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Introduction

Over the past two decades the mapping of human pressures has become a critical tool for
scientific research and policy making (Watson and Venter, 2019). Human pressures, or lack
thereof, are associated with habitat loss (Riggio et al., 2020; Verma et al., 2020), deforestation
and degradation risk (Ordway et al., 2017), and species extinction risk (Di Marco et al., 2018;
O’Bryan et al., 2020a; O’Bryan et al., 2020b). Human pressure maps have become an
important tool for spatial planning (Tulloch et al., 2015) and land use management (Garnett
et al., 2018), monitoring the extent of human influence (Venter et al., 2016a; Williams et al.,
2020), and identifying critical remaining intact habitat (Watson et al., 2016a; Williams et al.,
2020).

In this study we use the Human Footprint methodology first described by Sanderson and
others in 2002 (Sanderson et al., 2002), to produce the first global 100 m resolution human
pressure map time series. Human Footprint combines indicators of land cover, population,
infrastructure, and accessibility to estimate the magnitude of human pressure (Sanderson
et al., 2002). We take advantage of data layers from diverse sources to identify where humans
exert influence on the terrestrial planet. By combining both top down and bottom up data
sources, human pressure mapping is able to identify stresses that are difficult to identify
using only remotely-sensed data, while providing wider and more consistent coverage than
field-based approaches (Venter et al., 2016b; Watson and Venter, 2019).

This study builds off past work to map global Human Footprint (Sanderson et al., 2002;
Venter et al., 2016b; Williams et al., 2020; Mu et al., 2022), and joins other global human
pressure mapping efforts, including the Global HumanModification (gHM) index (Kennedy
et al., 2019; Theobald et al., 2020), which estimates the extent to which land has been
modified by human stressors; Low Impact Areas (LIA) (Jacobson et al., 2019) which
identifies areas that are subject to minimal human pressure; and others (Geldman et al.,
2014). Human Footprint differs from these approaches in several ways. Most notable is its
inclusion of accessibility measures, which identify areas which may otherwise appear
undisturbed but are easily exploitable. The Human Footprint also attempts a simpler
and more transparent approach than the gHM, for example, which uses more input
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datasets and combines them with additional statistical techniques.
Along those lines, the Human Footprint methodology focuses more
on input variables that are higher spatial resolution (100 m vs. 1 km
for gHM and LIA) and higher temporal resolution (i.e., annual
cadance) that are also expected to continue being updated into the
future for continued updates.

While many previous mapping efforts are trusted as geospatial
products, governments still have a critical information gap in
understanding recent and ongoing change (Watson and Venter,
2019). The software and methods described here are designed to be
run on a continued basis into the future to enable regular updates to
this critical dataset, including anticipated advances in remote
sensing data. This approach is intended to address the shortfall
in efforts around existing mapping outputs, which tend to be
perpetually several years out of date when released. We also
release a 100 m global gridded dataset for the years
2015–2019 and 2020 so as to provide the latest update.

Materials and methods

Experimental design

We follow the prior methods of Sanderson et al. (2002); Venter
et al. (2016b); Williams et al. (2020) to create the Human Footprint
maps. We use data on human pressures across the period 2015 to
2019 and for 2020 to map: 1) Land cover change (built
environments, crop lands, and pasture lands), 2) population
density, 3) electric infrastructure, 4) roadways, 5) railways, and 6)
navigable waterways. Each pressure layer is assigned a score between
0 and 10 relative to its level of human pressure following Sanderson
et al. (2002). We compute standardized Human Footprint maps on a
scale of 0–501 as the sum of all pressure layers. Pressures are not
mutually exclusive, rather the co-occurrence of pressures is intended
to identify the greatest levels of human impact. The majority of
layers cover the complete time period of 2015–2020, however
pressures from pasture, roads, and railways are treated as static
in the Human Footprint maps due to limitations in the input
datasets. As of the time of writing of this paper, our
methodology also benefits from two layers, the 10 m ESRI-LC
and VIIRS Annual Night Time Lights v2, being consistently
updated for future versions past 2020; other layers such as the
OSM roads may also be updated for future versions, albeit perhaps
infrequently and inconsistently around the globe.

These methods are implemented in scripts in the open source
Python programming language, and are designed to run
operationally on an annual basis to provide continued
monitoring of changing anthropogenic pressures on the natural
world. This includes two key design choices in its implementation.
First, we innovate on the Human Footprint methodology by
defining and implementing it in a manner agnostic to the source
and scale of input data. Most pressure mapping efforts, including
previous iterations of Human Footprint, measure the presence or

absence of stresses at a given spatial resolution (Watson et al.,
2016a; Watson et al., 2016b). In this study, layers that are not direct
remote sensing observations are normalized using linear distance
measures, such that results are consistent regardless of the spatial
resolution of input datasets and desired output resolution. Second,
variables are fully parameterized such that they can be easily
updated or alternate data sources can be swapped in, pressure
weightings, normalization scales, output scale and extent can be
adjusted. This approach is developed to utilize continued
advancements in remote sensing technology and accessibility of
computational capabilities enabling more frequent, higher-
resolution measurements.

The remainder of this section describes the methods and data
used to produce the global 100 m Human Footprint maps for
2015–2019 as well as 2020. These data are computed in the
Molleweide equal area projection, yielding ~13.4 billion pixels
covering Earth’s non-Antarctic terrestrial surface. Computation
was performed using open source Python libraries in the
Microsoft Planetary Computer infrastructure.

Land cover change

Land cover change pressures were mapped using a combination
of three layers: Built environments, crop lands, and pasture lands.
Built environments include buildings and paved areas, which make
up the bulk of urban areas but may also appear in peri-urban and
rural zones. Crop lands vary in their structure from intensely
managed monocultures receiving high inputs of pesticides and
fertilizers, to mosaic agricultures, such as slash and burn methods
that can support intermediate levels of natural values (Luck and
Daily, 2003; Fischer et al., 2008). Pasture lands grazed by
domesticated herbivores are often degraded through a
combination of fencing, intensive browsing, soil compaction,
invasive grasses and other species, and altered fire regimes
(Kauffman and Krueger, 1984).

We map both built environments and crop lands using the
Copernicus Global Land Service Dynamic Land CoverMap at 100 m
resolution version 3 (CGLS-LC100) (Buchhorn et al., 2020) for the
years 2015–2019, and the ESRI 2020 Global Land Use Land Cover
from Sentinel-2 (ESRI LC) for the year 2020. CGLS-LC100 is
produced following a supervised classification of imagery from
the PROBA-V satellite. ESRI LC is produced using a machine
learning approach based on 10 m imagery from the Sentinel-2
satellites.

In contrast to previous versions of human footprint which used
nighttime lights (Elvidge et al., 2001; Baugh et al., 2010) to identify
urban areas, the relatively high resolution of CGLS-LC100 is able to
identify urban parks and corridors that may provide important
habitat connectivity for terrestrial species, as well as isolated built
environments outside of urban centers (Kattwinkel et al., 2011).
Similarly, this layer is better able to resolve agricultural mosaics than
previously used land cover maps (Herold et al., 2008), though may
still be limited in mapping sparse and very small scale agriculture.

We map pasture lands using a spatial dataset that combines
agricultural census data with satellite-derived land cover to estimate
the percentage of land area that is used for pasture at a 1 km2 gridded
resolution for the year 2000 (Ramankutty et al., 2008). While this is a

1 We utilize a score of 0–50, as opposed to 0–60, purely to stay consistent
with previous versions of HFP.
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static dataset, we updated it using the land use exclusion principle
that urban, crops, and pasture cannot co-occur, and that these land
uses exclude one another following the listed order. As the crop and
urban layers are more recent and intended to be dynamic, they are
used to derive a modified pasture layer for each year.

As built environments do not provide viable habitats for
many species of conservation concern, nor do they provide high
levels of ecosystem services (Tratalos et al., 2007; Aronson et al.,
2014), they are assigned a pressure score of 10. Although
intensive agriculture often results in whole-scale ecosystem
conversion, we assign croplands a score of 7, lower than built
areas due to them being less impervious. Pasture is assigned the
lowest relative score of 4.

Population density

The intensity of human pressure on the environment is often
associated with proximity to human populations, such as human
disturbance, hunting, and the persecution of non-desired native
species (Brashares et al., 2001). Even low-density human
populations with limited development can have significant
impacts on biodiversity (Burney and Flannery, 2005; Miller
et al., 2005). We incorporated human population density
using the WorldPop Unconstrained individual countries
2000–2020 100 m resolution dataset (WorldPop, 2020; Lloyd
et al., 2019).

The dataset provides a 3 arcsecond (~100 m2) gridded estimate
of residential population count for all countries derived from recent
census data and is dasymetrically distributed using satellite-derived
covariates. We convert population counts to population density
using a 1 km × 1 km square kernel. Locations with more than
1,000 people per km2 receive a maximum pressure score of 10.
For more sparsely populated areas, we logarithmically scaled the
pressure score using:

Pressure score � 3.106 × log population density + 1( )

Population density is scored in this way under the assumption
that the pressures people induce on their local natural systems
increase logarithmically with increasing population density, and
saturate at a level of 1,000 people km−2.

Nighttime lights

We use the VIIRS Annual Night Time Lights version 2 (VNL v2)
dataset (Elvidge et al., 2021) as a means of mapping electric
infrastructure. In addition to urban centers, rural and suburban
areas illuminated at night are often representative of important
human infrastructure, such as rural housing, working landscapes,
and industrial installations, with associated pressures on natural
environments (Small et al., 2011).

VNL v2 provides estimates of average annual radiance (µW/
cm2/sr) at the 15 arc second (~500 m) resolution, corrected for stray
light sources and outliers. We assign a maximum score of 10 to a
radiance of 25 μW/cm2/sr, a brightness typically exceeded in
moderately-sized cities in developed countries (Levin and Zhang,
2017), and score values less than 25 on a logarithmic scale using:

Pressure score � 3.106 × log nighttimelights + 1( )

Roads

As one of humanity’s most prolific linear infrastructures, roads
are an important direct driver of habitat conversion (Trombulak and
Frissell, 2000). Beyond simply reducing the extent of suitable habitat,
roads can act as population sinks for many species through traffic-
induced mortality (Woodroffe and Ginsberg, 1998). Roads also
fragment otherwise contiguous blocks of habitat, and create edge
effects, such as reduced humidity and increased fire frequency that
reach well beyond the road’s immediate footprint (Adeney et al.,
2009). Finally, roads provide conduits for humans to access nature,

FIGURE 1
Global terrestrial Human Footprint for 2020.
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bringing hunters and nature users into otherwise largely natural and
intact locations (Forman and Alexander, 1998).

Data from OpenStreetMap (OSM) on roads and railways is
extracted from the global OSM planet database (Planet, 2021). OSM
is a volunteer-driven, open access global mapping project that has
grown enormously in spatial completeness since its inception in
2004. The volume and coverage of global transportation networks in
the OSM database has far surpassed previously available roads data
(e.g., gRoads) that was used in earlier iterations of the Human
Footprint. However, as the OSM dataset does not provide true and
comprehensive temporal information on road creation (as opposed
to initial inclusion in the database), we treat it as a static dataset,
using the most up-to-date data for the entire 2015–2020 period.

We map roads using linear features tagged “highway”, excluding
minor features such as farm tracks, footways, and cycle paths, as well
as tunnels, which may run under otherwise undisturbed natural
areas. We map the direct and indirect influence of roads assigning a
score of 8 to pixels within a 0.5 km buffer on either side of roads. We
additionally map pressures associated with the access that roads
provide (e.g., collection, extraction, and hunting) with a score of 4 at
a distance of 1.0 km and decaying exponentially out to 15 km from
either side of a road.

Railways

While railways are an important component of our global
transport system, their pressure on the environment differs in
nature from that of our road networks. By modifying a linear
swath of habitat, railways exert direct pressure where they are
constructed, similar to roads. However, as passengers seldom
disembark from trains in places other than rail stations, railways
do not provide a means of accessing the natural environments along
their borders. The direct pressure of railways is assigned a score of
8 for a 0.5 km buffer on either side of the railway.We exclude railways
tagged as abandoned, disused, and proposed as well as tunnels.

Navigable waterways

Like roads, coastlines and navigable rivers act as conduits for
people to access nature. For the purposes of the Human Footprint
we only consider coastlines and rivers to be navigable if they are
within 80 km of signs of a human settlement, which are mapped as a
nighttime lights signal with a radiance greater than 1 µW/cm2/sr
that is also within 4 km of the coast or river bank. Coastlines are
derived from HydroSHEDS (Lehner and Grill, 2013) ocean masks
for regions less than 60° latitude, for all other regions we derived
coastlines from the GTOPO30 ocean mask (USGS, 1997). We chose
80 km as an approximation of the distance a vessel can travel and
return during daylight hours.

Rivers within 80 km of human settlements are considered
navigable if their depth is greater than 2 m. To map rivers and
their depth we use the HydroRIVERS dataset on stream discharge
(Lehner and Grill, 2013). We estimated depth from discharge
assuming second-order parabola as channel shape using the
following formula:

streamwidth � 8.1 × discharge( )0.58

velocity � 4.0 × discharge( )0.6/width

cross-sectional area � discharge / velocity
depth � 1.5 × area /width

We also considered lakes along navigable rivers (typically
reservoirs), as well as lakes with a surface area of at least 100 km2

and average depth of at least 3 m to be navigable coastlines. The
largest of lakes can act essentially as inland seas, used extensively for
trade, transit, and recreation. We map lakes using the
complimentary HydroLAKES dataset (Messager et al., 2016).

As new settlements can arise tomake waterways newly navigable,
layers are created for each year (2015–2020). The access pressure
from navigable waterways is assigned a score of 4 within 0.5 km of the
water body, decaying exponentially out to 15 km.

Validation

We evaluate the performance of the Human Footprint maps
against a validation dataset originally produced for the Venter et al.
version of Human Footprint (Venter et al., 2016b). This dataset
includes scores derived from expert interpretation of high resolution
satellite imagery taken between 1999 and 2012 for 3,114 points
randomly sampled from the land area of the globe. Plots were scored
on a scale of 0–13 based on the extent of built environments, crop
lands, pasture lands, roads, human settlements, infrastructures and
navigable waterways following a standard key for identifying these
features (Venter et al., 2016b Supplementary Material S1).

We extract the mean Human Footprint score from a 1 × 1 km2

square centered on each validation site, and normalize both
validation scores and Human Footprint scores to a 0–1 scale for
comparison. For the 2020 Human Footprint based on the 10 m
ESRI-LC we find a root mean square error of 0.105 indicating an
average error of roughly 11%, and a Pearson’s correlation coefficient
of 0.66 (Supplementary Table S3). For the 2019 Human Footprint
based on the CGLS-LC100 land cover, we find similar levels of
agreement with a root mean square error of 0.107.

Thesemeasures of agreement are conservative estimates of themap’s
accuracy, as the nine to 20 year discrepancy between the 2020 Human
Footprint map and global validation data would induce some error that
is due only to true changes in human pressures. Despite this time
discrepancy, results show improvement in validation statistics when
compared to previous versions of Human Footprint.

We also validate 2020 Human Footprint scores against a more
contemporaneous validation set for 4,674 sites randomly sampled
from the land area of Canada (Hirsh-Pearson, 2020), and find a root
mean square error of 0.136. Lower agreement levels reflect the
explicit inclusion of oil, gas, mining, and forestry activities in the
Canada validation dataset that are not measured at the global scale.

Analysis

Global 100 m Human Footprint maps are produced for
2015–2019 and 2020 (Figure 1). We find a global area average
Human Footprint score for 2020 of 4.56, with 44% of land area with
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a score ≤1 “wilderness,” 21% with a score of 1–4 “low disturbance,”
and 35% with a score >4 “highly modified” (Supplementary Table
S1). The change between 2015 and 2019 shows an average increase
in Human Footprint across the world of about 0.10 (out of 50), and a
net change of 24 million hectares from “wilderness” to “low
disturbance” and 33 million hectares from “low disturbance” to
“highly modified.” Increases in Human Footprint appear the most
pronounced in Tropical Forest, Mangrove, and Temperate Broadleaf
Forest biomes (Supplementary Table S1). Because results for
2015–2019 and 2020 are generated using two different land cover
datasets as inputs, comparisons between these two periods should be
made with caution.
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