of tumor development and is controlled by a number of positive or negative regulators produced by cancer cells and tumor-associated leukocytes [9]. The fact that tumors are angiogenesis dependent and metastatic cells are only shed after the tumor establishes its microcirculation has been described in melanomas, breast

carcinomas and other malignant neoplasms [10].

Microvessel density (MVD), as a prognostic indicator, has been documented in various types of human tumors.CD34 (a human progenitor cell antigen) is expressed in a wide variety of normal and neoplastic cells [11].

The objective of the present study was to evaluate the immunohistochemical expression of MMP-2 and CD34 to find out whether these molecules affect the local destructive and metastatic potentialsof OSCC versus OVC and to correlate their expressions with the clinicopathological parameters.

Materials and Methods

Twenty four formalin- fixed, paraffinembedded (FFPE) tissue blocks (twelve carcinoma squamous cell and twelve verrucous carcinoma) obtained from the archieves of oral pathology department /college of dentistry/ Baghdad university, were included in this study. Data concerning location, patients' age, sex, clinical presentation, clinical staging and histopathological grading were obtained from the associated surgical reports. Tumor histology was reviewed blindly by two pathologists, and the representative paraffin blocks were selected.

Immunohistochemistry (IHC)

Two 4µm thickness sections were cut and mounted on positively charged slides (biocare USA) to be stained Immunohistochemically with anti CD34 and anti MMP-2 monoclonal antibodies (Mab) (US Biological-C2386-10).

Sections were sequentially deparaffinized and rehydrated. Then they were immersed in (0.3%) H2O2 to block the endogenous peroxidase activity, washed by phosphate – buffered saline (PBS) and incubated in (10%) normal goat serum to block the non specific antibody binding. The sections were

incubated with monoclonal mouse antihuman MMP-2 (diluted at 1:50) and anti CD34 monoclonal antibody (diluted at 1:40) over night, the bounded antibodies were detected by streptavidin-biotin complex and then counterstained with Harris hematoxylin.

In each IHC run positive and negative controls were included. Tissue blocks of colon cancer and tissue blocks of pyogenic granuloma served as positive control for MMP-2 and CD34 Mabs respectively(according to the manufacture).

EvaluationofImmunohistochemistryResults:AssessmentofMMP-2immunostaining

Tumor cells with clear brown cytoplasmic staining pattern were considered positive for MMP-2 immunostaining (according to the manufacturer's data sheets). MMp-2 scoring was performed by examining at least 1000 cells per section and 200 cells per field in five representative areas and immunoreactivity was scored as follows: -(0) point for negative staining of the considered cells, (1+) < 10%, (2+) 10-50%, (3+) 51-100% (Naka et al, 2004).

Quantification of microvessel density (MVD)

Microvessel density (MVD) was determined by immunostaining of endothelial cells with anti-CD34 monoclonal antibody.

The number of microvessels in four fields under a light microscope (Olympus BX41TF, Tokyo, Japan) at a magnification of $400 \times$ in the area of the most intense vascularization (hot spot) was counted, and the average count in each case was recorded. Any endotheliallined vessel appearing reddish brown and clearly separated from adjacent stromal and tumoral cells was considered to be a single countable microvessel. [13]

All variables were compared using Chisquare test. While Pearson correlation coefficient was applied to plot a correlation .P values of less than 0.05 were considered statistically significant.

Results

The study sample consisted of twenty two FFPE blocks, of which ten cases were diagnosed as VC and twelve cases as OSCC. The age range for VC was from (50 -83) while for SCC it was from (32-86) with almost an equal mean age for both lesions (62.10 and 62.63) respectively.

From the total (10) cases of VC the most common sites were the buccal mucosa and the mandible (3) cases for each, while for OSCC it was the buccal mucosa (7 cases) followed by the tongue (5 cases).

Assessment of MMP-2 immunostaining and MVD in OSCC& VC

All cases of OSCC exhibited positive immunostaining for MMP-2 (Fig.1,2,3,4), and from the total of VC cases only one case showed –ve MMP-2 expressionInterestingly all cases of VC showed –ve MMP-2 immunostaining of the basal cell layer (Fig 5,6).

Generally lymphatic vessels were more than blood vessels in both VC&SCC cases Microvessel density (MVD) was determined by reddish brown immunostaining of endothelial cells lining the blood vessels in both OSCC&VC(Fig 7,8).

The results of this study showed a higher mean of MMP-2 (51.16%), &CD34 (37.66%) immunoexpression in OSCC than VC (35.25% and 29.25%) respectively, however, non significant results revealed by t-test.(table 1)

Regarding VC, females showed higher MMP-2 &CD34 mean of expression (43.00%, 35.33% respectively) than males (36.75%, 28.12% respectively), and the lip showed the highest mean for both MMP-2&CD34 (71.50%, 45.00%) but it was statistically non-significant.

Oral squamous cell carcinoma mean MMP-2 & CD34 immunoexopression was Angiogenesis and MMP-2expression in Oral Squamous Cell Carcinoma&Verrucous Bashar H. Abdullah Carcinoma and its Correlation with Clinicopathological Parameters

higher in females (76.00%, 40.00% respectively)than males (42.88%, 36.88% respectively). The highest mean of MMP-2 expression was in the lip (68.00%), while for CD34 it was in the tongue (52.75 %).).Yet, statistically non- significant results were found.

The mean MMP-2 immunoexpression was (59.00%) for both stage I &stage II, while the higher CD34 immunoexpression was in stage I (73.00%) (table 4). The mean expression of MMP-2 was higher in well differentiated OSCCs (61.00%), while for CD34 it was higher in poorly differentiated OSCCs (44.33%) followed by moderately differentiated (39.50) then well differentiated (27.33) still no statistically significant results were found, according to t-test.(table 3).

Correlating the expression of both markers for both lesions, statistically non-significant results were found, as shown in tables (4&5).



Figure (1): Positive cytoplasmic MMP-2 immunostaining in WDSCC (X10).

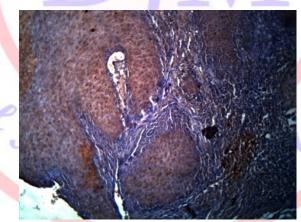


Figure (2): Positive cytoplasmic MMP-2 immunostaining in MD SCC (X10).

Angiogenesis and MMP-2expression in Oral Squamous Cell Carcinoma&Verrucous Carcinoma and its Correlation with Clinicopathological Parameters

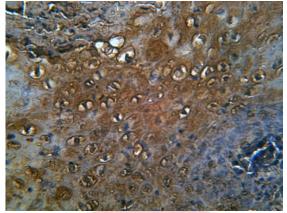
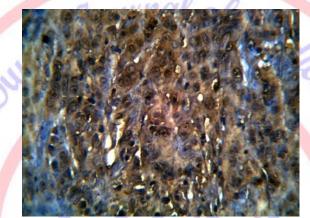



Figure (3): Positive cytoplasmic MMP-2 immunostaining in MD SCC (X40).

Figure (4): Positive cytoplasmic MMP-2 immunostaining in PD SCC (X40).

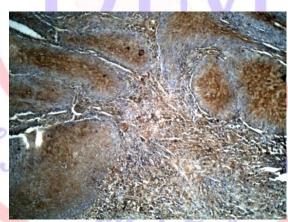
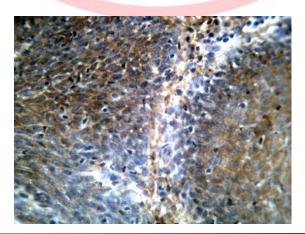



Figure (5): Positive cytoplasmic MMP-2 immunostaining in VC(X10).

Figure (6): Positive cytoplasmic MMP-2 immunostaining in VC(X40). The basal cell layer is negative

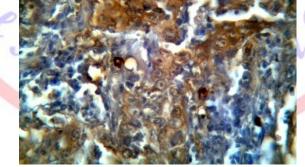


Fig.9: Positive CD34 immunostaining in VC(X40)

Table (1): MMP2 and CD34 expression in OSCC and VC.

	Туре	Ν	Mean	Std. Deviation	Std. Error Mean
MMP2	VC	12	35.2500	24.77948	7.15322
	SCC	12	51.1667	20.39088	5.88634
CD34	VC	12	29.2500	17.31066	4.99716
	SCC	12	37.6667	21.17174	6.11175
t-test for Equality of Means					
	t		df	Sig. (2-tailed)	
MMP2	-1.718- 22		22	.100	
CD34	-1.06	56-	22	.298	

Table (2): MMP2 and CD34 expression in relation to the tumor stage in OSCC.

90 8	MMP2	CD34
Mean	59.0000	73.0000
N	1	S.
Std. Deviation	· /	0
Mean	59.0000	3.0000
N	1	1
Std. Deviation		
Mean	49.8571	43.2857
N	7	7
Std. Deviation	23.08989	12.6 <mark>05</mark> 74
Mean	53.5000	13.0000
N	2	2
Std. Deviation	33.23402	1.41421
Mean	52.1818	36.8182
N	11	11
Std. Deviation	21.06570	21.99008
	NStd. DeviationMeanNStd. DeviationMeanStd. DeviationMeanStd. DeviationMeanNStd. DeviationMeanNStd. DeviationMeanNStd. DeviationMeanNStd. DeviationMeanNStd. Deviation	Mean 59.0000 N 1 Std. Deviation . Mean 59.0000 N 1 Std. Deviation . Mean 49.8571 N 7 Std. Deviation 23.08989 Mean 53.5000 N 2 Std. Deviation 33.23402 Mean 52.1818 N 11

able (3): MMP2 and CD34 expression in relation to the tumor grade in OSC			
Grade	"dia:	MMP2	CD34
W	Mean	61.0000	27.3333
	N	3	3
	Std. Deviation	16.52271	13.27906
М	Mean	43.1667	39.5000
	Ν	6	6
	Std. Deviation	14.93207	26.00577
Р	Mean	57.3333	44.3333
	Ν	3	3
	Std. Deviation	32.59346	19.00877
Total	Mean	51.1667	37.6667
	Ν	12	12

Std. Deviation

21.17174

20.39088

		MMP2	CD34
MMP2	Pearson Correlation	1	.367
	Sig. (2-tailed)		.241
	N	12	12
CD34	Pearson Correlation	.367	1
	Sig. (2-tailed)	.241	
	Ν	12	12

 Table (5): Correlation between MMP2, CD34 in OSCC.

		MMP2	CD34
MMP2	Pearson Correlation	Q1 1	.142
	Sig. (2-tailed)	1014	.661
1	N	12	12
CD34	Pearson Correlation	.142	15
~~	Sig. (2-tailed)	.661	6
	N	12	12

Discussion

Tumor angiogenesis is a complex event mediated by angiogenic factors released from cancer cells and or by host immune cells.

No statistical relationship was found regarding MVD in respect to the age, sex and tumor location in OSCC, which is in accordance with the results of Ascani et al, Chowdhur et al, Gao et al, Mayumiet al([14,15,16,17], as well as in VC, in accordance with the results of Gaoetal[16].

MVD appeared to increase with the increase in histological grading, i.e, the higher MVD detected in tumors showing lower degree of differentiation (poorly differentiated SCC). This agrees with several studies [14, 18, 19], but disagrees with the study of Astekar etal and shintani etal whom showed decreased MVD score from WDSCC to MDSCC to PDSCC [20, 21]. However, increased mean MVD scores was observed histopathologically from normal oral mucosa dysplasia to to OSCC by many studies[22,23,24,25,26,27] Conflicting results may be due to the subjective variation in the classification of OSCC, the use of

different pan-endothelial markers and the different methodologies used in the assessment of the parameters, besides the interobserver variations.

The current results revealed higher MVD in OSCC than VC in accordance with ELRouby, who found MVD significantly lower in OVC compared with OSCC (19). This may imply that high MVD values predict more aggressive tumor behavior in OSCC. However contrasting result showed by Gaoetal[16].

Low neovessel activity was seen within the tumor cell areas, in contrast the adjacent peritumoral stromal area showed intense new vessel formation ,hence the mean MVD for SCC in the peritumoral area was higher than the intra tumoral area(21.1,16.5)respectively, identical results shown by Hollemann etal in HNSCC [10].

These data show a high activity of new vessel formation in peritumoral stroma, with endothelial precursor cells being incorporated into these structures. [10]

The process of angiogenesis in the peritumoral tissue follows several sequential

steps, beginning with degradation of the basement membrane of the initial vessel and extracellular matrix.

No statistically significant results were found regarding the expression of CD34 with the stage of OSCC similar to the findings of other studies [16, 28], but disagrees with the result of Miyahara etal [17]. However, it must be emphasized that neovascularization permits, but does not guarantee, progressive tumor spread [29].

Moreover, an adequate vascular response is essential for initial development as well as continued growth of solid tumors and experimental evidences suggest that tumor growth can be stunted by a variety of agents that have the ability to inhibit angiogenesis.

Many studies have shown that gelatinases have significant clinical usefulness in tumor progression. In view of this, the study of MMP-2 in OSCCs could be a valuable approach for management of these patients. The current results revealed higher MMP-2 expression in OSCC than VC. This may imply that higherMMP-2 values dictate the metastatic behavior of OSCC. Besides, the ve MMP-2 basal cell layer immmuno staining revealed in all cases of VC also confirms its non - metastatic behavior. No previous studies concerned this marker in both lesions together to compare with. However, Patel etal&Tokumaru et al have found that active MMP-2 was significantly elevated in malignant head and neck SCC tissues as compared with normal tissues[30,31] and a Chinese study found that the expression of MMP-2 mRNA in VC was significantly higher than that in SCC[32].

Regarding the results of this study, no statistically significant correlation was found between MMP-2 expression and any of the clinicopathological parameters including age, tumor stage and tumor differentiation. Similar results were also been noted in OSCC[33],Tongue andLarangeal SCC[34,35] respectively.

Considering the cases of SCC evaluated in this study, although high expression of MMP-2 was observed in low grade malignancy but statistically non significant correlation was found in regard to the degree of tumor differentiation. This finding is in agreement with previous studies related to the tongue, lip and laryngeal carcinomas, [36, 34, 37].

Although an important step of tumor progression in which MMPs have been implicated is angiogenesis and these enzymes degrade the extracellular matrix and provide a permissive microenvironment for the growth of new blood vessels. However in the present study no correlation was found between MMP-2 expression and MVD, in with accordance the study of Franchietal(38). This could be due to the fact that most of the cases included in the present study were node negative and metastasis negative except one case which was N1.

Moreover, Although angiogenesis plays a crucial role in hematogenous and lymphatic metastases for which studies have suggested that lesions that entered a higher angiogenic state have an increased probability of metastasis. However, certain tumors with marked angiogenesis surprisingly had no evidence of metastasis and were associated with a good prognosis. Thus. an understanding the complex biology of MMPs requires understanding that MMPs are responsible for promoting cancer so that targeted MMP therapy can be developed [39].

Furthermore, MMPs have both tumor promoting and inhibitory effects. Recent evidence suggests that MMPs can have a protective effect on tumor development. For example, MMPs have been found to negatively regulate neovascularization. MMP upregulation can increase conversion of

plasminogen to angiostatin, which can decrease vascularization of transplanted xenographs.

Thus, unclear relationship exists among angiogenesis, metastasis and prognosis [40]. Finally, the expression of MMP-2 and CD34revealed in the present study suggests that these markers play a role in the process of tumorigenesis.

References

[1] Larsen SR, Johansen J, Sorensen JA, Krogdahl A. The prognostic significance of histological features in oral squamous cell carcinoma. J Oral Pathol Med 2009;38:657– 62.

[2] Curran S, Murray GI. Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer 2000;36:1621–30

[3] Ackerman L. Verrucous carcinoma of the oral cavity.Surgery 1948; 23: 670–8.

[4] Ogawa A, Fukuta Y, Satoh M. Treatment results of oralverrucous carcinoma and its biological behavior. Oral Oncol 2004; 40: 793–7.

[5] Laimer K, Fong D, Gastl G, Obrist P, Kloss F, Tuli T, et al. EpCAM expression in squamous cell carcinoma of the oral cavity: frequency and relationship to clinicopathologic features. Oral Oncol 2008;44:72–7.

[6] Vicente JC, Fresno MF, Villalain L, Vega JA, Herna'ndez Vallejo G. Expression and clinical significance of matrix metalloproteinase-2 and matrix metalloproteinase-9 in oral squamous cell carcinoma. Oral Oncol 2005; 41:283–93.

[7] Ala-Aho R, Ka[°]ha[°] ri. Collagenases in cancer. Biochimie 2005;87:273–86.

[8] Souza VF, Arau´ jo FCR, Alves PM, Souza LB, Galva`o HC, Freitas RA. Immunohistochemical expression of matrilysins(MMP-7 and MMP-26) in ameloblastomas and adenomatoidodontogenic tumors.

Med Oral Pathol Oral RadiolEndod 2009;108:417–24.

[9] Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islettumors. Nat Med 2007; 13: 1211–8.

[10] HollemannD, MD, GenyaYanagida, MD, Beate M. Ru["] ger, MMLSc, CsillaNeuchrist, MD, Michael B. Fischer, MD new vessel formation in peritumoral area of squamous cell carcinoma of the head and neck: HEAD & NECK—DOI 10.1002/hed June 2012 {IVSL}

[11] Bilalovic N, Sandstad B, Golouh R, Nesland JM, Selakl,Torlakovic EE (2004). CD10 protein expression in tumor and stromal cells of malignant melanoma is associated with tumor progression. Mod Pathol 17: 1251–1258.

[13] Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N ENGL J MED, 1991;324:1–8.

[14] AscaniG,.BalerciaP,.MessiM,.lupi

l,.Goteri G,.Filosa A,.Stramazzotti D

"Pieramici T "Rubini C Angiogenesis in Oral squamous cell

carcinoma.ActaOtorhinolaryngolital 2005,25:13-17

[15] Chowdhury CR, Kirita T, Jose M, Abdullah R : Angiogenesis and Lymphangiogenesis in Oral Squamous Cell Carcinoma: Comparison of Japanese and Indian Cases; APJCP.2012.13.7.3219

[16] Gao HW, Ho JY, Lee1 HS, Yu CP The presence of Merkel cells and CD10- and CD34-positive stromal cells compared in benign and malignant oral tumors. Oral Diseases (2009) 15, 259–264.

[17] Miyahara M, Tanuma J, Sugihara K,Semba I, Tumor LymphangiogenesisCorrelates With Lymph Node Metastasis andClinicopathologic Parameters in Oral

Squamous Cell Carcinoma . American Cancer Society 2007,110(6):1287 {IVSL} [18] Kademani D, Lewis JT, Lamb DH, Rallis DJ, Harrington JR. Angiogenesis and CD34 expression as a predictor of recurrence in oral squamous cell carcinoma. J Oral MaxillofacSurg 2009; 67: 180

[19] El-Rouby DH Association of macrophages with angiogenesis in oral verrucous and squamous cell carcinomasJ Oral Pathol Med (2010) 39: 559–564 (IVSL) [20] Astekar M, Joshi A, Ramesh G, MetgudR.Expressionof vascular endothelial growth factor and microvesseldensity in oral tumorigenesis.J Oral Maxillofacpathol 2012;16:22-6

[21]

ShintaniS,LiC,IshikawT,MaiharaM,Nakashir oK.Expression of vascular endothelial growth factor A,B,and D in Oral squamous cell carcinoma.OralOncol 2004,40:13-20 [22] Sauter

ER,NesbitM,WastonJK,kleinA,vascular endothelial growth factor is a marker of tumor invasion and metastasis in SCCof head and Neck.ClinCancer Res 1999,5:775.

[23] lamaroon A, Pongsiriwet S, Jittidecharaks S, Pattanaporn K, Prapayasatok S, Wanachantararak S. Increase of mast cells and tumor angiogenesis in oral squamous cell carcinoma. J Oral Pathol Med 2003;32:195-9.

[24] Pazouki S, Chisholm DM, Adi MM, Carmichael G, Farquharson M, Ogden GR, *et al.* The association between tumour progression and vascularity in the oral mucosa. J Pathol 1997;183:39-43.

[25] Shang ZJ, VEGF is upreglated by hypoxic stimulation and related to tumor angiogenesis and severity of disease in OSCC .Int J Oral MaxillofacSurg 2006,35:533

[26] Abbas NF, Labib El-Sharkawy S, AbbasEA,AbdelMonemEl-Shaer:Immunohistochemicalstudyofp53

angiogenesis in benign and preneoplastic oral lesions and oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 2007;103:385-9 [27]

SharmaB,SriramG,Saraswti,Sivapathasundha ram. Immunohistochemical evaluation of mast cells and angiogenesis in oral squamous cell carcinoma.indian Journal of dental research 2010: 21 , Issue: 2 : 260-265(IVSL)

[28] Shivamallappa SM, Venkatraman NT, Shreedhar B, Mohanty L, Shenoy S. Role of angiogenesis in oral squamous cell carcinoma development and metastasis: an immunohistochemical study : Int J Oral Sci (2011) 3:216-22415.

[29] Chien CY, Su CY, Hwang CF, Clinicopathologic significance of CD105 expression in squamous cell carcinoma of the hypopharynx. Head Neck. 2006;28:441–446


[30] Patel BP , Shah SV , Shukla SN, ShahPM, Patel PS clinical significance of mmp-2 and mmp-9 in patients with oral cancer head & neck 2007:564

[31] Tokumaru Y, Fujii M, Otani Y, et al. Activation of MMP-2 in head and neck squamous cell carcinoma: studies of clinical sample and in vitro cell lines co-cultured with fibroblasts. Cancer Lett 2000;150: 15– 21.

[32] Tang ZG, Li JM, Hong ZZ, Yu ZW, Liu
CH. [J Cent South Univ (Med Sci), 2005, 30
(6): 650]Expression of ma trix m eta
lloproteina se 2 in oral verruvous carcinoma
and squamous cell carcinoma

[33] Yorioka CW, Coletta RD, Alves F, et al. Matrix metalloproteinase-2 and -9 activities correlate with the diseasefree survival of oral squamous cell carcinoma patients.Int J Oncol 2002;20:189–194

[34] Hai-Xia Fan1[†], Hai-Xia Li1[†], Dong Chen2, Zhong-Xiuzi Gao1 and Jin-Hua Zheng1,3,4 Changes in the expression of MMP2, MMP9, and ColIV in stromal cells in Angiogenesis and MMP-2expression in Oral Squamous Cell Carcinoma&Verrucous Carcinoma and its Correlation with Clinicopathological Parameters

l of Medicin

Diyala

squamous tongue cell carcinoma: oral relationships and prognostic & implicationsJournal of Experimental Clinical Cancer Research 2012, 31:90 [35] Krecicki T, Zalesska-Krecicka M, Jelen M, et al (2001). Expression of type IV collagen and matrix metalloproteinase-2 (type IV collagenase) in relation to nodal status in laryngeal cancer. ClinOtolaryngol, 26, 469-72. [36] Barros SS, HenriquesGC, PereiraKM, Medeiros AM,GalvaHC, FreitasLAImmunohistochemical expression

FreitasLAImmunohistochemical expression of matrix metalloproteinases in squamous cell carcinoma of the tongue and lower lip: archives oforal biology 5 6 (2011) 752 – 760. [37] Liu WW, Zeng ZY, Wu QL, Hou JH, Chen YY. Overexpression of MMP-2 in laryngeal squamous cell carcinoma: a potentialindicator for poor prognosis. Otolaryngol Head Neck Surg 2005;132:395– 400.37-

[38] Franchi A, Santucci M, Masini E, Sardi I, Paglierani M, Gallo O. Expression of matrix metalloproteinase 1, matrix metalloproteinase 2, and matrix metalloproteinase 9 in carcinoma of head and neck. Cancer 2002;95:1902–10.

[39] CaoX L, Xu R J, Zheng Y Y, Liu J, Teng1, Yong Li Y S, Zhu J Expression of Type IV Collagen, Metalloproteinase-2, Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 in Laryngeal Squamous Cell Carcinomas *Asian Pacific Journal of Cancer Prevention*, 2011Vol 12,

[40] Inoue M, RoanC H, Abe1 T. BueryR R, Nagatsuka H, Katase N Nagai Nand SetsuK. Localization and characterization of lymphatic vessels in oral and cervical squamous cell carcinoma. Experimental and Therapeutic Medicine 2: 793-797, 2011.