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Abstract: 28 

This study aims to present a new MRI compatible loading device capable of reconstructing realistic 29 

loading scenarios of the human foot for research in the field of foot biomechanics. This device has 30 

two different configurations: one used to compress the forefoot and one to bend the 31 

metatarsophalangeal joints.  Required plantar pressure distribution under the metatarsal heads can be 32 

achieved by modifying the distribution of the dorsally applied forces. To validate the device, subject-33 

specific plantar pressures were measured and then reconstructed using the device. For quiet stance the 34 

peak pressure reconstruction error was 3% while for mid-stance phase of gait it was 8%. The device 35 

was also used to measure the passive bending stiffness of the metatarsophalangeal joints of one 36 

subject with low intra-subject variability. A series of preliminary MRI scans confirmed that the 37 

loading device can be used to produce static weight-bearing images of the foot (voxel size: 38 

0.23mm×0.23mm×1.00mm). 39 

 40 

The results indicate that the device presented here can accurately reconstruct subject specific plantar 41 

pressure distributions and measure the foot’s metatarsophalangeal passive stiffness. Possible future 42 

applications include the validation of finite element models, the investigation of the relationship 43 

between plantar pressure and internal stresses/strains and the study of the foot’s inter-segmental 44 

passive stiffness. 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 
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1. Introduction 56 

Investigating the internal stresses and strains of the human foot soft tissues is crucial to the 57 

understanding of foot biomechanics [1,2]. The significance of internal tissue stress and strain is even 58 

more pronounced in the case of the diabetic foot. Previous research indicates that ulceration begins 59 

internally and could be caused by deep tissue trauma [3]. In this context a number of different 60 

methodologies have been developed for the direct measurement of internal strains using medical 61 

imaging [2,4–12]. These protocols usually involve a comparison of an unloaded image of the tissue’s 62 

structure against the images of the loaded structures under a range of externally applied loads. The 63 

implementation of this concept requires a method with three main constituents: a medical imaging 64 

modality, a tissue-loading device and an algorithm/procedure to quantify and map the changes of the 65 

tissues' structure [10]. 66 

 67 

From the common imaging modalities Magnetic Resonance Imaging (MRI) appears to be the most 68 

suited one for a detailed analysis of the three dimensional (3D)  field of internal deformations of soft 69 

tissues [2]. MRI offers a superb contrast for the imaging of soft tissues and it doesn’t employ any 70 

ionizing radiation. However, one of the main disadvantages of using MRI is the fact that applying 71 

loads in a controlled and repeatable manner inside an MRI scanner is considerably more difficult 72 

compared to other available modalities such us ultrasonography [4], fluoroscopy [5,6] or computer 73 

tomography (CT) [7–9]. The use of MRI imposes a number of limitations in terms of the dimensions 74 

and the materials that can be used to build a loading device, hence a number of studies have looked at 75 

tackling this challenge for various anatomical regions [2,13].      76 

 77 

To investigate the internal deformations of the foot, Petre et al. [2] developed a sophisticated MRI 78 

compatible loading device capable of applying both normal and shear loads to the forefoot. The 79 

pilottesting of this device indicated that despite its capacity to apply “gait-like loading” [2] it couldn’t 80 

generate plantar pressure distributions similar to the ones measured during walking. This was 81 

attributed to the fact that the loading device simultaneously applied a net force to both the metatarsal 82 

head (MTH) and toe regions and there was no control over the distribution of the load [2].  83 
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 84 

In contrast to internal deformations, the internal stresses of plantar soft tissues cannot be directly 85 

measured, but they can be estimated with the use of finite element (FE) models [1,10]. An accurate 86 

3D FE model of the foot though, requires a large amount of information on its internal structure and 87 

the mechanical properties of its soft tissues (i.e. skin, fat, muscle etc.). Furthermore to accurately 88 

replicate realistic loading scenarios such models need information on the function and stiffness of its 89 

numerous joints and they have to be validated against experimental data. 90 

 91 

The bending stiffness of joints in general can be analysed in two components: a dynamic one 92 

associated with active muscle forces and a passive one associated with the elastic properties of non-93 

contractile tissues [14]. Hence measuring the passive stiffness of the joints of the foot in addition to 94 

enhancing our understanding on their function it can also give clinically relevant information about 95 

the mechanical status of non-contractile tissues, such as ligaments, tendons etc. 96 

 97 

In this context the present study aims to present a novel MRI compatible device for the accurate 98 

reconstruction of subject specific plantar pressure distributions of the forefoot and the simulation of 99 

clinically relevant loading scenarios. This device was designed and built to enable the study of the in-100 

vivo mechanical behaviour of the plantar soft tissues of the forefoot under compression as well as for 101 

the study the mechanical behaviour of the passive foot under bending.  102 

 103 

2. Participants and methods 104 

A total of six healthy volunteers (4 female, 2 male) with an average age of 33.0 (±6.3) years and 105 

average body mass of 70.9 (±7.7) kg were recruited for this study (Table 1). Ethical approval was 106 

sought and granted by the University Ethics Committee and the volunteers provided full informed 107 

consent. 108 

 109 

The MRI compatible loading device was designed using SolidWorks
® 

2010 (Dassault Systèmes, Paris, 110 

France). The device consisted of custom made parts milled from polypropylene blocks and connected 111 
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with Nylon plastic screws and bolts. The device (Figure 1) has a fixed part (A) for foot support and a 112 

movable one (B) for loading. The movable part (B) can rotate around a predefined axis (C). The 113 

device can be configured so that the initial angle between part B and the plantar surface of part A is 114 

either 90° or 0°. Each one of these two configurations enables the application of different load 115 

scenarios (compression or bending modes respectively). In both cases the loading is applied with the 116 

help of a suspended MRI compatible mass. The suspended mass can be up to 5 Kg which generates a 117 

maximum compressive force of ≈250 N or bending moment of ≈7 Nm. During the design of the 118 

loading device special attention was paid to minimize its dimensions and make sure it will fit inside a 119 

typical MRI scanner with a bore aperture of 60 cm [15]. 120 

 121 

2.1 Compression mode 122 

The loading device is capable of applying known compressive forces at the dorsal side of the forefoot. 123 

For this purpose the movable part B (Figure 1A) is positioned at 90° with respect to the foot-support 124 

(A) and equipped with a compression punch (D). This punch is used to compress the forefoot and to 125 

control the distribution of the applied load. More specifically a series of screws is used to modify the 126 

profile of the contact area between the punch and the dorsal surface of the foot (Figure 1A). The 127 

relative position of the foot and punch can also be modified with the use of 5 mm thick plastic sheets 128 

(E). Positioning the compression punch at the dorsal side of the MTHs enables the controlled loading 129 

of the soft tissues that lie directly below them. When a compressive load is applied at the dorsal side 130 

of the forefoot these non-contractile soft tissues (mainly skin and fat) are compressed between the 131 

foot-support (A) and the MTHs.        132 

 133 

The ability of this device to reconstruct subject specific plantar pressure distributions was assessed in 134 

a pilot study. More specifically the loading device was used to reconstruct the plantar pressure 135 

developed at the MTH region during quiet stance and the mid-stance phase of walking gait. 136 

 137 

The quality of the MRI images that can be recorded when the foot is under the static weight bearing 138 

conditions generated by the device was assessed in a series of preliminary scanning sequences. The 139 
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forefoot region of a volunteer was compressed with a net force of 250 N and imaged using a 1.5 T 140 

MRI scanner. The duration of the scanning process was ≈ 4 min and coronal T1 weighted 3D Fast 141 

Field Echo (FFE) images (Figure 2) were recorded with in-plane and out of plane resolution of 0.23 142 

mm and 1.00 mm respectively. No plantar pressure measurement was performed inside the MRI 143 

scanner. 144 

 145 

2.1.1 Quiet stance 146 

 In the case of quiet stance the average peak pressure under each Metatarsal Head (MTH) was 147 

measured for each of the six volunteers using a plantar pressure sensor (F-scan®, Tekscan, Boston, 148 

MA, US) (Figure 1A). The volunteers stood on the sensor and the area under each MTH was 149 

identified by applying pressure manually at the dorsal side of the foot. The relative location of each 150 

MTH on the pressure sensor was utilized to measure the peak plantar pressure of each MTH (Figure 151 

3). The plantar pressure was recorded at a sampling rate of 100 Hz for 10 sec of quiet stance and the 152 

average peak pressure for each MTH was calculated to produce the reference measurements for the 153 

reconstruction. The relative position of the foot and the sensor was fixed using double sided tape. The 154 

volunteers’ feet were then placed inside the loading device and a pressure was applied at the dorsal 155 

side of their forefoot. The suspended mass was gradually increased (in increments of 0.5 Kg) to 156 

approximate the total forefoot force.  The profile of the punch was sequentially modified starting from 157 

the MTH with the maximum reference pressure and then moving medially and laterally to reconstruct 158 

the pattern of the reference plantar pressure distribution. This procedure was repeated until the 159 

difference between the reference and the reconstructed peak pressures was less than 5%. After 160 

achieving a satisfactory replication of the overall pattern of pressure distribution, the plantar pressure 161 

was recorded again for 10 seconds at a sampling rate of 100 Hz. One additional pressure measurement 162 

was performed for a single participant (participant #6) with the compression punch completely flat 163 

(i.e. before any modification of its profile) to highlight the versatility of the loading device.  164 

 165 

The duration of loading was decided based on preliminary results indicating that the plantar pressure 166 

distribution generated by the loading device stays practically constant for long periods of time. More 167 
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specifically a net compressive force of 150 N was applied to the forefoot of a volunteer and the peak 168 

plantar pressure was recorded at 1 Hz for 20 minutes of continuous loading. The average value and 169 

standard deviation of the peak pressure was calculated. 170 

 171 

The reproducibility of the results was assessed through a test re-test procedure (Table 1). After 172 

completing all tests, the loading procedure and pressure measurements were repeated for one 173 

volunteer (#5) without reconfiguring the loading device (i.e. the suspended mass and the profile of the 174 

compression punch was the same for both test and re-test).  175 

 176 

2.1.2 Mid-stance phase of gait 177 

In the case of the mid-stance phase of gait the plantar pressure of a complete gait cycle was recorded 178 

for a single volunteer (#5) using a walkway pressure mapping system (Walkway®, Tekscan, Boston, 179 

MA, US). An automated procedure within the Walkway® system was used to identify the area below 180 

each MTH and to measure the corresponding pressure in each region. In this case the reference values 181 

for the reconstruction procedure were the peak pressures under the MTHs for a randomly selected 182 

instance of the mid-stance phase of gait (50% of mid-stance). The plantar pressure developed inside 183 

the loading device was measured again using F-scan®. 184 

 185 

2.2 Bending mode 186 

Reconfiguring the loading device allows the application of known bending moments to the foot. For 187 

this purpose parts A and B are positioned parallel to one another and the compression punch is 188 

removed (Figure 1B). In this configuration a rotation of part B around its axis (C) tends to bend the 189 

subject’s foot instead of compressing it. The relative position of the foot with respect to the rotation 190 

axis can be modified with the use of 5 mm thick plastic sheets (E) (Figure 1B). These sheets are 191 

placed between the foot and the foot’s support elevating the foot along two axes: one parallel and one 192 

perpendicular to the plantar surface (Figure 1B). When the device is used inside an MRI scanner the 193 

relative angle between parts A and B can be measured from the MRI images. 194 

 195 
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The bending mode of the MRI compatible loading device was pilot tested for a single volunteer by 196 

measuring the bending stiffness of the metatarsophalangeal (MP) joints. For this purpose the bending 197 

axis of the volunteer’s MP joints was first identified based on anatomical landmarks [16]. The 198 

volunteer’s foot was fixed inside the device using Velcro straps (Figure 1B) and using a goniometer 199 

the bending angle of the MP joints was measured for bending moments ranging from 1.8 Nm to 4.5 200 

Nm. Ten preconditioning load/unload cycles were performed before each measurement and each 201 

measurement was repeated five times. 202 

 203 

3. Results  204 

3.1 Compression mode 205 

The pilot MRI scan indicated that the quality of the MRI images recorded when the foot is under the 206 

static weight bearing conditions generated by the device have a resolution that is high enough to 207 

enable the identification and segmentation of different tissues of the foot (Figure 2).  208 

 209 

3.1.1 Quiet stance 210 

In the case of quiet stance the average difference between the reference and the reconstructed total 211 

maximum pressures was only 4% while the mean difference for all MTHs ranged between 2% and 212 

15% (Table 1). In all cases the total maximum pressure was observed under the same MTH for both 213 

the reconstructed and the reference pressure distributions. As it can be seen in Table 1 and Figure 3 214 

the loading device was capable of reconstructing different and distinctive subject specific loading 215 

patterns. The ability of the device to modify the distribution of plantar pressures becomes clearer if 216 

one compares the initial pressures that are measured in the device before any adjustment of the 217 

compression profile (i.e. for a compression profile that is completely flat) to the final ones after all 218 

necessary adjustments had been completed (Figure 3).     219 

 220 

Moreover the loading device was capable of maintaining a constant distribution of plantar pressure for 221 

long periods of time. The average peak pressure measured for 20 minutes of continuous loading was 222 

equal to 111.8 kPa with a standard deviation of only 4.3 kPa (i.e. 3.8% error). In terms of 223 
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reproducibility, the test-retest procedure yielded differences in terms of average peak pressures that 224 

were lower than 5% (Table 1).  225 

 226 

3.1.2 Mid-stance phase of gait 227 

In the case of mid-stance phase of gait the average difference between the reference peak pressures 228 

and the reconstructed average peak pressures was 8% (Table 1). The difference between the overall 229 

maximum values was also 8%. 230 

 231 

3.2 Bending mode 232 

The standard deviation of the measured rotation angles for different values of the externally applied 233 

moment was always lower than 3 deg indicating a relatively low intra-subject variability (Table 2). 234 

Moreover, bending angle appeared to increase linearly with moment (R
2
=0.98). The slope of the 235 

moment/angle graph was equal to 0.06 Nm/deg.  236 

 237 

4. Discussion  238 

The purpose of this study was to present a new foot loading device that is capable of reconstructing 239 

clinically relevant loading scenarios inside an MRI scanner. This device was initially designed to 240 

enable the validation of 3D FE models of the foot and more specifically to help assess their accuracy 241 

to predict the internal stresses and strains of plantar soft tissues and to simulate the function of the 242 

foot’s joints. For this reason a custom made device was designed to allow two different configurations 243 

for the application of different loads, i.e. compression and bending. Having two different 244 

configurations for compression and bending enabled the realisation of different loading scenarios 245 

using a single device instead of two while at the same time helped simplifying the design of the 246 

device.   247 

 248 

The new method for the reconstruction of subject specific pressure distributions presented here was 249 

focused on the MTH area. The MTH area along with the heel and the hallux are the areas with the 250 

highest ulceration rates in people with diabetes. A recent study by Ledoux et al. [17] demonstrated for 251 
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the first time that the ulceration risk for the MTH area is correlated to in-shoe peak plantar pressure. 252 

No similar correlation was found for the heel and hallux which could indicate that in the case of the 253 

MTH area ulceration is caused by normal loading instead of shear while in the case of the heel and 254 

hallux shear loading (among other reasons) could be the main risk factor. These results highlight the 255 

importance of studying the in-vivo mechanical behaviour of the plantar soft tissues of the MTH area 256 

and the clinical relevance of analysing their internal strain fields with the help of medical imaging.  257 

 258 

There are two ways to load the forefoot inside a typical MRI scanner: either by supporting the dorsal 259 

side of the passive foot and loading the plantar one [2] or by supporting its plantar side and loading its 260 

dorsal one. Considering that pressure is developed at both sides of the foot regardless of the direction 261 

of the externally applied load, it becomes clear that the deformations of the dorsal soft tissues will 262 

always be unrealistic. Indeed these tissues are not normally meant to be subjected to large 263 

compressive loads. On the other hand the plantar soft tissues of the MTH area are compressed 264 

between the plantar surface of the loading device and the MTHs.  This compressive load within the 265 

internal structures will be generated regardless of the direction of the external load either from the 266 

dorsal or the plantar aspect of foot.  In addition, this scenario closely simulates the loading conditions 267 

of quiet stance and the mid-stance phase of gait. The only way to validate the accuracy of this 268 

reconstructed internal loading condition is with the help of upright weight bearing MRI, which is 269 

beyond the scope of this manuscript. 270 

 271 

In a previous attempt to simulate clinically relevant loading scenarios inside an MRI scanner Petre et 272 

al. [2] developed a loading device that was capable of applying “gait-like loading” [2] but couldn’t 273 

reconstruct subject specific plantar pressure distributions. According to the results presented by Petre 274 

et al. [2], the average difference in terms of peak pressure between the reference and the reconstructed 275 

loading was 66% while only in 50% of the cases the reconstructed peak pressure was observed under 276 

the correct MTH (i.e. the same MTH as in the reference pressure distributions) [2]. This was 277 

attributed to the lack of control over the distribution of the load and to the fact that the device applied 278 

a net force simultaneously to both the MTH and toe regions [2]. 279 
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 280 

In order to address this issue the device presented here was equipped with a specially designed punch. 281 

This punch is used to compress the forefoot and modify the distribution of the applied load. This 282 

unique feature allowed the accurate reconstruction of diverse and distinctive subject specific plantar 283 

pressure distribution patterns. Indeed the average difference between the reference and the 284 

reconstructed maximum pressures was only 4% and in every case the maximum pressure was 285 

observed under the same MTH for both the reconstructed and the reference pressure distributions. 286 

Based on these results it can be concluded that the device presented here offers a clear improvement 287 

for the reconstruction of subject specific plantar pressure distributions of the MTH area. 288 

 289 

The reproducibility of loading with an accuracy of 5% that was assessed through a test-retest 290 

procedure allows the reconstruction of subject specific loading conditions inside an MRI scanner. 291 

This allows configuring the device before entering the MRI environment with the use of pressure 292 

measurement sensors that are not usually MRI compatible and then to reproduce the same loading 293 

conditions inside the scanner.    294 

 295 

Another challenge stems from the fact that MRI scanning can be a rather lengthy process and 296 

therefore loading should be kept constant for a significant amount of time. The device presented here 297 

was proven capable of keeping loading constant for up to 20 minutes (net force= 150 N, average peak 298 

pressure = 111.8 kPa). Even though the results indicated that even higher loads could be sustained for 299 

even longer periods of time the actual limits both in terms of loading and time is more likely to be set 300 

based on considerations about the comfort and wellbeing of the subject rather than the capabilities of 301 

the device. With respect to this, special attention needs to be given to patients with impaired 302 

circulation and nerve damage to prevent trauma. Considering the limited access to the device inside 303 

the MRI scanner special care should be given to ensure that the toes of the subject are kept in a neutral 304 

position and that the skin at the dorsal side of the foot is not over-stretched as a result of loading.  305 

 306 
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The second configuration of the device allows the application of bending moments. Even though this 307 

loading scenario does not simulate an everyday activity it can give clinically relevant information on 308 

foot biomechanics. Imaging the foot under bending loads can shed light on the function of the joints 309 

of the foot and the stiffness of their non-contractile tissues, like ligament and tendon stiffness, with 310 

implications in assessing the functional impairment in conditions like diabetes. 311 

 312 

In the context of this study the bending stiffness of the MP joints of one subject with no known 313 

musculoskeletal abnormality or diabetes was measured for validation and demonstration purposes. As 314 

expected, the passive bending stiffness of the MP joints measured here was significantly lower 315 

compared to measurements taken during locomotion. Oleson et al.[16] studied the stiffness of the 316 

forefoot during running with the use of a motion analysis system. They concluded that the MP joints 317 

have a time-depended stiffness and its function resembles that of an “active mechanism” instead of a 318 

linear spring [16]. The bending stiffness reported by Oleson et al. [16] was close to 1.6 Nm/deg for a 319 

flexion angle of 20 deg while the respective value of the passive stiffness measured here was only 320 

0.06 Nm/deg.  321 

 322 

No specific conclusions can be drawn on the mechanical behavior of the MP joints at this point due to 323 

the nature and design of this pilot investigation.  Although the bending tests were performed on a 324 

single subject, further studies will use this device to measure the passive MP joint stiffness of people 325 

with no musculoskeletal abnormalities or diabetes as well as of people with diabetes to study 326 

differences in terms of joint mobility and stiffness. Previous investigations indicate that people with 327 

diabetes are often found to have limited joint mobility which is linked to increased ulceration risk 328 

[19]. Increased joint stiffness caused by non-enzymatic glycosylation is presumed to be one of the 329 

main contributors of limited joint mobility of the diabetic foot’s distal joints [19]. Studying the 330 

passive bending stiffness and the mobility of the joints within the diabetic foot will shed light on the 331 

causative factors of this pathological change with the potential to help improve current therapeutic 332 

approaches for the reduction of ulceration rates.  333 

 334 
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 335 

The type and range of loading scenarios that can be realised using this device is mainly limited by the 336 

fact that in its current form it cannot apply combinations of different types of loading such as 337 

compression and bending or combined compression and shear. For this reason the plantar pressure 338 

reconstructions performed here were limited to load cases where shear loads are minimal such as quiet 339 

stance and the mid-stance phase of gait. Despite this limitation the device could be used with minor 340 

modifications to study loading scenarios involving compression of the forefoot at different 341 

dorsiflexion angles of the toes. The dorsiflexion angle of the toes could be modified easily with the 342 

use of wedges with different inclinations. Another limitation of this device is that it cannot be used to 343 

study rate dependent phenomena. 344 

 345 

For the purposes of the present study the maximum compressive force applied to a subject was 250 N. 346 

Even though this force may seem relatively low compared to the net forces applied to the foot during 347 

everyday activities the results of this study indicate that if this force is properly focused it can 348 

generate plantar pressures in order of magnitude that are relevant to the cases of quiet stance and mid-349 

stance phase of walking  gait. The maximum net compressive force that can be applied by the device 350 

is mainly limited by the fact that pressure is applied on a relative small area at the dorsal side of the 351 

foot. Because of that increased loads could cause discomfort or trauma. Even though the simulation of 352 

loading scenarios involving higher compressive forces at the MTH area (i.e. similar or higher that 353 

body weight) were beyond the scope of this study, minor modifications could increase the magnitude 354 

of the compressive force that can be safely applied. Increasing the contact area between the 355 

compression punch and the dorsal side of the foot would allow the application of significantly higher 356 

forces. 357 

The MRI compatible loading device presented here can realise clinically relevant loading scenarios 358 

and allows the accurate reconstruction of subject specific plantar pressure distributions of the MTH 359 

area for the cases of quiet stance and mid-stance phase of gait. The device can be used to validate 360 

numerical models of the foot, where the loading is applied by a virtual punch. The validated foot 361 

models can then be used to simulate real-life scenarios. In the future this device can be used for the 362 
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investigation of the correlation between plantar pressure and internal tissue stresses and strains as well 363 

as for the study of the forefoot’s inter-segmental passive stiffness. 364 
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Tables 457 

 458 

Table 1: The reference and the reconstructed average peak pressures measured under each MTH for 459 

the case of quiet stance (six volunteers) and the respective reference peak pressures and reconstructed 460 

average peak pressures (one volunteer) for the case of mid-stance phase of gait. The overall maximum 461 

values for each volunteer are highlighted. 462 

 Quiet stance  
Mid-

stance 

Volunteer: 

 

#1 

 

#2 

 

#3 

 

#4 

 

#5 

Test 

#5 

Re-test 

#6 #5 

 

Gender (M/F): F M F M F F F F 

Age (y) 32 35 45 38 30 30 24 30 

Weight (Kg): 60 82 72 82 67 67 70 67 

M
a
x
. 

P
re

ss
u

re
 (

k
P

a
) 

1st 

MTH 

Reference/ 29/ 176/ 46/ 69/ 218/ 218/ 50/ 57/ 

Reconstructed 26 163 46 70 221 211 58 65 

2nd 

MTH 

Reference/ 70/ 60/ 79/ 64/ 66/ 66/ 51/ 97/ 

Reconstructed 78 67 82 64 64 70 69 97 

3rd 

MTH 

Reference/ 51/ 88/ 95/ 60/ 77/ 77/ 77/ 98/ 

Reconstructed 52 90 91 57 42 46 76 106 

4th 

MTH 

Reference/ 53/ 167/ 57/ 49/ 49/ 49/ 41/ 91/ 

Reconstructed 53 151 80 50 40 42 35 85 

5th 

MTH 

Reference/ 42/ 184/ 61/ 68/ 37/ 37/ 37/ 92/ 

Reconstructed 41 185 62 66 35 38 38 81 

Mean error (%): 5 6 10 2 15 15 14 8  

 463 

 464 

Table 2: The results from the pilot testing of the device’s bending mode. The bending angle values of 465 

all five trials are presented.  466 

Bending 

moment 

(Nm) 

Bending angle (deg) 

Trial 

1 

Trial 

2 

Trial 

3 

Trial 

4 

Trial 

5 
Average STDEV 

1.8 89 90 90 90 90 90 0 

2.2 105 99 103 103 103 103 2 

3.3 120 120 119 119 124 120 2 

3.9 126 123 127 127 127 126 2 

4.6 133 138 139 140 138 138 3 

 467 

 468 
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Figure legends: 469 

 470 

Figure 1: Two different configurations of the MRI compatible loading device used to apply 471 

compressive (A) and bending loads (B). The punch used to apply the compressive load and to control 472 

its distribution is also shown. 473 

 474 

Figure 2: MRI images of the forefoot before (A) and after compression (B). The boundaries of the 475 

foot and of the visible bones have been manually outlined for both cases (dotted blue and continuous 476 

red curves for A and B respectively) and presented together (C) for comparison.  477 

 478 

Figure 3: The reference planar pressures (left) and the ones measured inside the device before (centre) 479 

and after (right) the adjustment of the compression punch profile for volunteer #6 (pressure in kPa).  480 

The area of the MTHs is defined using a number of polygons. Inside each one of these polygons the 481 

location of peak pressure is marked by a rectangle. The average values of the peak pressures of each 482 

MTH are also plotted together for comparison.      483 

 484 

 485 
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 488 

 489 

 490 

 491 
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 493 

 494 

 495 

 496 



 

19 
 

Figure 1: 497 
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Figure 2: 511 
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Figure 3: 525 
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