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ABSTRACT 

 

This paper presents an analysis of PSIuIeTR type model, which are used to study the transmission 

dynamics of typhoid fever diseases in a population. Basic idea of typhoid fever disease transmission 

using compartmental modeling is discussed. Differential Transformation Method (DTM) is 

discussed in detail, which is used to compute the series solution of the non-linear system of 

differential equation governing the model equations.  The validity of the (DTM) in solving the 

proposed  model is established by classical fourth-order Runge-Kutta method which is  implemented 

in Maple 18. Graphical results confirm  that (DTM) is in good agreement with RK-4 and this 

produced correctly same behaviour of the model, thus validating the efficiency and accuracy of 

(DTM) in finding the series solution of an epidemic model. 
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1. Introduction   

 

Typhoid fever, a communicable disease which infects human only and occurs due to systemic 

infection mainly by salmonella typhi organism that causes symptoms. It is an acute generalized 

infectious disease of the intestinal lymphoid tissue and the gall bladder. Incubation period of typhoid 

fever, usually 10-14 days but it may be as short as 3 days or as long as 21 days. The disease is 

transmitted from person-to-person as a result of improper hygiene and unsafe food and water 

handling practices. Recent report, however, suggests that individuals may be indirectly infected with 

typhoid through contact with fecal and urine contamination in their immediate environment. 

(Shanahan, 1998). 

           The disease is endemic in many developing countries where water supply sanitation and 

waste treatment is inadequate. The disease remains a substantial public health problem. Globally, 

the disease burden was estimated to be over 16 million cases of illness each year, resulting in over 

600,000 mortality rates Mushayabasa (2011). 

 Several mathematical models has been developed on the transmission dynamics of typhoid 

fever,  these includes, (Adetunde, 2008; Cvjetanovic et al, 2014; Kalajdzievska, 2011; Lauria et al 

2009;  Moatlhodl  & Gosaamang, 2017; Chamuchi et al, 2014;  Joshua, 2011;  Muhammad, et al 

2015;  Mushayabasa, 2011; Nthiiri,  2016; Virginia et al, 2014; Watson & Edmunds, 2015;  Peter, 

et al 2017). In this paper, we extend previous efforts by introducing a model that includes educated 

infected and uneducated infected class.  
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 This work  focused on  the application of differential transform method to the proposed 

model and to verify the validity of the  method in solving the model equations using computer in-

built Maple 18 classical fourth-order Runge-Kutta method as a base. In recent years, the differential 

transform method (DTM) is mostly used for solving non-linear ordinary and partial differential 

equations. It is a semi-analytic technique that formalizes the Taylor series in a totally different 

approach. The concept of (DTM) was first introduced by Zhou, (1986) in a study to solve nonlinear 

problems of electrical circuits. The DTM obtains an analytical solution in form of polynomial. 

DTM has been successfully applied to solve many nonlinear problems arising in engineering, 

mathematics, physics and mechanics. Abazari et al, (2010). The main advantage of DTM is that it 

can be applied directly to solve linear and nonlinear Ordinary Differential Equations without 

requiring linearization, discretization or perturbation. (Hassan, 2008; Peter & Ibrahim, 2017; 

Akinboro, et al 2014). 

 

 We employ the  (DTM) to the system of differential equations which describe the proposed 

model and approximate the solutions in a sequence of time intervals. In other to verify the accuracy 

and validity of the (DTM), we compared the obtained results with fourth-order Runge-Kutta 

Method.  

 

2.        Methodology 

 

This section describes the formulation of the model. The human populations )(tN  is divided into 

six sub-populations namely; protected class, )(tP , susceptible class, )(tS ,  uneducated infectious 

class, )(tIu , educated infectious class )(tIe , treated class )(tT  and recovered individuals class, 

)(tR . Individuals  are recruited into the susceptible class by either immigration or birth at the rate 

  . Susceptible individuals acquire typhoid infection at per capita rate .  We assume that 

proportion   progress to educated infectious class, while the compliment 1  progress to 

uneducated infectious compartment class. Susceptible individuals received vaccination to protect 

themselves against the disease at the rate  . Since vaccine wanes with time, then after its expiry, 

the protected individuals return back to susceptible class at the rate  . We assume that  individuals 

in each compartment  undergo a natural death at the rate  . Let 1 , 2 , and 3  be transmission 

rates for uneducated infectious, educated infectious and treated individuals respectively then the 

susceptible population S(t), is exposed to force of infection denoted by TII eu 321=   . 

Detailed description of parameters and variables are shown in Table 1 while the compartmental flow 

diagram of the model is shown in Figure 1. 
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Figure 1. Pictorial Representation of Model 

 

 

 

2.1        Model  Assumptions 

   

   1.  Recovered individuals may become susceptible again at the rate   , this is due to the fact that 

typhoid does not confer permanent immunity on recovery.  

2.  Susceptible individuals receive vaccination to protect themselves against infection at the rate 

 . 

3.  Susceptible individual can be infected through a direct contact with educated infected  or 

uneducated infected. 

4.  All parameters are non-negative.  

5.  No treatment failure. All treated individuals recoverd. 
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 Where the force of infection   is given as:  
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 TII eu 321=    (2) 

 

Substituting the value of force of infection  
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Table  1. Description of Variables and Parameters for  the Model 

 

 

Variables   Description 

)(tP  protected individuals at time t  

)(tS   susceptible individuals at time t  

Iu   uneducated infectious individuals at time t  

Ie   educated infectious individuals at time t t  

T   treated individuals at time t t  

)(tR   recovered individuals at time t  

Parameters   Interpretation 

   recruitment rate of susceptible individuals  
   natural death rate  

1   disease induced death rate for uI  class  

2   disease induced death rate for eI  

3   disease induced death rate for T  

1   treatment rate for uI  

2   treatment rate for eI  

  wanning rate of vaccine  
   rate of recovery from treatment  
   rate of educating or counseling uneducated infectives 
   rate of vaccinating individual in the susceptible class  

1   transmission rate between S  and uI  class  

2   transmission rate between S  and eI  class  

3   transmission rate between S  and T  class  
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2.2         Existence and Uniqueness of Solution 

 

The implementation of any mathematical model largely based on whether the given system of 

equations has a solution, and if the solution is unique, we shall use the Lipchitz condition to verify 

the existence and uniqueness of solution for the system of the model equation 3. 

 

Let the system of equations of the model  be as follows:  
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Theorem 1. (Derrick and Groosman,1976) 

 

Let B denote the region  
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And suppose that ),( xta  satisfies the Lipchitz condition 
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interested in the region .0 R . We look for the bounded solution in the region and whose partial 

derivatives satisfy 0. a  where   and   are positive constants. 

 

Theorem 2 
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These partial derivative exist, continuous and are bounded, similarly for 4A  through to 6A  . Hence, 

by theorem 2, the model  has a unique solution 

 

3.       Result and Analysis  

  

The processes involved in DTM is given  as follows: Given an arbitrary function of x , suppose 

)(xe  is a non-linear funtion of x , then )(xe  can be expanded in a Taylor series about a point x =

0  as  
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 Thus,the differential Transform of )(xy  is given as:  
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Table 2  illustrate some operational properties of DTM. In the table, )(xm  and n(x) are arbitary 

functions with transformed into )(kM  and )(kN  respectively.   
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Table  2. Basic operation properties of the DTM 

 

 S/No Original Function Transformed Function  
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3.1       Solution of the Model 

 

In this section, we apply the steps involved in differential transform method  as follows: Using the 

operational properties (1), (2), (6) and (7) in Table 2 and applying them to the systyem of differential 

equations in (1) we obtain the following system of transformed equations below,  
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Subject to the following initial conditions 100=(0)P , 200=(0)S , 140=(0)uI , 120=(0)eI , 

80=(0)T , 60=(0)R . Using the initial conditions and the parameter values in the table we have 

the following series solutions. 

 

  when 5=k  the solution to the system (3) in closed form is obtained as 
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4.        Numerical Simulation and Graphical Illustration of the Model.  

 

We demonstrated the numerical simulation which illustrate the analytical results for the proposed 

model . This is achieved by using some set of parameter values given in the table 3 below and whose 

source are mainly from literature and as well as assumptions . The DTM is demostrated against 

mapple buit-in fourth order Runge-Kutta Procedure for the solution of the model.  Figures 2 to 7 

shows the combined plots of the solutions of )(tP )(tS , )(tIu )(tIe  and )(tR  by DTM aand RK4    
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Table  3. Parameters values for the model  

 

 

Parameter 
 
Initial Value 

 
           Source  

  200  Assumed 
  0.142  Mushayabasa, (2011) 

  0.4  Kariuki, C. (2011) 
  0.6  Assumed 

  0.5  Assumed 

    0.1  Estimated 

  0.0072  Assumed 

1  1.5  Kalajdzievska, D. (2011), 

2  0.05  Assumed 

3  0.05  Assumed 

  0.075  Lawi, (2011) 

1  0.04  Estimated 

2  0.3  Estimated 

 

 

 

 

 
Figure 2. Solution of Protected Population by DTM and RK4 
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Figure 3. Solution of Susceptible Population by DTM and RK4 

 

 

 

 

 
Figure 4. Solution of Uneducated Infected Population by DTM and RK4 



Peter et al, Malaysian Journal of Computing, 3 (1): 67–80, 2018 

77 
 

 
Figure 5. Solution of Educated Infected Population by DTM and RK4 

 

 

 

 

 
Figure 6. Solution of Treated Population by DTM and RK4 
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Figure 7. Solution of Recovered Population by DTM and RK4 

 

 

4.1      Discussion of Results  

 

The solutions obtained by using Differential Transform Method with given initial conditions 

compared favourably with the solution obtained by using classical fouth-other Runge-Kuta method. 

The solutions of the two methods follows the same pattern and behaviour. This shows that 

Differential Transform Method is suitable and efficient to conduct the analysis of epidemic models.  

 

 

5.       Conclusion 

 

 In this paper, (DTM) is employed to attempt the series solution of the model. Numerical simulations 

were carried out to compare the results obtained by (DTM) with the result of classical fourth-order 

Runge-Kutta method. The results of the simulations were displayed graphically.The results shows 

that (DTM) is in good agreement with RK-4 and produced accurately the same behaviour thus, 

validating the reliability of (DTM) in finding the approximate solution of epidemic model. 
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