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1. Introduction

In the 1970s, the mathematician Mandelbrot ex-
plored a new geometry of nature that accepts the
irregular structures of items including coastlines,
lightning bolts, clouds, and molecular trajectories.
Then, mathematicians had started studying in the
late 19th century. The key characteristic of these
objects, which Mandelbrot named fractals, is that
their borders are so irregular that is not easy to com-
prehend how simple metric concepts and operations
can be applied to them[1].

Conventional approaches to approximating data
samples from scientific and natural phenomena are
impacted by Euclidean geometry, where fundamen-
tal functions like linear, polynomial, trigonometric,
and exponential functions play a significant role.
Interpolation is a useful technique in approxima-
tion theory, which deals with the creation of a con-
tinuous function that abides by the sample data
points. The classical techniques for interpolation
typically produce smooth interpolants that are oc-
casionally infinitely differentiable. As a result, the
traditional method is insufficient for approximating
non-differentiable functions and interpolating irregu-
lar data. In order to address this situation, Barnsley
[2, 3] developed fractal interpolation, a new inter-
polation technique, based on the theory of iterated
function systems. Their graphs serve as attractors
for a class of hyperbolic iterated function systems
(IFSs) composed of contractive maps that interpo-
late a given set of data. Fractal interpolation meth-
ods have been widely used in the natural sciences
and engineering over the last 30 years (see, for ex-
ample, refs. [4]-[14]) and have evolved into powerful
tools for fitting and approximating many complex
objects and patterns.

Barnsley et al.[3],[15] and Massopust[16] coined
the word “hidden variable”and introduced the con-
struction of hidden variable FIFs by using projec-
tions of the graphs of higher-dimensional FIFs to
broaden the potential utility of FIFs and enhance the
flexibility of interpolation. The benefits of HVFIFs
are not only limited to flexibility but also provide
greater diversity because their values are constantly
dependent on hidden variables. For the same set of
interpolation data, an HVFIF is more varied, excit-
ing, and irregular than a FIF because the variables
of a hidden variable FIF continuously differ on all of
its IFS parameters. Moreover, by using the HVFIFs,
self-affine and non-self-affine functions can both be
interpreted concurrently. Later, Chand and Kapoor
[17] briefly discussed the stability of a class of affine
HVFIFs and described that any slight modification

in the interpolation data leads to a small perturba-
tion to the corresponding affine HVFIFs. Because
HVFIFs are primarily generated by IFSs, it is also
important to consider how the associated HVFIFs
will change if the IFSs generating the HVFIFs un-
dergo a small perturbation. The reader can look up
more information about HVFIF in [18]-[31].

The Fourier transform is a mathematical trans-
form that decomposes a function into its constituent
sinusoidal components. It is one of the most impor-
tant tools in signal processing and image processing,
and it has many other applications in physics, en-
gineering, and mathematics. The Fourier transform
is a linear operation, which means that the Fourier
transform of a sum of two functions is the sum of the
Fourier transforms of the individual functions. This
property is very useful for signal processing and im-
age processing, as it allows us to decompose complex
signals and images into simpler components. The
Fourier transform also has a number of other use-
ful properties, such as convolution, correlation, and
symmetry. These properties make the Fourier trans-
form a very powerful tool for analyzing signals and
images.

In [32, 33], Alireza, et al. review fractal calcu-
lus and the analogues of both local Fourier trans-
form with its related properties and Fourier convo-
lution theorem are proposed in fractal calculus. The
Fourier transform and fractal calculus are both valu-
able tools for studying fractals. However, they have
different strengths and weaknesses. The Fourier
transform is better suited for analyzing the fre-
quency content of fractal objects, while fractal cal-
culus is better suited for studying the dynamics of
fractal systems.

In [34], Pan has discussed the Fourier series
of fractal interpolation functions and demonstrated
that complex fractal interpolation functions can be
represented by the Fourier sine series and Fourier
cosine series explicitly. Even though the Fourier se-
ries over the fractal functions provides an explicit
structure, it can only be studied for the periodic
functions. On the other hand, the Fourier transform
can be used to study both periodic and non-periodic
functions. To overcome the limitation of periodic
cases, we investigate the Fourier transform of frac-
tal interpolation functions with function scaling fac-
tors. Meanwhile, Barnsley has discussed the Fourier
transform of the linear FIF in [2]. In this sequel,
Navascués has presented the Fourier transform of α-
fractal functions in [35, 36]. In the aforementioned
discussions [35] and [36], the authors have considered
the FIFs with constant scaling factors. In [35], the
Fourier transform of the α-fractal function has been

24 ENGINEERING JOURNAL Volume 27 Issue 12, ISSN 0125-8281 (https://engj.org/)



DOI:10.4186/ej.2023.27.12.23

investigated, and in [36], the Fourier transform of the
linear FIF and its relation with the fractal dimension
have been explored. In [37], the authors explored the
Fourier transform of linear FIF, quadratic FIF, and
α-FIF with function scaling factors. However, an ex-
tensive review of the pertinent literature reveals that
the Fourier transform of hidden variable FIF and
quadratic hidden variable FIF with function scaling
factors have still not been explored. With this mo-
tivation, this paper explores the Fourier transform
of the hidden variable FIF and the quadratic hidden
variable FIF with function scaling factors. 

The structure of this article is as follows: In Sec-
tion 2, the construction of the fractal interpolation
function has been presented. The concepts of hidden
variable fractal interpolation functions with function
scaling factors have been broadly discussed in Sec-
tion 3. Section 4 addresses the Fourier transform
of the hidden variable FIF and the quadratic hid-
den variable FIF. The results of the present work
are concluded in Section 5.

2. Fractal Interpolation Function

Let h0 < h1 < · · · < hN be a partition of the real
compact interval I = [h0, hN ]. Consider the given
set of data points {(hι, yι) ∈ [h0, hN ] × R : m =
0, 1, . . . , N}. For ι ∈ {1, 2, . . . , N}, set [hι−1, hι] =
[hι−1, hι] and let Lι : [h0, hN ] → [hι−1, hι], be con-
tractive homeomorphisms such that{

Lι(h0) = hι−1,

Lι(hN ) = hι,
(1)

| Lι(a)− Lι(b) |≤ r | a− b | ∀ a, b ∈ I, (2)

for 0 ≤ r < 1. Let −1 < αι < 1, ι = 1, 2, . . . , N, and
M := I × [c, d], minMι ≤ c ≤ maxMι ≤ d. For
each ι, consider the continuous mapping Fι : M →
R such that {

Fι(h0, h0) = hι−1,

Fι(hN , hN ) = hι, and
(3)

|Fι(h, y)−Fι(h, z)| ≤ |αι||y − z|,
h ∈ [h0, hN ], h, z ∈ [c, d]. (4)

Define the functions wι(h, y) = (Lι(h),Fι(h, y)), ∀ ι =
1, 2, . . . , N, then {M, wι : ι = 1, 2, . . . , N} forms an
IFS.

Theorem 1 The above mentioned IFS admits a
unique attractor G. G is the continuous function’s
graph g : [h0, hN ] → R which obeys g(hι) = yι for
ι = 0, 1, . . . , N.

The function g obtained in Theorem 1 is termed
to as a Fractal Interpolation Function (FIF)
corresponding with the iterated function system
{(Lι(h),Fι(h, y))}Nι=1. Now, let us discuss the func-
tional equation related with the fractal interpolation
function. Let F be the set of continuous functions
f : [h0, hN ] → [c, d] such that f(h0) = y0; f(hN ) =
yN . F is a complete metric space with respect to the
uniform norm, ∥.∥∞ = max{| f(h) |: h ∈ [h0, hN ]}.
The Read-Bajraktarević (RB) operator T : F → F
is defined by

(T f)(h) =Fι(L−1
ι (h), f ◦ L−1

ι (h)),

∀ h ∈ [hι−1, hι], ι = 1, 2, . . . , N.

On the metric space (F , ∥.∥∞), T is a contraction,
that is

∥T f − T g∥∞ ≤| α |∞ ∥f − g∥∞, (5)

where | α |∞= max{| αι |: ι = 1, 2, . . . , N}. Since
| α |∞< 1, the iterated function system theory states
that T has an unique fixed point on F , that is to say,
there exist unique g(= T (g)) ∈ F . Further, g satis-
fies the following functional equation,

g(h) = Fι(L−1
ι (h), g ◦ L−1

ι (h)), h ∈ [hι−1, hι]. (6)

The most widely discussed IFS concerning the frac-
tal interpolation functions is of the form,{

Lι(h) = aιh+ bι,

Fι(h, y) = αιy + qι(h),
(7)

where,

aι =
hι − hι−1

hN − h0
, bι =

hNhι−1 − h0hι
hN − h0

(8)

here αι is known to as vertical scaling factors of the
transformation wι and α = (α1, α2, . . . , αN ) is the
scale vector.

Instead of constant scaling factors, one may take
function scaling factors to define iterated function
system for more flexibility. In [38], Wang and Yu
introduced the construction of FIF using function
scaling. The associated FIF satisfies

Lι(h) = aιh+ bι, Fι(h, y) = αι(h)y + qι(h), (9)

where αι(h) is the Lipschitz function defined on I
satisfying ||αι||∞ = suph∈I |αι(h)| < 1. According
to theorem (1), the functional equation of new FIF
f : I → F with function scaling associated with the
IFS in (9) will be

f(h) = αι(L−1
ι (h))f(L−1

ι (h)) + qι(L−1
ι (h)),

for all t ∈ I, ι = 1, 2, . . . , N. (10)
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The continuous function qι influences the shape of
the FIF hence, in literature, the FIFs are classified
as linear FIF, quadratic FIF and cubic FIF based
on the choice of qm. For instance, in [25, 26, 28],
the authors refer to the quadratic fractal interpola-
tion function (QFIF) as functions constructed using
functions Fι of the form

Fι(h, y) = αι(L−1
ι (h))f(L−1

ι (h)) + h2 + cιh+ dι

for each ι = 1, 2, . . . , N.

3. Hidden Variable Fractal Interpolation
Function

The concepts of hidden variable fractal interpola-
tion function with function scaling factors is broadly
discussed below:

In order to define a hidden variable fractal in-
terpolation function for the generalized data set
{(hι, yι, zι) ∈ [h0, hN ] × R2 : ι = 0, 1, . . . , N}, where
{zι : ι = 0, 1, . . . , N} are real numbers, choose Lι(h)
as in Eq.(1) and

Fι(h, y, z) = Aι(y, z)
T +

(
pι(h), qι(h)

)T
where Aι are upper-triangular matrices[
αι(h) βι(h)
0 γι(h)

]
and pι(h), qι(h) are the real val-

ued continuous functions for all j ∈ J . Note that
the free variables and the constrained free variables
are chosen as function scaling factors. For the con-
struction of HVFIF, the generalized IFS on R3 is
defined by

{[h0, hN ]× R2;Fι : j ∈ J} (11)

where Fι(h, y, z) = (Lι(h),Fι(h, y, z)), j ∈ J. Then,
the IFS (11) has unique attractor G∗ which is the
graph of the vector-valued function f = (f1, f2). De-
fine the operator T ′ on the space of continuous func-
tions from [h0, hN ] to R2 by

(T′g)(h) = Fι

(
L−1
ι (h),g◦

(
L−1
ι (h)

))
, for h ∈ [hι−1, hι], j ∈ J.

By the Banach contraction principle, the contraction
operator T ′ has a unique fixed point f which satisfies
the functional equation,

(T′f)(h) = Fι

(
L−1
ι (h), f◦

(
L−1
ι (h)

))
, for h ∈ [hι−1, hι], j ∈ J.

Then, the two components f1 and f2 of the vector-
valued function f satisfies,

f1
(
Lι(h)

)
=T ′

1f1(Lι(h)) = F1m(h, f1(h), f2(h))

=αιf1(h) + βιf2(h) + pι(h),

f2
(
Lι(h)

)
=T ′

2f2(Lι(h)) = F2m(h, f2(h))

=γιf2(h) + qι(h), h ∈ I.

(12)

where T ′
1f1 and T ′

2f2 are the component wise opera-
tors of T ′.

4. Fourier Transform of Hidden Variable
Fractal Interpolation Functions

This section investigates the Fourier transform of
linear hidden variable and quadratic hidden variable
fractal interpolation function with function scaling
factors. The Fourier transform of a continuous func-
tion f = (f1, f2) is given by

f̂1(w) =

∫ 1

0
e2πiwh̃f1(h̃)dh̃, f̂2(w) =

∫ 1

0
e2πiwh̃f2(h̃)dh̃.

Irrespective of the periodicity, the Fourier transform
can be defined for any continuous function. In this
respect, the Fourier transform of a hidden variable
FIF with function scaling factors is investigated in
the following theorem.

Theorem 2 Let f(h) = (f1, f2) be the lin-
ear hidden variable fractal interpolation func-
tion with function scaling factors determined
by the IFS {Lι(h),Fι(h, y, z)}Nι=1. If ∥A′

ι∥ <

1, where A′
ι = aι

[
αι(h) βι(h)
0 γι(h)

]
, ||A′

ι|| =

max{aι||αι(h)|| + aι||βι(h)||, aι||γι(h)||}, where
α′
ι(h) = aιαι(h), β

′
ι(h) = aιβι(h), γ

′
ι(h) = aιγι(h).

Further f̂1(w) and f̂2(w) are generated by the IFSs
{Lι(h), F̂1ι(h, ŷ, ẑ)}Nι=1 and {Lι(h), F̂2ι(h, ẑ)}Nι=1 re-
spectively, where F̂1ι(h, ŷ, ẑ) = aιαι(h)f̂1(h) +
aιβι(h)f̂2(h)+p̂ι(h), F̂2ι(h, ẑ) = aιγι(h)f̂2(h)+q̂ι(h).
Then, the Fourier transform of f is given by

f̂1(w) =P̂ (w) +
1

N
s1(w)f̂1

(w
N

)
−

N∑
ι=1

e
2πiwbι

N

∫ 1

0

[
α′
ι(h)

∫ h

0
f1(u)e

2πiwu
N du

]
dh

+
1

N
s2(w)f̂2

(w
N

)
−

N∑
ι=1

e
2πiwbι

N

∫ 1

0

[
β′
ι(h)

∫ h

0
f2(u)e

2πiwu
N du

]
dh,

f̂2(w) =Q̂(w) +
1

N
s(w)f̂2

(w
N

)
−

N∑
ι=1

e
2πiwbι

N

∫ 1

0

[
γ′ι(h)

∫ h

0
f2(u)e

2πiwu
N du

]
dh,
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where

P̂ (w) =
1

N

N∑
ι=1

e2πiwbι

{
cι

2πiw
N

[
e

2πiw
N

(
1− 1

2πiw
N

)

+
1

2πiw
N

]
+

dι
2πiw
N

[
e

2πiw
N − 1

]}
,

Q̂(w) =
1

N

N∑
ι=1

e2πiwbι

{
eι

2πiw
N

[
e

2πiw
N

(
1− 1

2πiw
N

)

+
1

2πiw
N

]
+

Fι
2πiw
N

[
e

2πiw
N − 1

]}
,

s(w) =

N∑
ι=1

γι(1)e
2πiwbι , s1(w) =

N∑
ι=1

αι(1)e
2πiwbι ,

s2(w) =

N∑
ι=1

βι(1)e
2πiwbι .

Proof 2 The Fourier transform of linear hidden
variable FIF is defined by

f̂1(w) =

∫ 1

0
e2πiwh̃f1(h̃)dh̃, f̂2(w) =

∫ 1

0
e2πiwh̃f2(h̃)dh̃.

By using the functional equation

f1(h̃) =αι(L−1
ι (h̃))f1(L−1

ι (h̃)) + βι(L−1
ι (h̃))f2(L−1

ι (h̃))

+ pι(L−1
ι (h̃)),

f̂1(w) =

N∑
ι=1

∫ 1

0
e2πiwh̃αι(L−1

ι (h̃))f1(L−1
ι (h̃))dh̃

+
N∑
ι=1

∫ 1

0
e2πiwh̃βι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃

+
N∑
ι=1

∫ 1

0
e2πiwh̃pι(L−1

ι (h̃))dh̃

f̂1(w) =P̂ (w) +
N∑
ι=1

∫ 1

0
e2πiwh̃αι(L−1

ι (h̃))

f1(L−1
ι (h̃))dh̃+

N∑
ι=1

∫ 1

0
e2πiwh̃βι(L−1

ι (h̃))

f2(L−1
ι (h̃))dh̃. (13)

Consider the first term of equation (13),

P̂ (w) =

N∑
ι=1

∫ 1

0
e2πiwh̃pι(L−1

ι (h̃))dh̃.

Changing the variable L−1
ι (h̃) = h, one has

P̂ (w) =aι

N∑
ι=1

e2πiwbι

{
cι

2πiwaι

[
e2πiwaι

(
1− 1

2πiwaι

)
+

1

2πiwaι

]
+

dι
2πiwaι

[
e2πiwaι − 1

]}
.

Suppose the equation (1) is considered with the in-
terval I = [0, 1] of uniform partition, aι = 1/N , then

P̂ (w) =
1

N

N∑
ι=1

e2πiwbι

{
cι

2πiw
N

[
e

2πiw
N

(
1− 1

2πiw
N

)

+
1

2πiw
N

]
+

dι
2πiw
N

[
e

2πiw
N − 1

]}
. (14)

In the second term of equation (13), changing the
variable L−1

ι (h̃) = h, one has

N∑
ι=1

∫ 1

0
e2πiwh̃αι(L−1

ι (h̃))f1(L−1
ι (h̃))dh̃

= aι

N∑
ι=1

e2πiwbιαι(1)

∫ h

0
f1(h)e

2πiwaιudh

− aι

N∑
ι=1

e2πiwbι

∫ 1

0

[
α′
ι(h)

∫ h

0
f1(u)e

2πiaιudu

]
dh.

Similarly for uniform partition, aι = 1/N , thus

N∑
ι=1

∫ 1

0
e2πiwh̃αι(L−1

ι (h̃))f1(L−1
ι (h̃))dh̃

=
1

N

N∑
ι=1

e2πiwbιαι(1)f̂1

(w
N

)
− 1

N

N∑
ι=1

e2πiwbι

∫ 1

0

[
α′
ι(h)

∫ h

0
f1(u)e

2πiwu
N du

]
dh.

In the third term of equation (13), changing the vari-
able L−1

ι (h̃) = h, one has

N∑
ι=1

∫ 1

0
e2πiwh̃βι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃

= aι

N∑
ι=1

e2πiwbιβι(1)

∫ h

0
f2(h)e

2πiwaιudh

− aι

N∑
ι=1

e2πiwbι

∫ 1

0

[
β′
ι(h)

∫ h

0
f2(u)e

2πiaιudu

]
dh.
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Similarly for uniform partition, aι = 1/N , thus

N∑
ι=1

∫ 1

0
e2πiwh̃βι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃

=
1

N

N∑
ι=1

e2πiwbιβι(1)f̂2

(w
N

)
− 1

N

N∑
ι=1

e2πiwbι

∫ 1

0

[
β′
ι(h)

∫ h

0
f2(u)e

2πiwu
N du

]
dh.

Therefore, from the equation (13),

f̂1(w) =P̂ (w) +
1

N
s1(w)f̂1

(w
N

)
−

N∑
ι=1

e
2πiwbι

N

∫ 1

0

[
α′
ι(h)

∫ h

0
f1(u)e

2πiwu
N du

]
dt

+
1

N
s2(w)f̂2

(w
N

)
−

N∑
ι=1

e
2πiwbι

N

∫ 1

0

[
β′
ι(h)

∫ h

0
f2(u)e

2πiwu
N du

]
dh, (15)

where

P̂ (w) =
1

N

N∑
ι=1

e2πiwbι

{
cι

2πiw
N

[
e

2πiw
N

(
1− 1

2πiw
N

)

+
1

2πiw
N

]
+

dι
2πiw
N

[
e

2πiw
N − 1

]}
.

s1(w) =

N∑
ι=1

αι(1)e
2πiwbι , s2(w) =

N∑
ι=1

βι(1)e
2πiwbι .

(16)

Since f2 satisfies the functional equation

f2(h) = γι(L−1
ι (h̃))f2(L−1

ι (h̃)) + qι(L−1
ι (h̃)),

f̂2(w) =
N∑
ι=1

∫ 1

0
e2πiwh̃γι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃

+
N∑
ι=1

∫ 1

0
e2πiwh̃qι(L−1

ι (h̃))dh̃

f̂2(w) =Q̂(w) +
N∑
ι=1

∫ 1

0
e2πiwh̃γι(L−1

ι (h̃))

f2(L−1
ι (h̃))dh̃. (17)

Consider the first term of equation (17),

Q̂(w) =

N∑
ι=1

∫ 1

0
e2πiwh̃qι(L−1

ι (h̃))dh̃.

Changing the variable L−1
ι (h̃) = h, one has

Q̂(w) =aι

N∑
ι=1

e2πiwbι

{
eι

2πiwaι

[
e2πiwaι

(
1− 1

2πiwaι

)
+

1

2πiwaι

]
+

fι
2πiwaι

[
e2πiwaι − 1

]}
.

Suppose the equation (1) is considered with the in-
terval I = [0, 1] of uniform partition, aι = 1/N , then

Q̂(w) =
1

N

N∑
ι=1

e2πiwbι

{
eι

2πiw
N

[
e

2πiw
N

(
1− 1

2πiw
N

)

+
1

2πiw
N

]
+

fι
2πiw
N

[
e

2πiw
N − 1

]}
. (18)

In the second term of equation (17), changing the
variable L−1

ι (h̃) = t, one has
N∑
ι=1

∫ 1

0
e2πiwh̃γι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃

= aι

N∑
ι=1

e2πiwbιγι(1)

∫ h

0
f2(h)e

2πiwaιudh

− aι

N∑
ι=1

e2πiwbι

∫ 1

0

[
γ′ι(h)

∫ h

0
f2(u)e

2πiaιudu

]
dh.

Similarly for uniform partition, aι = 1/N , thus
N∑
ι=1

∫ 1

0
e2πiwh̃γι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃

=
1

N

N∑
ι=1

e2πiwbιγι(1)f̂2

(w
N

)
− 1

N

N∑
ι=1

e2πiwbι

∫ 1

0

[
γ′ι(h)

∫ h

0
f2(u)e

2πiwu
N du

]
dt.

Therefore, from the equation (17),

f̂2(w) =Q̂(w) +
1

N
s(w)f̂2

(w
N

)
−

N∑
ι=1

e
2πiwbι

N

∫ 1

0

[
γ′ι(h)

∫ h

0
f2(u)e

2πiwu
N du

]
dt, (19)

where

Q̂(w) =
1

N

N∑
ι=1

e2πiwbι

{
eι

2πiw
N

[
e

2πiw
N

(
1− 1

2πiw
N

)

+
1

2πiw
N

]
+

fι
2πiw
N

[
e

2πiw
N − 1

]}
,

s(w) =
N∑
ι=1

γι(1)e
2πiwbι . (20)
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Remark 1 Theorem 2 discusses the Fourier trans-
form of a linear hidden variable FIF with function
scaling factors. As a particular case of Theorem 2,
when the scalings are taken as constants the following
results have been obtained,

f̂1(w) = P̂ (w) +
1

N
s1(w)f̂1

(w
N

)
+

1

N
s2(w)f̂2

(w
N

)
f̂2(w) = Q̂(w) +

1

N
s(w)f̂2

(w
N

)
where

P̂ (w) =
1

N

N∑
ι=1

e2πiwbι

{
cι

2πiw
N

[
e

2πiw
N

(
1− 1

2πiw
N

)

+
1

2πiw
N

]
dι

2πiw
N

[
e

2πiw
N − 1

]}
,

Q̂(w) =
1

N

N∑
ι=1

e2πiwbι

{
eι

2πiw
N

[
e

2πiw
N

(
1− 1

2πiw
N

)

+
1

2πiw
N

]
fι

2πiw
N

[
e

2πiw
N − 1

]}
,

s(w) =

N∑
ι=1

γιe
2πiwbι , s1(w) =

N∑
ι=1

αιe
2πiwbι ,

s2(w) =
N∑
ι=1

βιe
2πiwbι .

Example 1 Consider a data set: {(0, 0, 0),
(1/5, 1/4, 1/2), (1/2, 1/6, 3/4), (1, 1, 1)}. The scale
vectors α3 = (0.3, 0.5, 0.6), β3 = (0.4, 0.6, 0.8), γ3 =
(0.3, 0.5,−0.5) are taken to be a linear hidden vari-
able FIF with constant scaling factors and the linear
hidden variable FIF with function scaling factors are
α3(h) =

(√
h
4 , e

h

4 ,
sinπh

5

)
, β3(h) =

(
h−1
3 , cosπh4 , h4

)
,

γ3(h) =
(
sinπh

2 , cosh10 ,
√
h+1
5

)
. The coefficients in-

volved in the corresponding IFSs are provided in Ta-
ble 1. Figure 1(a) reveals the graphical representa-
tion of the linear hidden variable FIF with constant
scaling factors of a non-self-affine fractal function
(f1), while Fig. 1(b) depicts the graphical represen-
tation of the linear hidden variable FIF with constant
scaling factors of a self-affine FIF (f2).

Table 1. Estimated coefficients associated with the
linear HVFIF.

Lι(h) Fι(h, y)
αι βι γι aι bι cι dι eι fι
0.3 0.4 0.3 0.2 0 -0.45 0 0.2 0
0.5 0.6 0.3 0.3 0.2 -1.18 0.25 -0.25 0.5
0.6 0.8 -0.5 0.5 0.5 -0.56 0.5 0.75 0.75

Definition 1 In the definition of hidden variable
fractal interpolation function, if the scaling factors
are chosen as continuous functions and pι(h) and
qι(h) are chosen as quadratic functions of the form,

pι(h) = h2 + cιh+ dι,

qι(h) = h2 + eιh+ Fι, ∀ ι = 1, 2, . . . , N
(21)

then the fixed point equations,

f1
(
Lι(h)

)
= αι(h)f1(h) + βι(h)f2(h) + h2 + cιh+ dι,

f2
(
Lι(h)

)
= γι(h)f2(h) + h2 + eιh+ Fι, h ∈ I.

(22)

are called the quadratic hidden variable fractal inter-
polation function (QHVFIF) and quadratic fractal
interpolation function (QFIF) with function scaling
factors respectively.

The following theorem explore the Fourier transform
of a quadratic hidden variable FIF with function
scaling factors.

Theorem 3 Let f(h) = (f1, f2) be the quadratic
hidden variable fractal interpolation function
with function scaling factors determined by
the IFS {Lι(h),Fι(h, y, z)}Nι=1. If ∥A′

ι∥ <

1, where A′
ι = aι

[
αι(h) βι(h)
0 γι(h)

]
, ||A′

ι|| =

max{aι||αι(h)|| + aι||βι(h)||, aι||γι(h)||}, where
α′
ι(h) = aιαι(h), β

′
ι(h) = aιβι(h), γ

′
ι(h) = aιγι(h).

Further f̂1(w) and f̂2(w) are generated by the IFSs
{Lι(h), F̂1ι(h, ŷ, ẑ)}Nι=1 and {Lι(h), F̂2ι(h, ẑ)}Nι=1 re-
spectively, where F̂1ι(h, ŷ, ẑ) = aιαι(h)f̂1(h) +
aιβι(h)f̂2(h)+p̂ι(h), F̂2ι(h, ẑ) = aιγι(h)f̂2(h)+q̂ι(h).
Then, the Fourier transform of f is given by

f̂1(w) =P̂ (w) +
1

N
s1(w)f̂1

(w
N

)
−

N∑
ι=1

e
2πiwbι

N

∫ 1

0

[
α′
ι(h)

∫ h

0
f1(u)e

2πiwu
N du

]
dh

+
1

N
s2(w)f̂2

(w
N

)
−

N∑
ι=1

e
2πiwbι

N

∫ 1

0

[
β′
ι(h)

∫ h

0
f2(u)e

2πiwu
N du

]
dh,

f̂2(w) =Q̂(w) +
1

N
s(w)f̂2

(w
N

)
−

N∑
ι=1

e
2πiwbι

N

∫ 1

0

[
γ′ι(h)

∫ h

0
f2(u)e

2πiwu
N du

]
dh,
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(a) (b)

Fig. 1. Hidden variable fractal interpolation function:(a) Non-self-affine f1, (b) self-affine f2.

where

P̂ (w) =
1

N

N∑
ι=1

e2πiwbι

{[
e

2πiw
N

2πiw
N

]
− 1

πiw
N

1
2πiw
N[

e
2πiw
N

(
1− 1

2πiw
N

)
+

1
2πiw
N

]
+

cι
2πiw
N

[
e

2πiw
N(

1− 1
2πiw
N

)
+

1
2πiw
N

]
+

dι
2πiw
N

[
e

2πiw
N − 1

]}
,

Q̂(w) =
1

N

N∑
ι=1

e2πiwbι

{[
e

2πiw
N

2πiw
N

]
− 1

πiw
N

1
2πiw
N[

e
2πiw
N

(
1− 1

2πiw
N

)
+

1
2πiw
N

]
+

eι
2πiw
N

[
e

2πiw
N(

1− 1
2πiw
N

)
+

1
2πiw
N

]
+

Fι
2πiw
N

[
e

2πiw
N − 1

]}
,

s1(w) =

N∑
ι=1

αι(1)e
2πiwbι , s2(w) =

N∑
ι=1

βι(1)e
2πiwbι ,

s(w) =

N∑
ι=1

γι(1)e
2πiwbι .

Proof 3 The Fourier transform of quadratic hidden
variable FIF is defined by

f̂1(w) =

∫ 1

0
e2πiwh̃f1(h̃)dh̃, f̂2(w) =

∫ 1

0
e2πiwh̃f2(h̃)dh̃.

By using the functional equation

f1(h̃) =αι(L−1
ι (h̃))f1(L−1

ι (h̃)) + βι(L−1
ι (h̃))

f2(L−1
ι (h̃)) + pι(L−1

ι (h̃)),

f̂(w) =

N∑
ι=1

∫ 1

0
e2πiwh̃αι(L−1

ι (h̃))f1(L−1
ι (h̃))dh̃

+

N∑
ι=1

∫ 1

0
e2πiwh̃βι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃

+

N∑
ι=1

∫ 1

0
e2πiwh̃pι(L−1

ι (h̃))dh̃

f̂(w) =P̂ (w) +

N∑
ι=1

αι(L−1
ι (h̃))

∫ 1

0
e2πiwh̃f1(L−1

ι (h̃))dh̃

+

N∑
ι=1

βι(L−1
ι (h̃))

∫ 1

0
e2πiwh̃f2(L−1

ι (h̃))dh̃.

(23)

Consider the first term of equation (23),

P̂ (w) =

N∑
ι=1

∫ 1

0
e2πiwh̃pι(L−1

ι (h̃))dh̃.

Changing the variable L−1
ι (h̃) = h, one has

P̂ (w) =aι

N∑
ι=1

e2πiwbι

∫ 1

0
e2πiwaιtpι(h)dh

=aι

N∑
ι=1

e2πiwbι

{[
e2πiwaι

2πiwaι

]
− 1

πiwaι[
e2πiwaι

2πiwaι
− e2πiwaι

(2πiwaι)2
+

1

(2πiwaι)2

]
+

cι
2πiwaι

[
e2πiwaι

(
1− 1

2πiwaι

)
+

1

2πiwaι

]
+

dι
2πiwaι

[
e2πiwaι − 1

]}
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Suppose the equation (1) is considered with the in-
terval I = [0, 1] of uniform partition, aι = 1/N , then

P̂ (w) =
1

N

N∑
ι=1

e2πiwbι

{[
e

2πiw
N

2πiw
N

]
− 1

πiw
N

1
2πiw
N[

e
2πiw
N

(
1− 1

2πiw
N

)
+

1
2πiw
N

]

+
cι

2πiw
N

[
e

2πiw
N

(
1− 1

2πiw
N

)
+

1
2πiw
N

]

+
dι

2πiw
N

[
e

2πiw
N − 1

]}
. (24)

In the second term of equation (23), changing the
variable L−1

ι (h̃) = t, one has

N∑
ι=1

∫ 1

0
e2πiwh̃αι(L−1

ι (h̃))f1(L−1
ι (h̃))dh̃

= aι

N∑
ι=1

e2πiwbιαι(1)

∫ h

0
f1(h)e

2πiwaιudh

− aι

N∑
ι=1

e2πiwbι

∫ 1

0

[
α′
ι(h)

∫ h

0
f1(u)e

2πiaιudu

]
dh.

Similarly for uniform partition, aι = 1/N , thus

N∑
ι=1

∫ 1

0
e2πiwh̃αι(L−1

ι (h̃))f1(L−1
ι (h̃))dh̃

=
1

N

N∑
ι=1

e2πiwbιαι(1)f̂1

(w
N

)
− 1

N

N∑
ι=1

e2πiwbι

∫ 1

0

[
α′
ι(h)

∫ h

0
f1(u)e

2πiwu
N du

]
dh.

In the third term of equation (23), changing the vari-
able L−1

ι (h̃) = h, one has

N∑
ι=1

∫ 1

0
e2πiwh̃βι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃

= aι

N∑
ι=1

e2πiwbιβι(1)

∫ h

0
f2(h)e

2πiwaιudh

− aι

N∑
ι=1

e2πiwbι

∫ 1

0

[
β′
ι(h)

∫ h

0
f2(u)e

2πiaιudu

]
dh.

Similarly for uniform partition, aι = 1/N , thus

N∑
ι=1

∫ 1

0
e2πiwh̃βι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃

=
1

N

N∑
ι=1

e2πiwbιβι(1)f̂2

(w
N

)
− 1

N

N∑
ι=1

e2πiwbι

∫ 1

0

[
β′
ι(h)

∫ h

0
f2(u)e

2πiwu
N du

]
dh.

Therefore, from the equation (23),

f̂1(w) =P̂ (w) +
1

N
s1(w)f̂1

(w
N

)
−

N∑
ι=1

e
2πiwbι

N

∫ 1

0

[
α′
ι(h)

∫ h

0
f1(u)e

2πiwu
N du

]
dh+

1

N
s2(w)f̂2

(w
N

)
−

N∑
ι=1

e
2πiwbι

N

∫ 1

0

[
β′
ι(h)

∫ h

0
f2(u)e

2πiwu
N du

]
dh,

where

P̂ (w) =
1

N

N∑
ι=1

e2πiwbι

{[
e

2πiw
N

2πiw
N

]
− 1

πiw
N

1
2πiw
N

[
e

2πiw
N(

1− 1
2πiw
N

)
+

1
2πiw
N

]
+

cι
2πiw
N

[
e

2πiw
N

(
1− 1

2πiw
N

)

+
1

2πiw
N

]
+

dι
2πiw
N

[
e

2πiw
N − 1

]}
.

s1(w) =
N∑
ι=1

αι(1)e
2πiwbι , s2(w) =

N∑
ι=1

βι(1)e
2πiwbι .

Since f2 satisfies the functional equation

f2(h) = γι(L−1
ι (h̃))f2(L−1

ι (h̃)) + qι(L−1
ι (h̃)),

f̂2(w) =
N∑
ι=1

∫ 1

0
e2πiwh̃γι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃

+
N∑
ι=1

∫ 1

0
e2πiwh̃qι(L−1

ι (h̃))dh̃

f̂2(w) =Q̂(w) +
N∑
ι=1

∫ 1

0
e2πiwh̃γι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃.

(25)

Consider the first term of equation (25),

Q̂(w) =
N∑
ι=1

∫ 1

0
e2πiwh̃qι(L−1

ι (h̃))dh̃.
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Changing the variable L−1
ι (h̃) = h, one has

Q̂(w) =aι

N∑
ι=1

e2πiwbι

{
eι

2πiwaι

[
e2πiwaι

(
1− 1

2πiwaι

)
+

1

2πiwaι

]
+

Fι

2πiwaι

[
e2πiwaι − 1

]}
.

Suppose the equation (1) is considered with the in-
terval I = [0, 1] of uniform partition, aι = 1/N , then

Q̂(w) =
1

N

N∑
ι=1

e2πiwbι

{
eι

2πiw
N

[
e

2πiw
N

(
1− 1

2πiw
N

)

+
1

2πiw
N

]
+

Fι
2πiw
N

[
e

2πiw
N − 1

]}
. (26)

In the second term of equation (25), changing the
variable L−1

ι (h̃) = t, one has

N∑
ι=1

∫ 1

0
e2πiwh̃γι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃

= aι

N∑
ι=1

∫ 1

0
γι(h)f2(h)e

2πiw(Lι(h))dt

= aι

N∑
ι=1

e2πiwbιγι(1)

∫ h

0
f2(h)e

2πiwaιudt

− aι

N∑
ι=1

e2πiwbι

∫ 1

0

[
γ′ι(h)

∫ h

0
f2(u)e

2πiaιudu

]
dt.

Similarly for uniform partition, aι = 1/N , thus

N∑
ι=1

∫ 1

0
e2πiwh̃γι(L−1

ι (h̃))f2(L−1
ι (h̃))dh̃

=
1

N

N∑
ι=1

e2πiwbιγι(1)f̂2

(w
N

)
− 1

N

N∑
ι=1

e2πiwbι

∫ 1

0

[
γ′ι(h)

∫ h

0
f2(u)e

2πiwu
N du

]
dt.

Therefore, from the equation (25),

f̂2(w) =Q̂(w) +
1

N
s(w)f̂2

(w
N

)
−

N∑
ι=1

e
2πiwbι

N

∫ 1

0

[
γ′ι(h)

∫ h

0
f2(u)e

2πiwu
N du

]
dt,

where

Q̂(w) =
1

N

N∑
ι=1

e2πiwbι

{
eι

2πiw
N

[
e

2πiw
N

(
1− 1

2πiw
N

)

+
1

2πiw
N

]
+

Fι
2πiw
N

[
e

2πiw
N − 1

]}
,

s(w) =
N∑
ι=1

γι(1)e
2πiwbι .

Remark 2 Theorem 3 discusses the Fourier trans-
form of a quadratic hidden variable FIF with function
scaling factors. When the scalings are assumed to be
constants, the following results have been obtained as
a special case of Theorem 3.

f̂1(w) = P̂ (w) +
1

N
s1(w)f̂1

(w
N

)
+

1

N
s2(w)f̂2

(w
N

)
f̂2(w) = Q̂(w) +

1

N
s(w)f̂2

(w
N

)
where

P̂ (w) =
1

N

N∑
ι=1

e2πiwbι

{[
e

2πiw
N

2πiw
N

]
− 1

πiw
N

1
2πiw
N[

e
2πiw
N

(
1− 1

2πiw
N

)
+

1
2πiw
N

]
+

cι
2πiw
N

[
e

2πiw
N(

1− 1
2πiw
N

)
+

1
2πiw
N

]
+

dι
2πiw
N

[
e

2πiw
N − 1

]}
,

Q̂(w) =
1

N

N∑
ι=1

e2πiwbι

{[
e

2πiw
N

2πiw
N

]
− 1

πiw
N

1
2πiw
N[

e
2πiw
N

(
1− 1

2πiw
N

)
+

1
2πiw
N

]
+

eι
2πiw
N

[
e

2πiw
N(

1− 1
2πiw
N

)
+

1
2πiw
N

]
+

Fι
2πiw
N

[
e

2πiw
N − 1

]}
,

s1(w) =

N∑
ι=1

αιe
2πiwbι , s2(w) =

N∑
ι=1

βιe
2πiwbι ,

s(w) =

N∑
ι=1

γιe
2πiwbι .

Example 2 Consider a data set: {(0, 0, 0),
(1/5, 1/4, 1/2), (1/2, 1/6, 3/4), (1, 1, 1)}. The scale
vectors α3 = (0.3, 0.5, 0.6), β3 = (0.4, 0.6, 0.8), γ3 =
(0.3, 0.5,−0.5) are taken to be a quadratic hidden
variable FIF with constant scaling factors and the
quadratic hidden variable FIF with function scal-
ing factors are α3(h) =

(√
h
4 , e

h

4 ,
sinπt
5

)
, β3(h) =(

h−1
3 , cosπh4 , t

4

)
, γ3(h) =

(
sinπh

2 , cosh10 ,
√
h+1
5

)
. Fig-

ure 2(a) displays the graphical representation of the
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Fig. 2. Quadratic hidden variable fractal interpolation function:(a) Non-self-affine f1, (b) self-affine f2.

quadratic hidden variable FIF with constant scal-
ing factors of a non-self-affine fractal function (f1),
while Fig. 2(b) depicts the graphical representation
of the quadratic hidden variable FIF with constant
scaling factors of a self-affine FIF (f2).

Table 2. Estimated coefficients associated with the
quadratic HVFIF.

Lι(h) Fι(h, y)
αι βι γι aι bι cι dι eι fι
0.3 0.4 0.3 0.2 0 -1.45 0 -0.8 0
0.5 0.6 0.3 0.3 0.2 -2.18 0.25 -1.25 0.5
0.6 0.8 -0.5 0.5 0.5 -1.56 0.16 -0.25 0.75

5. Conclusion

The Fourier transform of hidden variable FIF
and the quadratic hidden variable FIF has been in-
vestigated using function scaling factors, which are
a generalisation of constant scaling factors. The col-
lection of scaling factors used as a function scaling
factor in the current work makes the HVFIF more
diverse and flexible, making it suitable for both reg-
ular and irregular interpolation data. HVFIF with
function scaling factors provides superior outcomes
for approximating more complex natural phenom-
ena, such as wave functions, weather forecasts, share
price fluctuations, etc., than HVFIF with constant
scaling factors.
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