
Malaysian Journal of Computing, 3 (2): 93–107, 2018

Copyright © UiTM Press

eISSN: 2600-8238 online

93

This open access article is distributed under a Creative Commons Attribution (CC-BY SA) 3.0 license

 PAIRWISE CLUSTERS OPTIMIZATION AND CLUSTER MOST

SIGNIFICANT FEATURE METHODS FOR ANOMALY-BASED

NETWORK INTRUSION DETECTION SYSTEM (POC2MSF)

Gervais Hatungimana

Department of Informatics Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
unclejeava@yahoo.co.uk

ABSTRACT

Anomaly-based Intrusion Detection System (IDS) uses known baseline to detect patterns which

have deviated from normal behaviour. If the baseline is faulty, the IDS performance degrades.

Most of researches in IDS which use k-centroids-based clustering methods like K-means, K-

medoids, Fuzzy, Hierarchical and agglomerative algorithms to baseline network traffic suffer

from high false positive rate compared to signature-based IDS, simply because the nature of

these algorithms risk to force some network traffic into wrong profiles depending on K number

of clusters needed. In this paper, we propose an alternative method which instead of defining

K number of clusters, defines t distance threshold. The unrecognizable IDS; IDS which is

neither HIDS nor NIDS is the consequence of using statistical methods for features selection.

The speed, memory and accuracy of IDS are affected by inappropriate features reduction

method or ignorance of irrelevant features. In this paper, we use two-step features selection

and Quality Threshold with Optimization methods to design anomaly-based HIDS and NIDS

separately. The performance of our system is 0% ,99.99%, 1,1 false positive rates, accuracy,

precision and recall respectively for NIDS and 0%,99.61%, 0.991,0.97 false positive rates,

accuracy, precision and recall respectively for HIDS.

Keywords: Clustering; Cluster Most Significant Feature, Network Traffic Baseline; Network

Security; Quality Threshold

1. Introduction

The next step for ensuring safe Information Technology (IT)-enabled information system after

deployment of firewall at network perimeter is the deployment of network Intrusion Detection

System (IDS). While the firewall offers protection against external attack, IDS can offer

protection from both internal and external attack (Davidoff & Jonathan, 2012). This research

has been concentrating to fixing issues within anomaly-based IDS mainly high false alarms.

Based on the literature, the research in anomaly-base IDS can be seen in three

categories; clustering-based, classification-based, and hybrid-based. The clustering based

methods make exclusive use of unsupervised machine learning techniques to detect intrusion

within dataset; K-MEANS, K-medoids, EM clustering, and Outlier Detection dominate this

category (Agrawal & Agrawal, 2015). The classification-based has been exploited by many

researchers using original or adapted supervised machine learning techniques to train the model

based on known traffic so that unknown traffic can be detected later. Naïve Bayes, Decision

Tree, Fuzzy Logic, Neural Network, Genetic Algorithm and Support Vector Machine dominate

this category (Nasiroh, 2014). A hybrid design combines both unsupervised and supervised

machine learning techniques to train the model so that the new traffic will be predicted about

its type (Agrawal & Agrawal, 2015).

K-Means based methods have been proposed in Muchammad & Ahmad (2015) and

Muttaqien & Ahmad (2016). In Muchammad & Ahmad (2015), a recursive clustering method

was proposed for profiling. The features selection is according to chi-square method. To

improve the classification, a feature reduction method was proposed to transform features into

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

94

two dimensional features. In Muttaqien & Ahmad (2016), a divisive clustering method was

proposed for profiling. The features selection is as per chi-square. To improve the classification,

a feature transformation which groups features into one dimension was used. A combination of

genetic algorithm and fuzzy clustering was proposed in Fries (2015) to detect intrusion in TCP

KDD dataset. Although the author targets TCP, all 41 features in KDD dataset where

considered for reduction process using algorithm which gives out 8 features. Among basic TCP

connection features of KDD dataset only 4 are packet header attributes; if GA gives 8 features

out of 41 it is obvious that the design favors HIDS.

Hierarchical clustering and SVM method is proposed in Horng et al. (2011) on KDD

Cup 1999 dataset. The feature selection method is “leave-one-out”. The profiling is according

to K-medoids which is the best method for categorical attributes (Chitrakar & Chuanhe, 2012)

together with SVM this method ended up with accuracy of 99.7 and 0.07 false positive. Earlier

the substitution of SVM with other classification techniques was done in Gervais et al. (2016)

but it shows that SVM has obtained higher performance. The quality threshold clustering

method in Gervais et al. (2016) uses 7 features from the basic TCP connection features; with

interesting false positive rate of 0.2% and accuracy of 99.6 % using decision tree as classifier.

The methods with exclusive clustering have been proposed in Fossaceca et al. (2015)

and Al-Mamory & Jassim (2015). These methods only classify data as they are in KDD dataset.

Al-Mamory et al. (2015) proposed the use of basic features and statistical features

collaboratively to design a two-gain level classifier in KDD 99. The features reduction is

according to information gain method. Fossaceca et al. (2015) proposed MARK-ELM method

to classify data in KDD 99 dataset without features reduction. Referring to the previous research

so far discussed we can summarize the advances of anomaly-based IDS design as depicted in

Figure 1.

Figure 1 Anomaly-based IDS Generation

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

95

Considering these three generations of IDS design, we can notice that the

parameterization as it was introduced in Agrawal & Agrawal (2015) so far in the current (3rd)

generation includes features selection, clustering and features reduction methods. While for the

2nd generation the parameterization includes only features selection and clustering methods.

The 1st generation’s parameterization is only limited to features selection. Our research is

dealing with issues within parameterization in 3rd generation. Davis & Clark (2011) say that

preprocessing cost more than 50% of all time required to build IDS model. More emphasizes

on preprocessing has been discussed by Shiravi et al. (2012).

There is a problem of making distinct network profiles to serve as baseline for detection

(profiling). Mostly, clustering techniques like k-mean, c-mean, or hierarchical clustering

methods are used to baseline network traffic. These methods require the predefinition of the

number of quality clusters from the dataset arbitrary; the problem is that when the number of

clusters is small, there is a risk that some data point will be forced into inappropriate clusters

(called under fitting) and when the numbers of clusters are too many there is a risk of having

unnecessary clusters (called over fitting). The problem becomes more serious when the dataset

has increased or reduced because the previously defined number of clusters can no more fit the

new size (robustness) (Muchammad & Ahmad, 2015). There is a problem pertaining with

features selection process; almost all previous research use statistical method for selecting

features (Muchammad & Ahmad, 2015; Al-Mamory & Jassim, 2015; Muttaqien & Ahmad,

2016). The consequence of statistical method is that it removes important features which

characterize the system being designed.

We expect that the IDS being designed will be put somewhere on the network watching

the packets flows or system audit files to decide if anything is wrong based on the baseline. If

methods like chi-square is used and among all features selected there is no packet header

attribute, we cannot expect this system to work if it is deployed in real world network. Although

Davis & Clark (2011) say that those kinds of IDS might work for HIDS, HIDS also might have

received the log with some basic features from which statistical features can be computed to

support detection. If you take an example of KDD 99 dataset where all data have flag feature;

network experts knows that flag feature is associated with TCP; it doesn’t make sense to use

flag feature for building a baseline for UDP traffic (Sembiring et. al., 2010). This is one case of

issue pertaining to features selection. Wrong features selection will result in unrecognized IDS

which cannot work at all.

Another problem related to features is the feature reduction process. The motivation

for this process is to optimize the classifiers speed, memory and accuracy (Fossaceca et al.,

2015). While generation 1 and 2 ignored these requirements, much generation 3 research

considered the speed forgetting the memory limitation of network devices and proposes feature

transformation methods to group some features (Muchammad & Ahmad, 2015) and (Muttaqien

& Ahmad, 2016). At the time of simulation, since the features feed to the classifier are already

grouped you cannot see how much memory, time, and power it would cost IDS with limited

memory and computing capacity to process all those computational requirements before actual

detection. We argue that features transformation is not good practice for online IDS design due

to resources limitation of implementing machines and high-speed requirement to catch up with

today’s fastest network.

In this paper, we address the issue of features selection by designing separately NIDS

and HIDS specifically for TCP and select features related to TCP only. To address the issue of

features reduction we propose a cluster most significant feature method. This method identifies

one feature per cluster, the collection of those features serves as the basis for classification. To

address the issue of baseline, we propose quality threshold with optimization algorithm to

handle profiling process. This method does not suffer from robustness and is safe from over-

fitting and under-fitting issues because it creates clusters as many as possible to accommodate

available traffic flow types. The rest of the paper is organized as follows; the related works are

discussed in section 2, the proposed method is discussed in section 3, the experimental results

are discussed in section 4 and section 5 is for conclusion.

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

96

2. Proposed Method

In this paper, we propose a two-step feature selection method. The first step is concerned with

manually selecting features to support profiling phase. The selected features serve a digest for

clustering algorithms hereby referred to 𝑈𝑓𝑒𝑎𝑡𝑢𝑟𝑒s. For the scope of our research, these

features include the basic TCP connection features in KDD 99 dataset as described in Aggarwal

& Kumar (2015). The second step is concerned with finding and removing from 𝑈𝑓𝑒𝑎𝑡𝑢𝑟𝑒s,

those features which do not influence the classifier performance and remove them; so are

referred to as 𝑆𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 and the process as cluster most significant feature (𝑐𝑚𝑠f) method.

Again, we propose a new method for baselining network packet traffic, referred to as profiling.

a) Cluster most significant feature (cmsf)

The concept of 𝑐𝑚𝑠𝑓 method as depicted in Figure 2 and Figure 3 is the identification of one

and only one feature with high gain at every iteration step. Initially the dataset is considered as

invalid cluster denoted by 𝐼𝐶; from 𝐼𝐶 we find 𝑐𝑚𝑠𝑓 according to the correlation coefficient

(Kim, 2012). The process iterates until we can’t split IC anymore. For all feature which is not

identified as cmsf is considered as cluster least significant feature denoted as 𝑐𝑙𝑠𝑓. One can

question about the features being used; At this stage we consider TCP IP basic features

(Aggarwal & Kumar, 2015) to design HIDS of which Duration, Service and Flag are found to

be 𝑐𝑚𝑠𝑓. By considering the theory of NIDS we consider only Packet Header Attributes (Davis

& Clark, 2011) for NIDS design of which service, Source byte and Flag are found to be 𝑐𝑚𝑠𝑓.

b) Profiling

In addition to the method used for finding distance threshold (Gervais et al., 2016), this time

we consider impurity as a result of two clusters being coupled together. If a couple is formed

of clusters originally different profile; one attack another normal that means, there is an error

and new threshold is needed. It is based on the experiment as depicted in figure 4 and 5 that we

use 0.0006 and 0.0004 for HIDS and NIDS respectively.

Figure 2 How to find Cluster Most Significant Feature

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

97

Figure 3 The cmsf Procedure

Figure 4 Finding Distance Threshold for HIDS.

The optimized quality threshold clustering algorithm shown in Figure 6, is an extension

of original quality threshold clustering as has been discussed in Heyer et al. (1999). We have

included cluster size limit (Line 13), collection of centroids (Line 10), and the optimization

procedure (Line 16).

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

98

Figure 5 Finding Distance Threshold for NIDS

Figure 6 Optimized Quality Threshold Clustering Algorithm

The algorithm accepts dataset G and distance threshold t as inputs. Initially, every data

point or instance is considered as centroid; then we measure the distance from every centroid

to the rest of data points. If the distance falls within t, then that data point is flagged as neighbor

of the centroid. The results of the first iteration are centroids with overlapping neighbors. In

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

99

order to avoid the overlapping neighbors, we consider the centroid which has got most of

neighbors. This centroid and its neighbors make a valid cluster VC which is then removed from

the dataset G. The remaining dataset G − VC is denoted as IC and is taken for further clustering

(next iteration).

We save the centroid (line 10) of the VC in centroids dataset for later use during

optimization process (Line 16). The resulting VC decreases in size consecutively, starting from

the biggest cluster to the smallest. We set the cluster limit to serve to the process as iteration

termination criteria. It means that, if returned cluster has more than minimum cluster size, then

we are still far from reaching outlier in the dataset. So, IC is taken for further clustering;

otherwise it is considered as outlier and cannot be further clustered with that threshold. In that

case, IC is discarded unless further threshold fine-tune is opted. After the loop has finished, the

outputs are VCs. We take these VCs for optimization as per line 16. The details of the

Clust_Optim procedure is described in Figure 7; it accepts centroid dataset cd as input.

Figure 7 Optimization Procedure

Recall that this centroid is harvested during the clustering process with QT_Clust ()

function. The objective of this process is to identify the clusters with closely similar data points

based on the characteristics of their respective centroids.

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

100

We start by forming the neighbor set NS for each centroid; by removing the centroid

c from the centroid dataset cd. Then we denote P_req (pairing request), the centroid form NS

to which centroid c request to merge with. Immediately we reset the NS by removing the

centroid P_req from the centroid dataset cd to give chance to P_req for finding its closest

neighbor; so, we denote P_rep, the centroid identified by P_req as the closest neighbor. If P_rep

is the index of centroid c, then new centroid is formed by coupling c and Preq, otherwise these

centroids remain separated. At the end, we get new centroids either in couple or single. Data

within couple centroid are merged together to form one cluster equivalent to a network traffic

profile.

This optimization process is limited to pairwise relationship. Triplewise or more risk

returning to original dataset. Alternative to merging would be recalculating a new centroid form

previously merged clusters then repeat the process. Since the centroids are identified once

during the clustering process, this option becomes impracticable at this stage of

experimentation. Reducing the number of clusters as many as possible is important for the

performance of IDS therefore it is encouraged to come up with new method future work. The

difference between Original as was used by Gervais et al. (2016) and the optimized algorithm

is that for original algorithm the network profiles correspond directly to the clusters labels while

for the optimized version some clusters may make synergy to represent one network profile.

c) Features Reduction

At glance of classification, we set 𝑐𝑚𝑠𝑓 features as default; As depicted in Figure 8, we do

classification and evaluate the performance in terms of false positive rate and accuracy. As long

as there are 𝑐𝑙𝑠𝑓available, we add one by one and evaluate the performance. The variation of

results is depicted in Figure 9 and Figure 10.

Figure 8 Features Reduction Process

Start

Sfeature= cmsf

Classification

Sfeature=cmsf + clsf

End

Is

Available

 clsf ?

YES

NO

Accuracy

FPR

NEW

DATASET

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

101

Figure 9 Accuracy Variation

Figure 10 FPR Variation

3. Results and Discussion

The experimentation is carried out in Matlab and Java. We use Matlab to extract 190066 TCP

data out of KDD 99 10%, to transform and normalize features and to prepare new dataset using

the algorithm mentioned in Fig 2, 3 and 4. We use Java to divide the new dataset with new

profiles into training and testing sets using cross validation fold 10%. We use the training for

building detection model (baseline) and testing for evaluation. We evaluate the performance

in terms of number of profiles, accuracy, false positive rate, Precision, recall and time. We do

experimentation for HIDS and NIDS design separately. The final performance results for HIDS

and NIDS are presented as follow: Two Separate Tables each holding results of one classifier.

In each table, the reading form the left to the right in the first column holds the evaluation

metrics, the second holds result of proposed method, the third holds results using the method

proposed by Gervais et al. (2016) and the fourth holds results of classifying KDD TCP dataset

without clustering into new dataset.

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

102

4. Results for HIDS

The profiling phase yields results in Table 1; column 2 holds the clusters created before

optimization procedure, column 2 holds clusters after optimization procedure. The elements in

{} are clusters centroids which have been coupled together. We visualize the results in Figure

11 by plotting centroids in 3-D. By looking at centroids in rectangle we can see some clusters

overlapping each other while other centroids couple in oval are visually distinguishable; it is

the consequence of using only 3 features (cmsf) to plot 7-dimentional data; however, it has no

impact on the design of IDS.

Table 1 HIDS Profiling Results

Clusters Profiles

1 Attack 1 {1,8} Attack

2 Normal 2 {2,9} Normal

3 Normal 3 {3,18} Normal

4 normal 4 {4,24} Normal

5 Attack 5 {5,12} Attack

6 Normal 6 {6,19} Normal

7 Attack 7 7 Attack

8 Attack 8 10 Attack

9 Normal 9 11 Normal

10 Attack 10 13 Attack

11 Normal 11 14 Normal

12 Attack 12 15 Attack

13 Attack 13 {16,31} Attack

14 normal 14 17 Normal

15 Attack 15 19 Normal

16 Attack 16 20 Normal

17 Normal 17 21 Normal

18 Normal 18 22 Attack

19 Normal 19 {23,25} Normal

20 Normal 20 26 Attack

21 Normal 21 27 Normal

22 Attack 22 {28,30} Attack

23 Normal 23 29 Normal

24 attack 24 32 Normal

25 normal

26 attack

27 normal

28 attack

29 normal

30 attack

31 attack

32 normal

Clustering Parameters

 Original Dataset

: 190066

 New Dataset

: 189748

 Outliers

: 318

 Minimal Cluster Size

:10

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

103

Figure 11 HIDS Centroids Visualization

Finally, the classification results show that the Decision Tree is the best classifier for our design

as shown in Table 2. Our method (POC2MSF) outstands in all aspects compared to QT method

(Gervais et al., 2016) and KDD when no clustering is involved (Generation1) We notice

significant improvement in terms of time from 33 to 28 seconds. Accuracy improvement means

that profiles are more distinct than before. The time reduction is consequence of profiles

reduction from 32 to 24 profiles.

Table 2 HIDS Performance Results

 POC2MSF QT KDD

Profile 24 32 20

Accuracy 97.80% 97.15% 86.63%

FAR 0.1% 0.1% 0.9%

Time 15 Sec 22 Sec 40 sec

Precision 0.99 0.89 0.90

Recall :0.97 0.97 0.86

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

104

5. Experimental results for NIDS

The profiling for NIDS yields the results as are shown in Table 3; the first column represents

clusters created and the second column represents profiles. The number in {} are pair of clusters

merged together to form one profile. We visualize the clustering results using 3-D plotting of

centroids as shown in Figure 12. All couple centroids according to results in Table 3 are

represented in oval. The rest of centroids are just single. By looking at couples you can tell that

all centroids which are statistically coupled as depicted in Table 3; visually they are closer to

each other as depicted in Figure 12. There is no visualization error because the dataset is 3-

dimentional which fits the 3-D plotting. If a member of one couple is closer to member form

another couple but could not form couple, it is a result of inverse neighborhood; the reason

behind is that the next centroids have identified another closest neighbor.

Table 3 NIDS Profiling Results

Clusters Profiles

1 attack 1 {1,18} attack

2 normal 2 {2,11} normal

3 attack 3 {3,17} attack

4 normal 4 {4,14} normal

5 normal 5 5 normal

6 attack 6 {6,10} normal

7 attack 7 7 attack

8 attack 8 8 attack

9 attack 9 9 attack

10 attack 10 12 attack

11 normal 11 13 attack

12 attack 12 15 normal

13 attack 13 16 normal

14 normal

15 normal

16 normal

17 attack

18 attack

After experimentation with many classifiers, we found that Decision Tree is the best of

which the results are shown in Table 4. Our method (POC2MSF) outstands in all aspects

compared to QT method by Gervais at al. (2016) and KDD when no clustering is involved

(Generation1). We notice significant improvement in terms of time from 21 to 19 seconds.

Accuracy improvement (0.0043) means that profiles are more distinct than before. The time

reduction is consequence of profiles reduction from 18 to 13 profiles.

Clustering Parameters

 Original Dataset : 190066

 New Dataset : 190023

 Outliers : 43

 Minimal Cluster Size :10

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

105

Table 4 NIDS Performance Results

 POC2MSF QT KDD

Profile 13 18 20

Accuracy 99.97% 99.93% 99.02%

FAR 0% 0% 0.8%

Time 19 sec 21 sec 25 sec

Precision 1 1 0.98

Recall 1 1 0.99

.

Figure 12 NIDS Centroids Visualization

6. Conclusion

In this paper, we have been addressing three main issues of designing anomaly-based IDS. One

of the issues is the use of feature reduction. We saw that most of research which uses statistical

features reduction end up with the system which does not qualify to be network intrusion

detection system (Davis & Clark, 2011). Our method of feature selection can reduce features at

the last step of design by removing features which do not influence the classifier. Our method

identified 1/7 features which is not needed for building the detection model although it was

necessary for profiling phase. One reason for features reduction is to reduce computation load,

time and memory consumption. Even if we have saved one feature in our experiment, this

method can save many features depending on the type of dataset and scope of research.

 Another issue discussed in this paper is the method used to baseline network traffic;

we have been concerned with the optimization of quality threshold clustering algorithm with

the aim to reduce number of clusters hence making them distinct enough. The results confirm

that our proposed method reduce significantly the number of profiles for both HIDS and NIDS.

The accuracy increase proves that profiles created by our method become distinct enough or

pure enough. We see that there is a slight increase in terms of accuracy for both HIDS and

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

106

NIDS. One thing not to ignore is the reduction of time. Time becomes a challenge for IDS in

todays’ fastest network, by reducing 5 second requirement for HIDS and 3 second for NIDS

makes great achievement considering millions of packets which would flow within one second.

 The last issue discussed was general design of IDS where there is no clear separation

of HIDS and NIDS. In this paper, we have designed both NIDS and HIDS separately. It is

amazing to reach 0% false positive rate and almost 100% system accuracy for NIDS. The

advantage of this design is that since NIDS has higher performance than HIDS and features of

NIDS are available in HIDS design, a switchover is possible by tuning up NIDS to detect

intrusion in TCP network logs on host to take advantage of signature-like anomaly-based IDS.

The future work would be testing our method on other datasets.

References

Aggarwal, P., & Kumar, S. (2015). Analysis of KDD Dataset Attributes - Class wise For

Intrusion Detection. Procedia - Procedia Computer Science, 57, 842–851.

https://doi.org/10.1016/j.procs.2015.07.490

Agrawal, S., & Agrawal, J. (2015). Survey on Anomaly Detection using Data Mining

Techniques. Procedia - Procedia Computer Science, 60, 708–713.

https://doi.org/10.1016/j.procs.2015.08.220

Al-Mamory, S. O., & Jassim, F. S. (2015). On the designing of two grains levels network

intrusion detection system. Karbala International Journal of Modern Science, 1(1), 15–

25. https://doi.org/10.1016/j.kijoms.2015.07.002

Chitrakar, R., & Chuanhe, H. (2012). Anomaly Detection using Support Vector Machine

Classification with k-Medoids Clustering. In 4th International Conference on Computing

and Informatics, ICOCI, Sarawak, Malaysia (pp. 1–5).

https://doi.org/10.1109/AHICI.2012.6408446

Davidoff, S, Jonathan, H. (2012). Network Forensics. Upper Saddle River, New Jersey:

PRENTICE HALL.

Davis, J. J., & Clark, A. J. (2011). Data preprocessing for anomaly based network intrusion

detection: A review. Computers {&} Security, 30(6–7), 353–375.

https://doi.org/10.1016/j.cose.2011.05.008

Fossaceca, J. M., Mazzuchi, T. A., & Sarkani, S. (2015). MARK-ELM : Application of a novel

Multiple Kernel Learning framework for improving the robustness of Network Intrusion

Detection. Expert Systems With Applications, 42(8), 4062–4080.

https://doi.org/10.1016/j.eswa.2014.12.040

Fries, T. P. (2015). Fuzzy Clustering of Network Traffic Features for Security. IEEE

Symposium on Large Data Analysis and Visualization 2015, 127–128.

Gervais, H., Munif, A., & Ahmad, T. (2016). Using QualityThreshold Distance to Detect

Intrusion in TCP / IP Network. In 2016 IEEE International Conference on

Communication, Networks and Satellite (COMNETSAT) (pp. 80–84).

Heyer, L. J., Kruglyak, S., & Yooseph, S. (1999). Expression Data : Identification and Analysis

of Coexpressed Genes. Genome Research, (213), 1106–1115.

https://doi.org/10.1101/gr.9.11.1106

Horng, S., Su, M., Chen, Y.-H., Kao, T., Chen, R., Lai, J., & Perkasa, C. D. (2011). A novel

intrusion detection system based on hierarchical clustering and support vector machines.

Gervais, Malaysian Journal of Computing, 3 (2): 93–107, 2018

107

Expert Systems with Applications, 38(1), 306–313.

https://doi.org/10.1016/j.eswa.2010.06.066

Kim, S. (2012). Compute Spearman Correlation Coefficient with Matlab / CUDA. In Signal

Processing and Information Technology (ISSPIT), 2012 IEEE International Symposium

on (pp. 55–60).

Muchammad, K., & Ahmad, T. (2015). Detecting Intrusion Using Recursive Clustering and

Sum of Log Distance to Sub-centroid. In Procedia - Procedia Computer Science (Vol. 72,

pp. 446–452). Elsevier Masson SAS. https://doi.org/10.1016/j.procs.2015.12.125

Muttaqien, I. Z., & Ahmad, T. (2016). Increasing Performance of IDS by Selecting and

Transforming Features. In 2016 IEEE International Conference on Communication,

Networks and Satellite (COMNETSAT) Using (pp. 85–90).

Nasiroh Omar. (2014) Modelling Complexities Of Learner’s In Handling Web Texts Via

Abstract Scene Analysis, Malaysian Journal of Computing, 2(1), 13-26.

Sembiring, R. W., Zain, J.M., and Embong, A. (2010). A Comparative Agglomerative

Hierarchical Clustering Method to Cluster Implemented Course, Journal of Computing,

Vol. 2, Issue 12 , 33-38.

Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward developing a

systematic approach to generate benchmark datasets for intrusion detection. Computers

and Security, 31(3), 357–374. https://doi.org/10.1016/j.cose.2011.12.012

